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Abstract.

A systematic two-stage procedure for finding metastable phases from first-principles
total-energy calculations is derived and applied to tetragonal structures. In the first
stage we calculate the system's epitaxial Bain path (EBP) in the tetragonal plane, whose
coordinates are the tetragonal lattice constants, the EBP is defined so that it goes
through all tetragonal energy minima. In the second stage we prove or disprove
metastability by evaluating the elastic constants at the minima and checking the stability
conditions. Application of the procedure to some metallic elements and compounds has
led to a substantial number of metastable phases, many of them new, which exist in
addition to the ground state. A generalization to finite hydrostatic pressure permits
finding metastable phases under pressure, but a third stage must be added which
converts the energy to a free energy whose minima now give the phases. Various
properties of EBP's are described, including the existence of inherently unstable states
along the EBP which cannot be stabilized by application of external stresses, and de-
termination of the point on the EBP at which a thermodynamic phase transition between

tetragonal phases occurs that is produced by epitaxial strain.



I. INTRODUCTION

Metastable phases of a material of given composition are essentially new materials,
which may have properties very different from the ground-state phase, e.g., metastable
diamond and graphite. Much effort has been made to find other phases of a material
by applying pressure, changing temperature, and varying concentrations of compo-
nents. These experimental procedures change the ground-state phase to a different
phase. This different phase may at ambient conditions be a métastable phase, which
is locally stable against small perturbations, although higher in energy than the ground
state at ambient conditions. Hence experiment can sometimes indicate possible
metastable phases. Stabilization of these different phases can then be sought to con-
firm their metastability experimentally. This paper shows how modern electronic theory
can find metastable phases systematically from first principles, and can both confirm
and extend the experimental indications.

Modern first-principles electronic theory has given us a reliable theoretical procedure
for finding total energies of crystalline materials, although there are computational limi-
tations on the number of atoms allowed in the unit cell. Band-structure programs such
as WIEN97! can calculate total energies for any configuration of atoms in the unit cell.
Hence we can search for metastable phases by looking for energy minima that are lo-
cally stable, i.e., configurations for which the energy increases for all small displace-
ments of the atoms in the unit cell.

When discussion is limited to crystals with just one basis atom in the unit cell (a
Bravais lattice), the structure space to be searched has at most six dimensions (the
three sides and three angles of the parallelopiped unit cell); a second basis atom adds
three more degrees of freedom, so that the structure space then has at most nine di-
mensions. However symmetry reduces the number of structural degrees of freedom.
This paper makes the computational burden practicable by considering just body-

centered tetragonal lattices, either as Bravais lattices or as the related lattices with two



basis atoms like the CsCl and the Cu-Au lattice (L1,) with the second basis atom at the
body center. Symmetry then limits the structure space to just two dimensions.

It wiil be shown that calculation of energies along a unique path through tetragonal
states, the epitaxial Bain path (EBP), locates all the states that can be tetragonal
metastable phases of the given crystal. Calculation of the elastic constants of these
states then determines whether the state is in fact metastable. In this way 13
metastable tetragonal phases in addition to the ground state have been found in 16
metallic crystals. A table of stabilities of tetragonal phases of these metallic crystals is
given, which includes several magnetic phases for each magnetic element.

Other useful properties of the EBP are described: the EBP gives the states which
are maintained stable by applied isotropic epitaxial (biaxial) stress; it shows the nonlin-
ear elastic behavior as phases are strained; it finds states which are inherently unstable
and cannot be stabilized by applied stresses; it can be generalized to find metastable
phases under hydrostatic pressure, and also generalized to apply to structures with
other symmetries than tetragonal.

In Sect. Il we define the EBP and describe its properties and applications. In Sect.
Ifl we list and classify the stabilities of the tetragonal metastable phases of some ele-
ments and binary compounds. In Sect. IV we discuss the value of the EBP approach
to tetragonal metastable phases and extensions of that approach; some comments are
made on the language used for discussing phases and questions are raised for further

study.

il. DEFINITION, PROPERTIES AND APPLICATIONS OF THE EBP
A. Tetragonal phases and Bain paths
The structure space for the body-centered tetragonal (bct) crystals considered here
(lattice constant a for the square base and c for the height of the two-atom cell) is the
tetragonal plane, which has coordinates a and ¢ or, equivalently, ¢/a and the volume

per atom V=ca/2. At every point in the tetragonal plane there is a self-consistent
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solution of the Kohn-Sham equations,?2 which we will call a state of the system. The
solution provides the total energy per atom E(a,c) and the first derivatives of E(a,c)
provide the in-plane ((001) plane) stresses oy = 62 and the out-of-plane {[001] direction)
stress o;. We seek the states at the minima of E(a,c), (referred to as tetragonal
minima), which will be called equilibrium states because the stresses vanish for these
states — saddle points of E(a,c) are also equilibrium states, but are always unstable.
The tetragona! minima are not necessarily stable or metastable®because breaking the
tetragonal symmetry might decrease the energy.

Almost always there are two minima in the tetragonal plane and a saddle point be-
tween them; the minima correspond either to dominant binding between (001) planes
(small ¢/a) or to dominant binding in the (001) planes (large c/a). We show later by
symmetry arguments that an element in bet structure must have at least two minima.
However the two-atom crystal with the Cu-Au structure need not have two minima, al-
though it usually does. Note that at small and large c¢/a, E will increase strongly, since
atoms will begin to overlap.

A systematic procedure for finding tetragonal minima consists in calculating first a
particular path in the tetragonal plane that must go through the tetragonal minima. That
path is the EBP. The tetragonal minima are then at the minima on that path, as will now
be shown. A Bain path meant originally a path through tetragonal states between
equilibrium bcc and fee structures.3 This original definition implicitly assumed that at
both cubic structures there were minima of £a,c). However, total-energy calculations
have shown that the tetragonal minima are not necessarily both at cubic*58 structures.
Hence a more appropriate definition of a Bain path is a path in the tetragonal plane that
goes through both tetragonal minima, whether the corresponding structures are cubic
or not. There are still many Bain paths, but note that a constant-volume path, which is
frequently called a Bain path,47 does not in general satisfy the definition, since the

tetragonal minima usually have different volumes.



The EBP is the unique Bain path which is defined as the path along which the stress
in the [001] or ¢ direction vanishes. This condition is satisfied on epitaxial films with a
vacuum interface and defines the EBP even when there is only one tetragonal minimum,

as can be the case for the Cu-Au structure. The EBP is calculated by finding at each

a the ¢ at which56

2 ( oE(a,c) _0

0'3 =
a2 oc

(1

Satisfaction of (1) gives directly ¢ and E%° at a, hence also the in-plane stresses
o1 = o, from 6E(a,c)/0a at the point (a, ¢8F) and VEEP = cE8P22/2  For convenience of
discussion we use a standard model of the EBP which has two minima and a maximum
of energy between them; we will mention explicitly if the standard model does not apply.

At a minimum of EE57(g), coordinates (& , &), the first derivative of £(a,c) vanishes
in two directions in the tetragonal plane: along [001] by construction of the EBP and
along the EBP, since the point (&, &) is at a minimum of E£8°(3). Hence the derivative
of E(a,c) at (&, G) must vanish in all directions so that at (&, &) the stresses

o1=6:=03=0 and

0E(a,c) _{ °Ea.c) N
("_a"é‘“_) -( 2c ) =0. @
2.6 %,

Thus (& , @) is an extremum of E(a,c) and, as stated above, E£87(g) must go through
all minima of £(a,c), and also through afl maxima and saddle points, i.e., through all
equilibrium points. The stability of the state at (&, &) must then be tested to determine
if it is a metastable phase.

Figure 1 illustrates the EBP functions for vanadium. Figure 1(a) is a plot of
EEBP(c®57(a)/a), which shows the standard model with two minima and a maximum be-
tween; vanadium has cubic symmetry at the first minimum (the bec ground state) and

also at the fcc maximum (which is a saddle point in the tetragonal plane), but has non-

5



cubic tetragonal symmetry at the second minimum. Figure 1(b} is a plot of
VEEP(CEBP( )/ &), which gives the equilibrium values of W a,c) at the two minima of E52F
(points A and E); Fig. 1(c) is a plot of c587(¢c5"(a)/a); Fig. 1(d) shows the in-plane stress
of8” along the EBP as a function of ¢®%(a)/a. The figures were made by using the
power series expansions of total tetragonal energies by Sliwko, Mohn, Schwarz and

Blaha.”

B. Conditions for metastability
As noted above, the tetragonal energy minima are not necessarily metastabie
states, because a deformation that breaks tetragonal symmetry could lower the energy.
The test of local stability against all small deformations is given by four stability condi-
tions expressed in terms of the six elastic constants of a tetragonal structure.® The
conditions are derived from the requirement that the strain energy be positive definite

for all small strains of the state at the minimum. We write these conditions in the form

C'E(C‘—‘;q—z)w, 3a)
) 2

V=04 o= >0, @3b)

C44>0, (36)

Ges> 0. (3a)

Some assumptions have been made in writing (3) compared to the cases considered
by Nye8 — namely, we assume that ¢, and ¢ are always greater than zero. These
assumptions simplify the determination of stability and have never been violated in any
of the tetragonal structures we have studied. Also for the tetragonal lattice we add (3d)

to the hexagonal structure stability conditions given by Nye.



The instabilities that we find for minima of the EBP all come from violiitions of (3a)
or (3c) or (3d); the condition (3b) is always satisfied at tetragonal minima because the

curvature at the minima, which gives Y, is positive since
EBP
vt FE@Y) @
% da’
&

In addition to Y’ the EBP also determines

G __1( %@ 6
Gy 2 da ' )
2
Condition (3a} can be checked by calculating C' from
oo _ 1 [ PEa, a(a)0 ©a)
2 26 oal ’
2y, @, G

where & and & designate the in-plane tetragonal lattice constants separately and
a(ay) =28 -4 . (6b)

In (6a) E is regarded as a function of the three sides of the tetragonal cell separately,
but & is coupled to a. The tetragonal symmetry is broken by the deformation to give
an orthorhombic cell. Equations (6a) and (6b) are equivalent to the usual combination
shear strain g, =—&¢,.

The shear constants ¢, and ¢ are evaluated from strains which change the angle
023 between the sides & and a = ¢ and the angle 0,, between the sides a, and a re-

spectively; with 9 in radians, we have?®

62E(a,c,9 )
Cos = 233( — 23 , )
%) 23 -




CBS — 2 62E(8,C, 912) . (8)
Q% 065,
&y,Cg, W2

As for (6), the deformations in (7) and (8) also break tetragonal symmetry; the defor-
mation for ¢, produces a monoclinic cell and for ¢ an orthorhombic cell.

For cubic symmetry ¢ = ¢y and ¢z = 612 and the stability copditions (3) reduce to8

Cc'>0, (Sa)
Ciy +2¢5>0, (Sb)
C1q>0, (90
since then (3b)} becomes
Y- (C11+2C125011—C|2) 0. (10)

Then (9b) is satisfied if ¢, and ¢, are greater than zero, and {9a) then follows from (10).

Hence only violations of (S¢) can produce instability at a minimum with cubic symmetry.

C. Symmetry theorems and special properties of cubic structures

An element with the bct Bravais lattice has two structures with cubic symmetry: bce
atc/a=1andfcc at c/a= \]2_ . Note that the Cu-Au structure has cubic symmetry oniy
at c/a=1. There are two useful symmetry theorems for tetragonal deformations of
states of cubic symmetry.

The first theorem is that the EBP must have an extremum in energy at all structures
with cubic symmetry. This result follows because (9E/3c),=(0E/dss)/c=0, where
£a=0d/c, at all points of the EBP by construction; then at a point on the EBP with cubic
symmetry O0E/0e, = 0E/Oe, = 0E/Deq where g =08a/a, = 8a/a, S0 that
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(OE/oay),. = (OE/O&),.. also vanish. Hence E must have a vanishing derivative at that

point in the tetragonal plane in all directions, including the direction along the EBP.
The second theorem is that on paths in the tetragonal plane on which the volume

V=ca2 is constant, E as a function of a or c/a is an extremum at points of cubic

symmetry. At such points, as noted above, 8E/6s, = 0E/0s, = 0E/des; then at constant V

_ OE oE oE _ OE
8F = Og4 Ert Jes B2t Ot 3= Og;

we have (81 +e2+83)=0, since
SVIV=g,+e,+5=0.

The first theorem has the interesting consequence that for elements in bet structure,
which always includes two structures with cubic symmetry, there must be at least two
extrema on the EBP. But then there must be at least three — two minima and a max-
imum between, as in the standard model, because the EBP rises for both small and
large c¢/a. Two of the extrema have cubic symmetry; the third then has non-cubic
tetragonal symmetry.

There are three possible configurations, since the non-cubic extremum can be in
three positions with respect to the cubic extrema. All three configurations occur in the
elements discussed in Sect. lll. However for the binary compound in Cu-Au structure,
which always has just one cubic structure (CsCl), the cubic structure has three positions
with respect to two non-cubic extrema (if there are two minima). If there is only one
minimum, i.e., an EBP curve different from the standard model, that minimum must be
at c/a=1. The type-1 antiferromagnetic bct structure of a magnetic element?0 also has
just one cubic structure, hence the EBP also has three configurations of one cubic and
two non-cubic extrema.

The second symmetry theorem says that E for elements on all constant V paths in
the tetragonal plane also must have at least two minima and a maximum. Again three
configurations are possible, as was the case along the EBP. If V, = ¢,a2/2 is the volume

of a tetragonal minimum, then Ey(a) will also have a minimum at &; if V is close to

Vo, EW@) will have a minimum close to &. A useful extension of this property of E4a)

to tetragonal systems under pressure is given in Sect. IE.



D. Properties of the EBP away from the minima
Section C considered properties of the EBP at the minima, including the elastic
constants and stabilities of the phases at the minima. These phases might be called
unconstrained phases to distinguish them from phases under epitaxial stress. We can
regard the EBP as an analytic connection between two unconstrained phases. Going
away from the minima along the EBP, the phases come under isotropic epitaxial stress.

’

Then for the point (a,c) on the EBP

2 0E(ay, a,0) 1 0E(a,0)
01=02="73 ( ba, - ca da ac’ (11a)
4,4, s
2 ( 2Eac)
0‘3=32( 3 =0. (11b)
a,c

In (11a) the notation indicates that the in-plane stress can be calculated either by
changing just one side of the square base or by changing both sides of the base by
equal amounts.

As the state moves away from one minimum toward the other minimum along the
EBP, the in-plane stresses oy = o, change in magnitude, initially increasing from zero.
A state will be reached at which a thermodynamic transition to the other phase, also
under stress, is favored. This transition state can be located by defining a free energy
for the epitaxially strained states along the EBP. This free energy will also show that
the system state can be driven beyond the thermodynamic transition state into a
"superheating” region, which persists until a state is reached which is inherently unsta-
ble and hence can be expected to break up, i.e., a stability limit. The range of inherently
unstable states extends to the stability limit of the other phase (see Figs. 2 and 3).

These various stages in a first-order transition between tetragonal phases can be
derived and explained by the epitaxial free energy (at zero temperature) that we now

define along the EBP, 11



G (@) = EF¥F(a) + o7 (a) U a) , (12)

where T is absolute temperature and S is entropy and

Ua)y=- racEBP(a)da . (13)
a

We drop the entropy term in G by considering behavior only at T=0. The quantity
(&) along the EBP defined in (13) is an extensive variable conjugate to o, (U replaces
the similar quantity S in Ref. 11 to avoid confusion with entropy, but has the opposite

sign to simplify its relation to G). Then at a point (a, ¢) on the EBP

EBP
deEBP =( 6E(gz,c) + aEéi’c) dc da(a) )da=chPca da=-ot5F0U, (14

since 0E/0c=0 on the EBP, 0E/da= of®Fca from (11a) and dU= - ¢f8F(a)ada from (13).
in analogy to a system under hydrostatic pressure the stress of%” is analogous to p and

U is analogous to volume V. Then from (12) and (14)

dGFPF = gEFBP 1 o5BPaU + UdotBF = UdotBP . (15)

Thus GE£8° is constant in a transformation at constant of%”.

A calculation of GF87, of® and U as functions of &f%° along the EBP of vanadium
appears in Fig. 2; Fig. 2(a) plots GF®7(cf5") and Fig. 2(b) plots U(c§8P), the derivative
of GF¥(of®). The figure shows the sequence of states between the unconstrained
phases corresponding to the two minima of E (at points A and E). We note these fea-
tures. The curves GF¥F(cf8P) have three branches. The first and third branches cross
at a of® which corresponds to the thermodynamic transition (between points B and F).
Note that making the phase transition and then continuing in the new phase gives lower

values of G compared to continuing in the original phase, e.g., for increasing c¢/a the
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sequence ABFG in Fig. 2(a) gives lower G values than the sequence ABC on the ori-
ginal branch. Similarly for decreasing c/a compare FBA to FED. The intersections of
the first and third branches with the second branch show a characteristic cusp or point
of discontinuous curvature when a phase goes inherently unstable; the second branch
contains the inherently unstable states. The states at the cusps also correspond to the
condition that the second-order differential of energy loses positive definiteness for small
tetragonal strains around the cusp states.11 g

There is a complete analogy in the behavior of a tetragonal system under epitaxial
stress to the first-order phase transition between liquid and vapor states of a van der
Waals gas; the analogy is discussed in detail in Ref. 11. The function cf27(U) is anal-
ogous to the equation of state p(V) along an isotherm. A common-tangent construction
on the first and third branches of EE58°(L)) gives the strained phases that are in equilib-
rium (Fig. 3a), as does the equai-area construction (Fig. 3b) on the function of&°(U),
which is the negative of the derivative of EF7(U); this construction corresponds to the
Maxwell construction on p(V) for liquid and vapor phases in equilibrium.

However, there is a significant conceptual difference between the phase transition
described by the EBP and the one described by the van der Waals equation. The latter
is an empirical equation of qualitative validity, whereas the EBP is based on first-
principles calculations of good known reliability, although the phase transition is de-
scribed within a mean-field approximation.

The GF8°(c£87) function shows clearly three kinds of instability in epitaxially strained
tetragonal phases. For the initial tetragonal deformations from equilibrium, application
of an external epitaxial stress maintains the state as a constrained phase. For defor-
mations beyond the phase-transition point, hence in the "superheating range", the ex-
ternal stress may maintain the state, but an abrupt transition to a state of lower free
energy is possible and could be nucleated. However when the deformation goes be-
yond the stability limit, the strained phase can be expected to break up, since a runaway

situation exists analogous to the states on the p(V) curve where increase of p increases
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V. here increase of epitaxial tension in the inherently unstable states decreases a, which

further increases the tension.

E. EBP's under hydrostatic pressure
Generalization of the EBP for systems under hydrostatic pressure p requires two
changes in the procedures used at p=0. The first change consists in substituting for
the condition (1) (i.e., that o3 = 0) the new condition that o; = — P, so that at every a

0E(ac) \ _ a°
(“—ac— AL (16)

The condition (16) produces the functions F&87(a;p) , VE8(a;p) and CE87(a;p), where the
notation indicates that the functions contain p as a parameter.

The second change consists in introducing a Gibbs free energy per atom (at zero
temperature so that the entropy term vanishes) defined throughout the tetragonal plane

by
G(a,c;p) = E(a,c) +pV(a,0) . (17)

Then at any point (a, c) on the EBP for pressure p
0G(a,c; oE(a,c oV a,c 2 2
( & P)) ( ( )) ( oWa.) _%p+% -0, (18)

where (16) and V= ca%/2 have been used. Now from (17) the function G along the EBP
at p is given by

EBP

(@p) = E™ap) +pVEP(ap) . (19)

Let (& , &) be the tetragonal lattice parameters of a minimum of GF(a;p). Then at
(& , &) the derivative of G(a,c) vanishes both along the EBP and by (18) along ¢, hence
just as for the case p=_0, where the derivative of £ vanishes in all directions (see (2)),

13



the derivative of G at (a, &) vanishes in all directions in the tetragonal plane. The in-

plane stresses at (&, &) are then given by

s ( 0E(a,c)
2= aoCo

( 8&(a,c) 1 ( opWa,0) ) _
ao% &% oa -

In (20) 6G/6a=0 at (&, @) and V=ca*2 have been used. Since o;=-p by con-

% (20)

& &

struction of the EBP at p, the state at (& , &) is under hydrostatic pressure p.

It is also possible to find an equilibrium state under hydrostatic prressure from the
constant volume energy function E4a). At a minimum of E/a) the pressure is shown
to be hydrostatic by transforming the variables from (a, V) to variables (a, ¢) and eval-

uating the stresses. Then at any point a, ¢)

o (8) (8, (),
5 () (),

Since at the minimum of £(a) (0E/6a)y=0, (21a) and (21b) give

Gy = Gp= 0y = ( ) (22)

and the tetragonal system is under hydrostatic pressure at the assumed volume V.

However we do not know the value of p at the given V. If the Vis q&?2 then that pis
the value used for determining GF87(a;p).

Thus an equilibrium state with volume per atom V can be found from minima of
EWa). To determine the corresponding pressure requires the equation of state p(W,

which can be found from E(V) evaluated at the minima of E/a) as V varies. This
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property of E(a) is a generalization of the second theorem of Sect. lIC to systems under
pressure, which now includes cases in which the minimum of E(a) does not necessarily
have a cubic structure.

For a closed system, such as a crystal in vacuum, dE=0 for small changes in
structure around the equilibrium structure. This flatness of £ around equilibrium corre-
sponds to the system being at an extremum of E. However if the crystal is in an open
system, such as a system at constant hydrostatic pressure, then dE = - pdV for changes
in structure and dE does not vanish, but now dG=0 for small changes in structure;
equilibrium for the system now corresponds to an extremum of G. Of course for stability
the extremum must be a minimum and the system under pressure will achieve equilib-
rium by minimizing G.

Metastable phases under pressure are found by a three-stage process: First cal-
culate Ef8(a;p). Second find GF¥(a:p) and its minima. The minima are tetragonal
phases under hydrostatic pressure and may be metastable. Third find the elastic con-
stants from the second derivatives of G with respect to strain at the minima to check
stability. Note that the minima of Ef®"(a;p) cannot be phases under hydrostatic pres-
sure, because the in-plane stress vanishes in the direction along the EBP.

An application of EBP's under pressure has been made to ferromagnetic iron, which
shows that the bcc phase becomes unstable at 1500 kbar of pressure and that a new
bct phase comes into existence at 1300 kbar and becomes stable at 1825 kbar and

above.12

Ill. EXAMPLES OF TETRAGONAL MINIMA ON THE EBP
The procedure described in Sect. |l for locating possible metastable phases by use
of the EBP and then testing their stabilities has been applied to 16 metallic crystals in
body-centered tetragonal structure; the results are tabulated in Tabie |. There are
enough energy minima to suggest regularities in the occurrence of stable and unstable

phases. The total-energy calculations were made with WIEN9S71, usually with both
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LSDA and GGA assumptions. In the table different magnetic phases of Fe are counted
as different materials. The table gives only the signs of the shear constants which de-
termine the stability (C', a4 and ¢ for non-cubic (N) minima, C' and &4 for cubic (C)
minima — there is no entry for ¢, since it is equal 10 .. The LSDA and GGA results
agree in sign, although they may differ in magnitude.

All the EBP's of these materials conformed to the standard model, including CuZn.
However a slight increase in Zn concentration above 50% givesf an EBP with just one
minimum.13 The table gives in column 2 the cubic or non-cubic character of the three
extrema in the sequence: first minimum (at low ¢/a), maximum, second minimum (at
high c/a). Then the signs of the elastic constants at the first minimum are given, which
are followed by the signs of the elastic constants at the second minimum. The minimum
with the lower energy is marked by (L). All 3 configurations of 2 cubic extrema and 1
non-cubic exiremum occur {CNC, CCN, NCC). The compound CuZn and the
antiferromagnetic phases AF1-Fe, AF1-Mn show 2 of the 3 possible configurations of
1 cubic and 2 non-cubic extrema (CNN, NCN}).

The 16 crystals have 31 EBP minima; the first minimum for Mg is too shallow for
reliable computation of the elastic constants and is omitted. The 31 minima show 21
stable phases and 10 unstable phases. All minima are called phases, whether stable
or unstable. The designation stable is used for both ground-state phases and
metastable phases.

The 20 minima with cubic symmetry have 19 stable phases and 1 unstable phase.
The unstable cubic phase (fcc Zn) has c. <0 in agreement with the conclusion at the
end of Sect. |IB about (9¢c). The 11 non-cubic phases have 2 stable phases and 9 un-
stable phases. The instabilities of the phasesr at the first minimum are all due to
C’ < 0; the instabilities of the phases at the second minimum (both cubic and non-cubic)
are all due to ¢ < 0; this includes fcc Zn which has ¢y = G < 0. Only one material has

2 unstable tetragonal minima (Zn).



The number of metastable phases is not completely definite, because the ground-
state phase must be known and subtracted from the count if it is one of the tetragonal
phases. There are 13 metastable phases if we assume that the ground-state phases
of Co, Li, Mg, Mn and Ti are not tetragonal, as experiment indicates. Also we count all
the stable minima of AFi-Fe and NM-Fe as metastable, since the ground state is
FM-bcc.

The stability of fcc Co, Mg, and Ti could be expected, because fcc and hcp are both
close-packed phases, but the instability of fcc Zn is unexpected. A paper by Miller et
al.14 finds the instability of fcc Zn for rhombohedral (trigonal) deformation along {111]

and uses the instability to explain the behavior of Al-Zn alloys. The stability of

N, CuZn (N, means the non-cubic second minimum} and of N, AF1-Mn are interesting
because the o phase of CuZn alloys has been observed only up to 35 atomic% Zn and
not at 50% Zn, and tetragonal AF1-Mn has been made only with 10% or more impurities

that increase the electron density.

IV. Discussion

The procedure for finding metastable phases from the EBP described in Sect. Il and
applied in Sect. Il has been highly productive, demonstrating the existence of about 13
metastable phases for the 16 materials studied. A valuable feature of these results is
that they have been obtained with first-principles calculations, which have a known good
reliability, unlike empirical potentials.

The results on the stability of the tetragonal phases indicate some regularities, such
as: Cubic phases are almost always stable, whereas non-cubic phases are usually un-
stable. The C' shear constant ([110] shear in the (001} plane) determines the stability
of the first minimum of E (at or near bce structure); the ¢, shear constant ([100] shear
in the (001) plane) determines the stability of the second minimum (at or near fcc
structure). Almost all materials have at least one locally-stable tetragonal phase when

both ground-state phases and metastable phases are included.



The EBP procedure for finding metastable phases for bct crystal lattices clearly ex-
tends directly to hexagonal close-packed (hcp) and trigonal crystal lattices, since they
also have just two degrees of freedom. However they require a more elaborate calcu-
lation, since they have additional non-equivalent atoms in the unit cell. The extra atoms
do not strain homogeneously and must be independently relaxed. Aithough the usual
unit cell of the bet lattice also has an extra atom in the unit cell, it has enough symmetry
so that it can be strained homogeneously; the bet lattice of afl element is a Bravais
lattice.

Pressure provides a large extension of the domain of existence of metastable
phases, which can be explored by the EBP procedure, generalized as in Sect. lIlE. It
seems very likely that the number of metastable phases is very large, since so many
have been found just in tetragonal structures of elements at zero pressure, Under
pressure with additional symmetries and additional basis atoms many more metastable
phases should occur.

The language used here for describing phases arose from the procedure. All
tetragonal structures have a solution of the Kohn-Sham equations, which we call a state.
Each such calculation is really a constrained ground-state calculation and the state is
in general under applied stress. The special states at tetragonal minima do not have
applied stresses and are stable under all small tetragonal deformations. Hence it is
natural to call the states at the minima tetragonal phases or tetragonal equilibrium
phases. When the states at these minima prove unstable with respect to strains that
break the tetragonal symmetry, these minima are called unstable phases. This usage
extends the meaning of the term phase, but calls attention to the special character of
these states at tetragonal minima and retains the idea that they might be stabilized in
some way.

The states produced by putting a tetragonal equilibrium phase under epitaxial stress
are properly called constrained phases, which is the common usage, e.g., a phase un-

der hydrostatic pressure. The term phase applies beyond the region of linear elastic



behavior and applies also as the strained material changes its elastic constants. An
interesting guestion that could be studied from first principles by the methods of this
paper is whether the constrained phases starting from a stable phase could become
unstable even before the region of inherently unstable states. However when the region
of inherently unstable states is reached, the characterization as a phase should be
dropped. These states no longer have a special connection to the original equilibrium
phase and lie between two tetragonal equilibrium phases.

The existence of regions of inherently unstable states in the tetragonal plane sepa-
rating the regions of constrained phases suggests that structure space may be generally
divided into regions of constrained phases separated by regions of inherently unstable
states. Then each constrained phase has a unique "mother” phase from which it is
generated by stress. Further study of metastable phases should clarify this description

of structure space.



Table |. Stabilities at tetragonal minima. Column 1 identifies the crystalline structure;
AF1 is antiferromagnetic of the first kind,'® FM is ferromagnetic, NM is non-magnetic.
Columns 2, 3, 4 classify the configuration of extrema from smail c¢/a to large c/ain the
order first minimum, maximum, second minimum, where C is cubic and N is non-cubic
structure. Columns 5, 6, 7 give the signs of C’'=(¢1 —C2)/2 , Cus, G for the first mini-
mum; ¢ is omitted for cubic structures. Columns 8, 9, 10 give the signs of the same

quantities for the second minimum. The minimum of lower ener’éy is indicated by (L).

Material Extremum First minimum  Second minimum
sequence C' Cu G C’' Cu Gs
Co(FM) NCC — o+ o+ + o+ (L)
Cu NCC - + + + + (L)
CuZn CNN + + .. (L) + + +
Fe(AF1) NCN + + + + + + (L)
Fe(FM) CCN + + L) + + —
Fe(NM) NCC -+ o+ + + (L)
K CNC + + . + + .AL)
Li CNC + o+ L + + (L)
Mg NCC + + (L)
Mn(AF1) NCN - + + + + +{L)
Pd NCC — + + S N ()
Rb CNC + o+ L + + ..
Sr CNC + o+ (L) o+ o+
Ti NCC - + + + + ..
\' CCN + + ..(L) + + —

Zn NCC - + + + — ..
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Figure Captions
Fig. 1 Functions along the EBP defined in Sect. IlA plotted against ¢®%°(a)/a for
vanadium. (a) Ef8P(ctF/a) in mRy/atom: A marks the bcc phase, B marks the
thermodynamic phase transition point, C marks the stability limit of the bce
phase, D marks the stability limit of the bet phase, E marks the bct phase, F
marks the thermodynamic transition point coupled to B; (b) VE(c®"/a) in
bohrs; (c) c£8P(cE87/a) in bohr; (d) of87(c8/a) in mF{y/bth?'. The letters mark the

same points for all the functions.

Fig. 2 (2)The free energy function G&"(c,) in mRy/atom, which is defined in (12) at
points on the EBP of vanadium as a function of the in-plane isotropic stress at
those points (b) the function U defined in (13) as a function of in-plane stress
along the EBP in bohrs, where {{o,) = dGF¥/do,. The letters correspond to
those in Fig. 1. The vertical dashed lines join the equilibrium states A and E
where oy =0 and the thermodynamic transition states B and F where Gf8* has

equal values.

Fig. 3 (a) EE87(U) for vanadium showing the thermodynamic transition between B and
F by the common-tangent construction (dashed line); (b) of8°({)) showing the
thermodynamic transition by the equal area (Maxwell) construction (dashed line).
of8(U) for the epitaxially strained system is analogous to the equation of state

p( V) for the vapor-liquid system.
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Fig. 1 Functions along the EBP defined in Sect. 1A plotted against ¢ (a)/a for
vanadium. (a) EF¥(¢*5F/a) in mRy/atom:. A marks the bcc phase, B marks the
thermodynamic phase transition point, C marks the stability limit of the bcc
phase, D marks the stability limit of the bet phase, E marks the bct phase, F
marks the thermodynamic transition point coupled to B; (b) V¥¥(c®7a) in
bohrs; (c) cE8P(cE2F/ &) in bohr; (d) of8(c*5F/a) in mFlyfboh’ri". The letters mark the

same points for all the functions.
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Fig. 2 (a)The free energy function G=#(s,) in MHy/atom, which is defined in (12) at
points on the EBP of vanadium as a function of the in-plane isotropic stress at
those points (b) the function U defined in (13) as a function of in-plane stress
along the EBP in bohrs, where U(c,) = dGF¥/dcy. The letters correspond to
those in Fig. 1. The vertical dashed lines join the equilibrium states A and E
where o, =0 and the thermodynamic transition states B and F where G*®" has

equal values.
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Fig. 3 (a) EE8"(U) for vanadium showing the thermodynamic transition between B and
F by the common-tangent construction (dashed line); (b) of®*() showing the
thermodynamic transition by the equal area (Maxwell) construction (dashed line).
ofB(U) for the epitaxially strained system is analogous to the equation of state

P(V) for the vapor-liquid system.



