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Abstract

The Grand Challenge problem presented by simulation
of perpendicular magnetic recording requires an algorithm
scaling close to linearly with the number of elements in the
simulation cell. We derive an appropriate algorithm based
on 2D FFT’s of field and magnetization in the disk plane,
combined with a novel treatment of field propagation in the
z-direction. The near-linear scaling of the algorithm with
number of elements is demonstrated by computer experi-
ments. Although the computation contains a strong data-
parallel element, in that an ensemble of 20 members is re-
quired in order to achieve statistics, some parallelization is
desirable. Adequate parallelization is achieved on an SP
machine. On an Intel cluster, speed-up saturation is ob-
served, and is understood in terms of bandwidth limitations.

1 Introduction

Bit densities on hard discs used for magnetic storage are
at present increasing at a rate of 100 percent per year. It
is probable that, in the drive to increase bit density, current
storage media employing magnetic bits aligned parallel to
the disk surface (longitudinal recording) will be replaced
by a new design concept with bits aligned perpendicular to
the disk surface (perpendicular recording). The proposed
technology shift [1, 2, 7] is motivated by the need to main-
tain resistance to thermal demagnetization in bits of suc-
cessively smaller physical dimension. The required thermal
demagnetization resistance can be achieved by use of harder
magnetic materials in the storage medium. However, harder
magnetic materials require larger write fields, which above
a certain level may only be achievable in the perpendicular
configuration. The source of the available enhanced write
field lies in the use of a highly permeable Soft magnetic Un-
der Layer (SUL) beneath the magnetic storage medium at

the disk surface. The magnetic field leaves the write pole es-
sentially pointing normal to the disk surface (say ’DOWN’),
crosses through the narrow air gap and medium, which be-
comes magnetically polarized in the desired write direction,
bends over horizontally in the SUL, re-enters the medium
again oriented normal to the disk surface (say ’UP’) and
crosses the air gap to enter the return pole (see Fig. 1). The
return pole has a larger area than the write pole, thus re-
ducing the flux per unit area and hence minimizing its write
effect, and the return pole is also located ahead of the write
pole, both design features maximizing control of the written
bit by the write pole. In contrast to longitudinal recording,
where there is no SUL and the write field is not strongly
affected by the medium, perpendicular recording presents a
more complex engineering situation in which the write pro-
cess critically depends on the combined SUL and write head
designs.

The complexities intrinsic to perpendicular recording
technology give rise to the necessity for numerical simu-
lations to be closely coupled to the process of disk and head
design[9, 5, 3, 8]. It is necessary to simulate the head plus
disk (disk including medium and SUL) together, and hence
to implement in software the process of writing several bits.
In order to adequately model this aspect of perpendicular
recording, a typical simulation box (Fig. 1) will be around
2560 � 1280 � 620 nm3 at a resolution of 5 nm or less.
In the present approach, the elements are orthorhombic in
shape (Fig. 1). The resolution requirement is maximum in
the recording medium layer. The head can be modelled at
lower resolution in the regions well above the disk plane.
The SUL can also be modelled at reduced resolution. Thus
while the medium will be modelled at typically 512� 256
resolution, and in elements 5 nm. in depth, in regions above
and below the medium the element size can be several times
5 nm.. Because of the massive nature of the required simu-
lation, it is sometimes referred to as a computational Grand
Challenge problem.

The main features[6] of the simulation approach are il-
lustrated in Fig. 2. Associated with every element i there is
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a magnetization vector mi, assumed to be constant within
the element, and a magnetic field vector h i. Given hi(tn)
and mi(tn) at time tn, the Landau-Lifschitz-Gilbert (LLG)
equation

dmi

dt
= �j
jmi � hi +

�

ms

mi �
dmi

dt

is solved using a numerical integrator (Runge-Kutta) in or-
der to update the magnetizationmi(tn) to mi(tn+1). Here

 is the gyromagnetic ratio, ms is the saturation magnetiza-
tion of the material, and � is the damping constant.

The updated magnetization leads to an updated field
hi(tn+1), by taking into account the interactions illustrated
in Fig. 2. The head field changes at each time step, both due
to movement of the head and to changes in its magnetiza-
tion originating at its driving coil (the driving coil is external
to, and assumed to be independent of, the simulation, being
treated as an ’external variable’). These changes need to be
put in place before the update of the field is started. The
components involved in the field update are briefly summa-
rized as follows

- For finite temperature simulations a Langevin-like
noise term is included in the simulation by adding it into
the field; this term is local in nature. It is necessary to repeat
the calculation for a thermal ensemble of magnetic config-
urations. This requirement needs to be considered in the
overall assessment of simulation cost.

- The anisotropy term is uniaxial and drives the magneti-
zation to lie close to an easy axis. In perpendicular record-
ing the easy axis is close to the normal to the plane of the
disk. The energy term associated with the anisotropy is lo-
cal and in its simplest form is

Eu = Ku sin
2 �i;

where �i is the angle between the magnetizationmi and the
local easy axis, and Ku is the (positive) anisotropy param-
eter for the material. For the medium, the local easy axis
in a given element i lies within a narrow cone determined
physically by crystallite orientation, and is set randomly,
within an experimentally determined standard deviation, in
a pre-computation step (inter-grain correlations thus being
neglected).

- The energy associated with the exchange term involves
an interaction between neighboring elements i and j

Eex = �2Jijmi �mj;

where Jij is the material-dependent exchange integral. J ij
is short range, and is included only for nearest-neighbor in-
teractions. Jij is positive for the ferromagnetic case.

- The demag term is the long range interaction between
magnetic elements. For two elements i and j the corre-
sponding energy is given by

Edm =mi

Z
Cell i

d3r

Z
Cell j

d3r0� (r� r0) mj;

where in the demagnetization calculation the pairwise inter-
action � is the dipole-dipole interaction tensor with compo-
nents � and �

��� (r) =
3x�x�
r5

�
Æ��
r3

:

The magnetic field is retrieved from the nonlocal energy
expressions by differentiation with respect to magnetization

hi;� = �
@E

@mi�

;

where E = Eex or Edm.
The simulation needs to be run for at least 105 time steps

in order to simulate a meaningful write process.

2 Scalable Algorithm

Almost all the calculations involved in the update are lo-
cal or nearest-neighbor in nature, and thus scale as O(N ),
where N = NxNyNz is the number of elements in the
simulation cell, N� being the number of elements along
the �th direction. The exception is the demag component,
which naively scales as N 2, a scaling which would be pro-
hibitively costly in this Grand Challenge application. In or-
der to implement the simulation on a system of size which
is of practical interest, an algorithm for demag scaling close
to O(N ) is indispensible. The scalable approach for the
demag calculation which we have developed is customized
for the present problem. It is FFT-based in the two dimen-
sions lying in the disk plane, the x and y directions, but uses
a novel approach to treat the z direction. The treatment in
the z-direction is adapted to a relatively small number of ir-
regularly spaced z-layers (on the order of 40 � 60), and is
cheaper than a full 3-dimensional FFT, which must main-
tain the highest resolution along the z-direction and whose
dimension must be extended beyond the z dimension of the
simulation cell to allow zero padding.

The 2D FFT approach is ideally suited to treat peri-
odic boundary conditions, which limit edge effects. We
define images or replicas of the simulation cell located at
AN = (axnx; ayny), where ax; ay are the simulation cell
dimensions and the components of N = (nx; ny) are in-
tegers. Here a notation is introduced where bold capitals
define 2D vectors, and scalars are used for z-components.
Thus element location i = (I;i), where I = (ix; iy) defines
element location in the xy-plane, and i defines the element
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position on the z-axis. Similarly r = (X;z) etc. We intro-
duce a 2D Discrete Fourier Transform (DFT) as

�mK;i =

Nmax�1X
I=0

eiK:XImI;i ; K = 2�(
lx
ax

;
ly
ay

);

l� = 0; 1; 2; ::N� � 1:

HereNmax = (Nx; Ny) andXI = (ix�; iy�), where � and
� are the x and y dimensions of the element (in this paper
we shall for notational simplicity assume that � and �, and
also the z- dimension of the element �, are independent of
z-layer i). Define element volume v = ���.

Next, we use the Poisson Summation Formula to trans-
form the total demag energy

V tot
dm =

1

2

X
I;J;i;j

mT
I;i

Z
el: I;i

d2Xdz

Z
el: J;j

d2X 0dz0

�
X
N

�
�
X�X0 +AN;z � z0

�
mJ;j;

to Fourier space. We then obtain in mixed Fourier-z space
the magnetic field as

�hK;i = �h>K;i +
�h<K;i +

�h=K;i;

where, introducing the row vectorV(K) = (iKx; iKy;K)

�h>K;i =
1

��v

X
G

VT (K+G) jfK+Gj
2
h2jK+Gj

�
2�

jK+Gj
�+i (K+G)

�h<K;i =
�1

��v

X
G

VT (K+G)� jfK+Gj
2
h2jK+Gj

�
2�

jK+Gj
��i (K+G)

and

�h=K;i =
1

��v

X
G

jfK+Gj
2 2�

jK+Gj
gjK+Gj

�
X
i

�
RefVT (K+G)V(K+G)g

�
mK;i:

Here the reciprocal lattice vector G = 2�
�
mx

�
;
my

�

�
,

mx and my being integers. The form factors fK, hK and
gK are defined by

fK =
4 sin

�
Kx�
2

�
sin

�
Ky�

2

�

KxKy

;

hK =
2 sinh

�
K�
2

�

K
;

and

gK =
2

K2

�
K� + e��K � 1

�
:

The 2D � matrices are defined by

�+i (K+G) = e�jK+Gjzi

i�1X
j=0

ejK+Gjzj�+K+G;j ;

and

��i (K+G) = ejK+Gjzi

Nz�1X
j=i+1

e�jK+Gjzj��K+G;j ;

where the ��K+G;j , related to the magnetostatic charge den-
sity, are

��K+G;j = (iKx + iGx; iKy + iGy;�jK+Gj) : �mK;j :

Note that the expansion in reciprocal space vectorsG is re-
quired in order to correctly reproduce the short-range prop-
erties of the magnetization and field at and below the scale
of a single element.

From the transform hK;i the field in a given real space
element may be obtained by inverting the DFT (FFT tech-
niques are used to get the DFT and its inverse).

So far, because there is a j-sum embedded in each � i,
the algorithm retains the appearance of being O(N 2

z ). But
we notice that the j-sums in the expressions for �+

i and ��i
do not depend on the variable i. This feature enables the
calculation of the�’s to be restructured as a pair of recursion
relations. We get the upward recursion relation for �+

�+i+1 (K+G) = e��jK+Gj(�+K+G;i + �+i (K+G));

�+0 (K+G) = 0

and its downward fellow for ��

��i�1 (K+G) = e��jK+Gj(��K+G;i + ��i (K+G));

�Nz�1 (K+G) = 0:

In its recursive form the algorithm is manifestly of order
Nz, so that the leading computational complexity for the
whole calculation, formally dominated by this loop and the
FFT’s, is of order N log2(NxNy):

Although we have demonstrated it for the simplest case
of uniformly spaced layers, the recursion relation still works
if the spacings zi of the layers is nonuniform, as desired in
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this application. And, it is not even necessary for the dif-
ferent layers to have the same element size in the x- and
y-directions, provided the spacings are multiples of a min-
imum spacing, since the K-spaces of different layers, ex-
tended by the infinite G-vector periodic array, map into
each other.

In the present form accuracy is controlled by the num-
ber of G-vectors nG (including zero) included in the sum,
which can be costly if it is too large. The convergence of
the G-sum is poorest for the case h=K;i, and it is useful to
enhance accuracy by precomputing these self-layer terms
in real space. Their evaluation then leads to no loss of ac-
curacy and is only O(N ): An additional trick is based on
the short-range nature of the remaining error, and one may
determine the best near-neighbor correction in order to min-
imise this error with a given number of G-vectors, and ab-
sorb the correction into the exchange part of the calculation.
It is then found that with nG = 9G-vectors the results are
accurate to about 1� 2% max. error. At the same time, the
compute time for the recursion relations is under half the
total for a time step. Hence the approach described above is
viable.

A more general and complete formulation is described
in a forthcoming paper by the present authors[4]. In the
more complete approach, the demag computation, here im-
plemented solely inK-space, is split between real space and
K-space in a systematic manner. Both parts of the calcula-
tion, including that of h=K;i, are rapidly convergent. In the
general algorithm, any desired accuracy may be achieved.

3 Implementation and Parallelization

3.1 Implementation

We first want to supply some implementation details:

� In the computation of the field due to the head, the
piece originating in the external driver coil is repre-
sented as a magnetostatic charge sheet on the upper
face of the simulation box, and consists of a charge
sheet covering the write pole plus a second sheet of
opposite polarity covering the return pole. The inte-
grated charge in the two sheets is zero. In terms of
the 2D Fourier representation, the displacement of the
head is implemented by multiplication by a phase fac-
tor. Since the head field also changes in time, in re-
sponse to the current in an external driver coil, it is
also multiplied by a corresponding time-varying scalar
factor proportional to the instantaneous driver coil cur-
rent.

� The thermal fluctuations component is added as a ran-
dom number with Gaussian distribution into the field
(Fig. 2).

� The demag field

– Computation of the self-field �h=K;i of the lay-
ers; the ’response function’ tensor of the self-
field, a difference kernel which linearly relates
the field to the magnetization in real space, is
pre-computed and then Fourier transformed. At
each time step it is only necessary to multiply the
transformed magnetization by the response func-
tion, and add to the transformed component.

– The inter-layer field. First the three compo-
nents of the magnetization are FFT’d and con-
verted into the scalar � matrices. The recur-
sion relations for each component of the 2D
��i ((Kx +Gx) ; (Ky +Gy)) matrices are then
implemented. Now, the � matrices are the trans-
forms of real matrices, so that they have the prop-
erty that

��i ((Kx +Gx) ; (Ky +Gy))
� =

��i (� (Kx +Gx) ;�(Ky +Gy))

so that the size of the matrix is approximately the
same as that of the real matrix (as a matter of
fact, most FFT implementations for real matrices
generate a complex matrix of 2(Nx=2+1)Ny el-
ements, which for even Nx is just slightly larger
than NxNy). The symmetry relation is used to
reduce storage and computation, and to reduce
the data transmission needed in parallelization.
After converting the �’s to magnetic field, we in-
verse FFT each component. Hence there are 6
FFT’s per field evaluation.

– The use of a finite number nG of G-vectors en-
tails some loss of accuracy, which is however
short range in real space. Hence this error can
be compensated by including a real space cor-
rection. In the present implementation, we allow
only for corrections between adjacent layers of
cells in the same column. More accuracy may re-
quire the transmission of more the real space of
more layers; we denote by jLj the number of lay-
ers for which real magnetization will have to be
transmitted - where for the present implementa-
tion jLj is 1.

A last item we wish to mention that, in order to solve
the LLG equation by Runge-Kutta, two force field compu-
tations are done per time step: both use essentially the same
resources.

3.2 Parallelization Approach

The approach taken is to map a layer, or a contiguous
group of layers, onto a processor in a parallel-architecture
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machine. The data transmission needed between the proces-
sors is then primarily that of the magnetization matrix and
the � matrices from the outermost layers of the layer group
in each processor. This approach means that all FFT’s are
calculated intra-processor, which obviates a large amount of
interprocessor data transmission from this source.

The volume of data to be transferred from one layer
group to the next is now derived. The real space magne-
tization is 2�3jLjNxNyW bits, where W is the number of
bits in a word, 2 refers to the 2 force computations per time
step, and 3 is the number of components of the magnetiza-
tion. The � matrix is represented by 2nGNxNyW bits of
information (this formula is somewhat approximate; as dis-
cussed earlier, as a matter of practice the � matrix is slightly
larger since it is a complex matrix representing a transfor-
mation of a real matrix). The total volume of data (which
we denote by VLG) can be given by

VLG = 2(3jLj+ nG)NxNyW:

If we partition the system amongst 2 processors, the to-
tal volume of data to be transmitted and received between
the 2 processors is given by 2VLG. Should we partition the
system amongst more than 2 processors, the processors cor-
responding to the outer layers require still 2VLG data bits,
but the processors corresponding to the interior layers all
require 4VLG data bits. For Nx = Ny = 64; nG = 9; jLj =
1;W = 64 we find VLG = 6:3 106.

4 Experimental Results

We first consider the scaling with number of elements.
This is displayed in Fig. 3. It is seen that although there is a
very tiny amount of supralinearity, the scaling is essentially
as N .

The efficiency of parallelization is seen in Fig. 4 and Fig.
5 and in Tables I and II below.

The experimental results on parallelization indicate a
much better scaling for the IBM SP machine (Fig. 4 and
Table I): the bandwidth on that machine is more than on or-
der of magnitude better than that of the Intel cluster (Fig. 5
and Table II). The residual slowing with increasing numbers
of layers on the SP machine is probably due to the compu-
tational overhead that the communication imposes, which is
a constant independent of the number of layers.

Table I: Results for
375 MHz Power3-II system

CPUs 64� 64� 16 128� 128� 32

sec/cycle speedup sec/cycle speedup
1 1.120 1.00 10.10 1.00
2 0.580 1.93 5.80 1.74
4 0.305 3.67 3.00 3.27
8 0.154 7.27 1.54 6.56

16 0.088 12.7 0.853 11.8
32 — — 0.58 17.4

However, the limit of scalability one observes on the In-
tel processors is certainly due to the bandwidth load that
the communication imposes. The cluster we used has a
nominal communication bandwidth of 100 Mb/sec.. In the
64�64�16 experiment the communication time for 4VLG
is approximately 0:3 sec.. The experimental results for the
64�64�16 experiment indeed show a breakdown of scaling
at around 4 � 8 processors, where the communication-free
computation time would be 0:5 � 0:25 secs., whence the
breakdown at this point is to be anticipated. Now consider
the situation for the 128� 128� 32 experiment. The com-
munication time scales as the number of elements per layer,
and is thus 4� that of the 64� 64� 16 experiment. How-
ever, in a cluster of a given total number of processors, the
number of layers per processor is doubled. Hence the com-
putation time is 8� that in the 64 � 64 � 16 experiment.
Thus the computation/communication ratio is actually 2�
more favorable in the larger system, and the breakdown in
scaling occurs at a larger number of processors (Fig. 5, Ta-
ble II). We should also expect better performance using a
Gigabit/sec ethernet.

Table II: Results for Intel Pentium III 600 MHz
with 100 MBits/sec Ethernet

CPUs 64� 64� 16 128� 128� 32

sec/cycle speedup sec/cycle speedup
1 2.10 1.00 14.60 1.00
2 1.03 2.04 8.78 1.67
4 0.61 3.44 4.80 3.04
8 0.41 5.12 2.80 5.21

16 0.32 6.56 1.70 8.58
32 — — 1.20 12.2

5 Conclusion

The Grand Challenge problem presented by simulation
of perpendicular magnetic recording requires an algorithm
scaling close to linearly with the number of elements in the
simulation cell. We have derived an appropriate algorithm
based on 2D FFT’s of field and magnetization in the disk
plane, combined with a novel treatment of field propagation
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in the z-direction. Computational experiments on an early
version of the algorithm, which is reasonably adequate, are
given in the present paper, to be followed in a future paper
by a full discussion of a more complete algorithm, enabling
the demag field to be computed with arbitrary accuracy, and
incorporating speed-ups from multigridding. The scaling of
the algorithm linearly with number of elements is demon-
strated by computer experiments.

The computation contains a strong data-parallel element,
in that an ensemble of 20 members is required in order to
achieve statistics. Nevertheless a moderate degree of paral-
lelization is desirable in order to speed up turn-round time.
The parallelization is investigated by experiments on both
an IBM SP machine and on an Intel cluster. Adequate par-
allelization is achieved on the SP machine. On the Intel
cluster, speed-up saturation is observed, and is understood
in terms of bandwidth limitations whose scaling is inves-
tigated and enables understanding of the experimental re-
sults. If the number of layers is realistically large, and with
enhancement of communication bandwidth, the Intel clus-
ter should also form a suitable hardware platform for this
type of simulation.

Taking into account anticipated moderate speed en-
hancements, the prospects for simulating realistic engineer-
ing situations with our current approach on accessible hard-
ware seem excellent.
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Figure 4. Speed-up factor, expressed as (time
on single node/time on n nodes), plotted vs.
n for SP system of Table I.
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n for Intel cluster of Table II.
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