
RC22442 (W0205-098) May 13, 2002
Computer Science

IBM Research Report

Inherently Lower Complexity Architectures using Dynamic
Optimization

Michael Gschwind, Erik R. Altman
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Inherently Lower Complexity Architectures using Dynamic
Optimization

Michael Gschwind, Erik Altman

{mikeg,erik}@watson.ibm.com

IBM T.J. Watson Research Center
Yorktown Heights, NY 10598

Abstract

Based on the conviction that modern superscalar out-
of-order designs squander useful resources for little
incremental gain, the BOA team embarked on a de-
sign effort to develop an architecture where compu-
tational elements dominated the design. At the same
time, we wanted to preserve the ability to adapt to
changing workload behavior dynamically, but with-
out the overhead inherent in traditional out-of-order
designs. We turned to maturing dynamic compi-
lation technology to achieve dynamic adaptability,
while keeping core complexity low.

1 Introduction

Modern architectures are characterized by the ability
to issue multiple instructions out-of-order (OOO) to
achieve high instruction-level parallelism by exploit-
ing dynamic program information about program be-
havior.

While these techniques improve instruction-level
parallelism, their impact on designs skews the dis-
tribution of logic towards predictors, complex issue
queues with out-of-order wake-up and issue logic,

register mapping tables, completion tables, and so
forth. Thus, a significant fraction of logic which may
otherwise be spent executing a program is dedicated
to holding data which does not directly contribute to
program progress.

The impact of these typical OOO structures goes
beyond their appetite for transistors which reduce
what can be applied towards program execution, and
which may easily be overlooked. While OOO struc-
tures do not contribute to advancing program execu-
tion, they complicate design and verification signif-
icantly and are often the source of difficult to find
bugs and concurrent schedule slips. In a market-
place characterized by Moore’s Law, a slip in de-
sign schedule will cause a design fall behind the ex-
pected performance curve and hence penalize a de-
sign’s performance relative to competitors entering
the market at the same time. This can easily wipe
out all the performance gains attributable to out-of-
order architecturesrelativeto those of other designs,
as evidenced in Table 1 by the relative performance
improvements required to match schedule slips.

Beyond the distribution of logic capacity and
schedule impact, many of the traditional out-of-
order components are also among the most power-

1

Schedule slip Relative performance
1 month 4%
3 month 12%
6 month 26%
9 month 41%
12 month 59%
18 month 100%

Table 1: Relative performance improvements re-
quired to match schedule slips.

inefficient components in a microprocessor design.
This is largely due to the fact that they are operating
in every cycle, and by their nature cover a large set
of data being queried to operate on a single element.
Power-aware microarchitecture research will eventu-
ally address these issues ([1], [2], [3]), but not with-
out introducing additional design complexity if the
overall architectural approach remains unchanged.

We concluded that while exploiting instruction-
level parallelism was desirable, extracting it should
not come at the expense of huge increases in design
complexity. The solution we identified was to lever-
age advanced compilation technology to accomplish
ILP extraction in software. [4, 5])

In the process, design simplicity allows shorter
latency from pipeline entry to exit as a function
of overall FO4 (as opposed to super-deep pipelines
which increase frequency but not performance).

The main goal in the use of the dynamic optimizer
is to identify frequently executed program regions
and optimize them using information about the spe-
cific workload behavior. Although in this specific
instance, we implemented the BOA target architec-
ture as a VLIW platform, we could also have chosen
a simple in-order superscalar PowerPC implementa-
tion.

The BOA architecture1 traces its roots to the IBM

1Originally, the architecture name “Boa Constrictor” de-

VLIW project [7, 8], and more particularly the Dy-
namically Architected Instruction Set from York-
town (DAISY) [9, 10, 11, 5, 4]. While the VLIW
project had previously demonstrated the perfor-
mance potential of VLIW architectures for general-
purpose sequential-natured software, our DAISY ex-
perience had given us the ability to achieve compati-
bility with the PowerPC architecture and to optimize
code dynamically.

2 ILP Extraction

Modern microprocessors extract instruction-level
parallelism in a series of steps. Instruction fetch de-
termines the likely path of execution under the guid-
ance of sophisticated predictors. The architectural
instruction set is decomposed into primitives which
can be pipelined efficiently. Depending on the com-
plexity of the instruction, this can be performed ei-
ther by hardwired logic (“instruction cracking”), or
by transferring control to a microcode ROM. The
primitives are then grouped into instruction groups
so they can be tracked throughout the design, stored
in the issue queue where they are selected, and is-
sued by out-of-order control logic. To resolve data
hazards and ensure correct sequential in-order pro-
gram semantics, register renaming is performed and
results are retired in-order to the architected register
file. ([12]).

The resulting design is characterized by deep
pipelines where several pipeline stages are dedicated
to performing the above steps. This in turn trig-
gers several self-reinforcing effects, where a more
complex model forces ever more complex solutions.

scribed the very stringent design constraints of conceptual clar-
ity and simplicity we had defined. The acronym “Binary transla-
tion and Optimization Architecture”, or “Binary translation Op-
timized Architecture”, was derived to describe the techniques
which allowed us to achieve this goal.

2

For example, because the deep pipeline exacer-
bates branch mispredictions by increasing the branch
penalty, more sophisticated and complex branch pre-
diction logic becomes necessary.

In BOA, we opted for a much simplified pipeline
model combined with the latest advances in dy-
namic compilation [4, 5, 13]. In this approach, soft-
ware would be responsible for analyzing application
behavior, decomposing PowerPC instructions into
pipeline primitives, scheduling them into instruction
groups, renaming registers, and assembling traces
of instructions likely to be executed along a path
based on the execution history of the program. The
prescheduled traces – together with the runtime en-
vironment – also contain all logic necessary to pre-
serve in-order semantics. The trace fragments cre-
ated by software are tightly packed as they follow
the most likely path of execution, and hence exploit
the instruction caches more efficiently. This is sim-
ilar to the advantages achieved by the use of trace
caches, but achieved with much simpler hardware for
both assembling the traces and selecting the particu-
lar trace to be executed.

We decided to preserve only two basic functions
in support of ILP extraction in hardware. First is a
software-managed checkpointing mechanism, which
saves the current state when transitioning between
groups of instructions scheduled by the software dy-
namic optimizer. In the event of synchronous excep-
tions or memory semantics violations due to spec-
ulation, this checkpointing mechanism allows BOA
to rollback to a good state, and then sequentially pro-
ceed past the problem point without speculation.

The other component of hardware support for ILP
extraction is a set of load/store order tables. These ta-
bles allow software to aggressively schedule memory
operations which may be aliased with other memory
operations.

Beyond these operations in support of dynamic
optimization, BOA is a simple variable length VLIW

architecture with 64 registers and the ability to issue
up to six instructions to any combination of 9 execu-
tion pipelines [14].

3 Hardware Design Simplicity

The BOA processor is depicted schematically in Fig-
ure 1. The processor issues atomic instruction groups
– referred to as packets – containing up to six opera-
tions to a subset of the 9 execution pipelines. Packets
can contain from one up to six operations and are de-
limited by stop bits. The operations which form the
packets are encoded in bundles of 3 operations, us-
ing a 128 bit memory word. Using this encoding,
a packet can contain operations from up to 3 bun-
dles, and a bundle can contain operations from up to
3 packets, delimited by stop bits. (see Figure 2)

BOA’s pipeline architecture reflects the goal of
conceptual simplicity. Instructions are issued by the
issue logic as packets when the inputs to all opera-
tions within a packet are ready. Input operand readi-
ness is determined using a scoreboard architected in
the issue stage.

Results from simple fixed point operations are
available after two cycles, reflecting a one cycle
computational latency, and an additional cycle for re-
sults to be broadcast across the core.

To simplify the scoreboard architecture, score-
boards are updated in the cycleafter an instruction
has been scheduled. This reduces the crucial time to
read the scoreboard bits, analyze them, and update
them. Since the register files are distributed, score-
boards are also distributed, and an update to remote
a scoreboard is assumed to take a cycle. Thus, de-
pendent operations cannot be scheduled by the dy-
namic optimizer in back-to-back packets, reducing
the need to deal with wire delay in a moderately ag-
gressive ILP architecture without frequency penalty
[15]. The net effect is that predictable latencies are

3

due to stall condition.

Fetch Decode Issue,Read Execute Broadcast Writeback

Cache
Ins

Fetch
Control

Package
Decode Issue,

Reg Read

Dynamic
Load/Store

Support
Data

Cache

LSU

FXU

BRU

FPU

Broadcast
Results

Recirc Buffer

Write
Register
Results

Ins Buffer

Do not write results
if packet nullified

Figure 1: The BOA processor

dealt with by software, but unpredictable latencies
such as memory access do not cause astall-on-miss2

to the L1 data cache, but only when (and if) there is
an attempt to use the loaded data before it has been
retrieved from the cache. There is likewise no stall
after variable-length floating point operations — if
and until an attempt is made to use the result and it
is not ready.

To avoid the need to perform state rollback to the
previous checkpoint on frequent events such as TLB
misses, the BOA architecture offers precise behavior
on most memory faults. To this end, the pipelines
are architected to perform address generation and
TLB access before a packet containing memory op-
erations is committed (see Figure 3). Thus, if such
a packet incurs a TLB miss (or page fault), the en-

2Stall-on-miss requires global synchronization and intro-
duces additional circuit complexity, hence it was not desirable
regardless of the CPI penalty of this policy.

tire packet can be canceled and a TLB reload can be
attempted.

Pipeline control logic was simplified by choosing
a simplerecirculation-based approach to resolving
stall conditions and the pipelines are implemented
as simple dataflow elements. Correct operation is
achieved through the use of a recirculation buffer
[16]. The recirculation buffer is managed as a circu-
lar buffer containing instructions executing in each
pipeline stage.

In our approach, instead of checking for the ex-
istence of a stall before proceeding, the pipeline is
automatically advanced every cycle. Upon issuing a
new packet, the packet is both issued and copied into
the recirculation buffer, which holds a copy of the
contents of every packet currently executing. The ex-
istence of a stall in the execution pipeline may then
be determined late in the execution process and in-
dicated to the appropriate packets prior to their com-

4

Branch

Quasi-Crossbar

Packet Packet Packet

Op Op Op Op Op Op

Bundle Bundle

with 6 parallel ops
(a)

(b)

(LSU) (FXU) (FPU) (BRU)

with 3 sequential ops/packets

Op Op Op

STOP STOP STOP

Packet

Bundle

Memory Memory Integer Integer Integer Integer Float Float

Figure 2: BOA Instructions

5

GPR Read

Execute

Broadcast

Writeback

Issue

Decode

Fetch 2

Fetch 1 Fetch 1

Fetch 2

Decode

Issue

GPR Read

AGEN

Writeback

Broadcast

Mem Access 2

Mem Access 1

TLB Access

GPR Read

AGEN

TLB Access

S-CAM

Issue

Decode

Fetch 2

Fetch 1

Fixed-Point StoreLoad

Figure 3: The integer pipelines are matched in depth
such that any exception conditions are detected be-
fore a packet is committed to the processor state.
This decision eliminates history buffers and other
mechanisms to resolve race conditions between dif-
ferent pipeline depths and ensure in-order semantics.

mitting results during theWriteback stage in Fig-
ure 3. The dependent packet and all subsequent
packets are canceled and then reissued from the re-
circulation buffer. The recirculating packets then re-
peat the process of issuing and progressing down the
execution pipeline. If the stall condition remains dur-
ing reissue, the packets are continually canceled and
reissued from the recirculation buffer until the pro-
cessor stall completes. To reduce the cost of reis-
suing instructions while known long-latency opera-
tions are in flight (e.g., an L2 data cache miss), re-
circulation can be suspended for a predetermined,
event-dependent number of cycles. We found that by
eliminating global pipeline control, we significantly
simplified the BOA core architecture.

After address translation is performed in the sev-
enth stage of the Load and Store pipelines in Fig-
ure 3, a load operation is enqueued into a decou-
pling FIFO at the head of the load store units.3 At
this point, the operation is architecturally considered
as having executed, even if the result is not avail-
able (which would cause a recirculation condition
for any dependent packet). When a memory slot be-
comes available, load operations are resolved from
the memory hierarchy, and store results are stored in
the store CAM which implements a multiprocessor-
capable gated store buffer.

By using the ability to recover state using the
software-controlled checkpointing mechanism, it
would be possible to implement precise exceptions
even if the hardware did not support precise excep-
tions. However, architecting precise exceptions did
not introduce significant overhead and we felt that a
significant body of code, such as BOA’s dynamic op-
timizer, would run natively and would benefit from
the existence of precise exceptions.

The dynamic optimizer offers enhanced flexibil-

3The instructionIssue unit only issues packets if there is
space in the decoupling FIFOs.

6

ity over the stringent, cycle-time limited instruction
selection and issue logic implemented by out-of-
order superscalar processors in hardware. For exam-
ple, issue logic can optimize resource usage such as
scheduling for a limited number of register file ports.
While this optimization could conceivably also be
implemented in hardware, it would lead to a signif-
icant increase in instruction issue complexity, likely
offsetting any complexity reduction achieved in the
register file by reducing the number of register file
ports.

Since this scheduling step is performed in soft-
ware, during trace group formation, this is a highly
effective trade-off to reduce register file complexity.
Preliminary experiments suggest that with almost no
loss in performance, the number of register ports
can be reduced from the maximum needed if the six
worst-case operations (from a register port perspec-
tive) are combined in one instruction packet [17].
The dynamic optimizer can ensure that no such pack-
ets are generated.

BOA’s software dynamic optimizer provides the
ability to map the PowerPC architecture to a simpler,
streamlined hardware base in other areas as well:

• BOA uses dynamic optimization and binary
translation to emulate PowerPC processors.
PowerPC has a condition register which can be
accessed in 3 ways: (1) as a 32-bit register, (2)
as 8, 4-bit condition register fields, and (3) as
32, 1-bit registers. Tracking renames for these
multiple modes of access is quite complicated
in hardware. BOA’s software optimization han-
dles this complexity, allowing for significantly
simpler hardware.

• Streamlining of instruction idioms and special
purpose register usage. For example, in “ad-
dress calculation” instructions (including the
add instruction) in the PowerPC architecture,

Cache Bytes Line Size Assoc Latency
L1-Ins 256K 256 4 1
L1-Data 64K 128 2 4
L2-Shared 4M 128 8 14

Table 2:BOA Cache Hierarchy

the register specifier 0 is treated as the literal
value 0, instead of the contents of register R0.
This difference between R0 and the other in-
teger registers R1-R31, complicates hardware.
The base address register in BOA always refers
to a register, never literal 0. BOA’s dynamic op-
timizer and translator efficiently handles Pow-
erPC code with a 0 base register: By software
convention, BOA dedicates one of its registers
to hold the value 0, and substitutes this register
whenever R0 as literal 0 is encountered in Pow-
erPC code. Similarly, the CTR, LR, M/Q spe-
cial purpose registers of the POWER/PowerPC
architecture are mapped to general purpose reg-
isters.

4 Experiments

We have conducted experiments to explore several
design points for a simple EPIC-style architecture
supporting dynamic optimization. BOA’s dynamic
optimizer initially executes programs using interpre-
tation. to gather information about program behav-
ior. It then uses this information to perform schedul-
ing and other optimizations. Figure 4 gives the CPI
for our baseline configuration with the cache sizes
depicted in Figure 2.

While dynamic optimization offers the desirable
features of reducing hardware complexity and being
able to adapt to workload behavior, system perfor-
mance depends on the dynamic optimization cost be-
ing amortized over significant execution time. Thus,

7

Figure 4: BOA CPI

dynamic optimization cannot respond to cycle-by-
cycle behavior changes such as may be exploited by
dynamic predictors.

This is of particular concern for the trace forma-
tion process, since choosing the right trace paths has
a significant impact on system performance. In the
BOA dynamic optimizer, trace formation is based on
the profiled behavior of branches during the interpre-
tation phase. Thus, branch prediction is “static” in
that once a group is formed, the prediction cannot be
changed until a group is re-optimized. We compare
this with a clairvoyant static predictor (i.e., which
can make the statically optimal prediction based on
the branch behavior over the entire workload execu-
tion period) to determine the maximum performance
potential of this approach, and a simple dynamic pre-
dictor.

Figure 5 shows that the penalty for using static
over dynamic branch prediction is significant with
misprediction rates of 11.6% and 4.6%, respec-
tively. However, degradation from clairvoyant static

to history-based static prediction is less significant,
increasing misprediction rate by only 2.2%.

In an attempt to recuperate some of the perfor-
mance lost due to static branch prediction, we in-
cluded simple path prediction into our model. This
simple path predictor make the prediction depend-
ing on the address of the previous branch instruc-
tion. This simple path predictor reduced branch
mispredictions to 9.0%. Despite this improvement
in misprediction rates, the geometric CPI mean of
SPECint and TPC-C benchmarks remained virtually
unchanged at 1.15.

Since the dynamic optimizer is a mutable piece of
software (typically a part of the firmware in a con-
figuration Flash ROM), it can be updated and mod-
ified to incorporate new optimizations, and support
new trace group formation and instruction schedul-
ing policies. In one experiment, we have extended
the dynamic optimizer to implement a version of the
block-structured ISA [18] as the basis for trace for-
mation.

8

Figure 5: Branch misprediction rates

Figure 6: CPI for a translation strategy based on Block Structured ISA

9

In the block structured ISA approach, an entire
path of instructions is either executed atomically, or
all state changes discarded when a path mispredic-
tion is encountered. The aim of this policy is to
achieve complete optimization and scheduling free-
dom along the predicted path, as side exits from the
trace fragment need not be considered. When the
trace fragment corresponds to a mispredicted path, a
recover trap is raised and control transfers to a code
block implementing an alternative path.

Figure 6 shows the CPI has degraded for SPECint
benchmarks due primarily due to an increase in the
constrained machine CPI and the additional rollback
discard penalty which accounts for a block being dis-
carded if the path was incorrectly predicted. At the
same time, the TPC-C result improved due to a de-
crease in the L1 instruction cache adder.

Both the increase in the constrained instruction
cache adder for SPECint benchmarks and the reduc-
tion in the L1 instruction cache adder are due to a
change in group formation policy. While the baseline
results require only a certain threshold of predictabil-
ity for a basic block to be included in a trace path, the
block structured ISA configuration required 100%
predictability of the path over the sampled period in
order to reduce the cost of aborted atomic blocks.
This reduced the overall length of the traces which
were formed, and since trace path length has a sig-
nificant impact on CPI [19], this caused constrained
machine CPI degradation. At the same time, this also
reduce code duplication and hence reduction instruc-
tion cache pressure for the TPC-C workload.

5 Related Work

BOA is a variable-width VLIW leveraging the de-
sign experience of previous VLIW research at IBM
[7, 8, 20, 21, 9, 10, 11, 5, 4]. Many of the features
developed over the course of IBM’s VLIW research

effort have found their way into other VLIW archi-
tectures, such as scalable variable-width VLIW in-
structions [22], the handling of exceptions in spec-
ulatively executed instructions based on deferred-
exception indicator bits [23] and hardware support
for alias detection during aggressive speculation of
memory operations [24].

The two systems most closely related to BOA are
the IBM DAISY and Transmeta Crusoe processor.
Like BOA, these systems implement a host archi-
tecture on top of a VLIW specifically designed as
a target for binary translation and dynamic optimiza-
tion. The Transmeta Crusoe processor has architec-
ture support for dynamic optimization which is of
similar scope as BOA, but optimized for x86 archi-
tectural compatibility and with narrow issue width
[25, 26]. No microarchitectural details have been
published for the Crusoe processors.

While BOA uses special-purpose hardware sup-
port in the form of the checkpointing and rollback
facilities for the architecting of precise exceptions,
the DAISY uses in-order software-managed com-
mit operations. This allows to take exceptions with-
out rolling back the processor state to the previous
checkpoint by determining the corresponding origi-
nal program point for any optimized trace fragment.
To ensure correct correspondence of the program
state between the optimized code fragments and the
original program, DAISY has to compute the entire
state and commit it in original program order. Be-
cause DAISY was targeted at wide high-performance
VLIW architectures [27], this did not result in per-
formance degradation. Later work extends this ap-
proach to allow for the elimination of dead state dur-
ing the optimization of trace fragments [28, 29], and
thus allows to perform more aggressive optimization
of trace fragments on architectures with more limited
issue bandwidth, such as for PowerPC-to-PowerPC
dynamic optimization.

The present approach is different from the DIF ap-

10

proach of Nair and Hopkins [30], and trace proces-
sors [31]. By choosing to implement the trace for-
mation and scheduling in software, BOA can gen-
erate perform more extensive profiling to determine
which trace paths are frequently executed, assem-
ble longer traces, perform more aggressive optimiza-
tions and generate better schedules. Also, the under-
lying hardware only has to support a single execu-
tion mode whereas DIF and trace processors require
almost three machines: a frontend processor used
when executing normal code which has not been
collected and preprocessed, a system for preparing,
cracking and pre-scheduling the traces to be stored in
the trace cache, and the execution engine optimized
for executing code from the trace cache.

Our trace-based dynamic optimization is related
to the idea of optimizing for the most likely execu-
tion path described by Fisher [32]. Trace scheduling
requires to estimate the likelihood of a given path
being executed and thus requires information about
the runtime behavior of programs. Modern compi-
lation systems attempt to address this issue by col-
lecting execution profiles to be used by the compiler.
Alas, this profile-directed feedback approach does
not allow to optimize the program for different ex-
ecution profiles according to specific workloads, or
for phased program behavior. Unlike the static com-
pilation techniques assumed in this work, dynamic
optimization profits from the ability to collect and
process profile information at runtime and to react to
execution profile changes.

6 Future Directions and Conclu-
sions

Some possible extensions to the current BOA ar-
chitecture include support for dynamic optimization
code executing in a parallel thread. This would allow
use of empty cycles to further optimize traces. Since

the dynamic optimizer is a trusted system thread ex-
ecuting at the hypervisor level, the second thread
can execute with a much simpler machine model,
wherein not all resources have to be duplicated. For
example, the support for the second thread can omit
any support for the virtual memory system, since the
dynamic optimizer will always reside in main mem-
ory executing with physical addresses.

While we have chosen a simple, streamlined
VLIW architecture as the target of the BOA dy-
namic optimizer, the optimizations performed during
optimization are similarly application to superscalar
processors [33] in a dynamic optimizer performing
PowerPC-to-PowerPC dynamic optimization.

We feel that dynamic optimization is a nascent
technology which allows to capture many of the
benefits found in out-of-order superscalar proces-
sors and incorporate many leading edge architectural
ideas.

Acknowledgments

The definition of a new system is never the work of
a few individuals, but of an entire team. The au-
thors would like to thank Al Chang, Kemal Ebcioğlu,
Marty Hopkins, Craig Agricola, Dave Appenzeller,
Arthur Bright, Jason Fritts, Steve Kosonocky, Paul
Ledak, Sumedh Sathaye, and Zac Filan.

References

[1] P. Bose, D. Brooks, A. B̈uyüktosunŏglu,
P. Cook, K. Das, P. Emma, M. Gschwind, H. Ja-
cobson, T. Karkhanis, P. Kudva, S. Schuster,
J. Smith, V. Srinivasan, V. Zyuban, D. Al-
bonesi, and S. Dwarkadas. Early-stage defini-
tion of LPX: A low power issue-execute pro-
cessor. InProc. of PACS’02 held in conjunction
with HPCA, Cambridge, MA, 2002.

11

[2] A. Büyüktosunŏglu. Power-Efficient Issue
Queue Design. PhD thesis, University of
Rochester, Rochester, NY, 2002. to appear.

[3] D. Folegnani and A. Gonzalez. Energy-
effective issue logic. InProc. of the 28th In-
ternational Symposium on Computer Architec-
ture, pages 230–239, June 2001.

[4] K. Ebcioğlu, E. Altman, M. Gschwind, and
S. Sathaye. Dynamic binary translation and op-
timization. IEEE Transactions on Computers,
2001. in press.

[5] K. Ebcioğlu, E. Altman, S. Sathaye, and
M. Gschwind. Optimizations and oracle par-
allelism with dynamic translation. InProc. of
the 32nd ACM/IEEE International Symposium
on Microarchitecture, pages 284–295, Haifa,
Israel, November 1999. ACM, IEEE, ACM
Press.

[6] B. R. Rau and J. A. Fisher, editors.Instruction-
level parallelism. Kluwer Academic Publish-
ers, 1993. Reprint of The Journal of Supercom-
puting, 7(1/2).

[7] K. Ebcioğlu. Some design ideas for a VLIW
architecture for sequential-natured software. In
M. Cosnard et al., editor,Parallel Processing,
pages 3–21. North-Holland, 1988. (Proc. of
IFIP WG 10.3 Working Conference on Paral-
lel Processing).

[8] G. M. Silberman and K. Ebciŏglu. An architec-
tural framework for supporting heterogeneous
instruction-set architectures.IEEE Computer,
26(6):39–56, June 1993.

[9] K. Ebcioğlu and E. Altman. DAISY: dynamic
compilation for 100% architectural compatibil-
ity. Research Report RC20538, IBM T.J. Wat-

son Research Center, Yorktown Heights, NY,
1996.

[10] K. Ebcioğlu and E. Altman. DAISY: dynamic
compilation for 100% architectural compatibil-
ity. In Proc. of the 24th Annual International
Symposium on Computer Architecture, pages
26–37, Denver, CO, June 1997. ACM.

[11] K. Ebcioğlu, E. Altman, S. Sathaye, and
M. Gschwind. Execution-based scheduling for
VLIW architectures. InEuro-Par ’99 Parallel
Processing – 5th International Euro-Par Con-
ference, number 1685 in Lecture Notes in Com-
puter Science, pages 1269–1280. Springer Ver-
lag, Berlin, Germany, August 1999.

[12] J.M. Tendler, J.S. Dodson, J.S. Fields, , H. Le,
and B. Sinharoy. POWER4 system microarchi-
tecture.IBM Journal of Research and Develop-
ment, 46(1):5–26, January 2002.

[13] G. M. Silberman and K. Ebciŏglu. An archi-
tectural framework for migration from CISC to
higher performance platforms. InProc of the
1992 International Conference on Supercom-
puting, pages 198–215, Washington, DC, July
1992. ACM Press.

[14] M. Gschwind, E. Altman, S. Sathaye, P. Ledak,
and D. Appenzeller. Dynamic and transparent
binary translation.IEEE Computer, 33(3):54–
59, March 2000.

[15] M. Gschwind. Method and apparatus for the
selective scoreboarding of computation results.
Research Disclosures, 2001. in press.

[16] M. Gschwind. Pipeline control mechanism for
high-frequency pipelined designs. US Patent
6192466, February 2001.

12

[17] E.R. Altman, J. Moreno, and M. Moudgill.
Method and Apparatus for Reducing the Num-
ber of Ports to Shared Resources in a Processor.
US Patent Filing, July 2000.

[18] E. Hao, P.-Y. Chang, M. Evers, and Y. Patt.
Increasing the instruction fetch rate via block-
structured instruction set architectures. In
Proc. of the 29th annual IEEE/ACM interna-
tional symposium on Microarchitecture, pages
191–200, Paris, France, 1996.

[19] S. Sathaye, P. Ledak, J. LeBlanc,
S. Kosonocky, M. Gschwind, J. Fritts,
Z. Filan, A. Bright, D. Appenzeller, E. Altman,
and C. Agricola. BOA: Targeting multi-
gigahertz with binary translation. InProc. of
the 1999 Workshop on Binary Translation,
IEEE Computer Society Technical Committee
on Computer Architecture Newsletter, pages
2–11, December 1999.

[20] J. Moreno, M. Moudgill, K. Ebciŏglu, E. Alt-
man, C. B. Hall, R. Miranda, S.-K. Chen, and
A. Polyak. Simulation/evaluation environment
for a VLIW processor architecture.IBM Jour-
nal of Research and Development, 41(3):287–
302, May 1997.

[21] J. Moreno, K. Ebciŏglu, M. Moudgill, and
D. Luick. ForestaPC user instruction set archi-
tecture. Research Report RC20733, IBM T.J.
Watson Research Center, Yorktown Heights,
NY, February 1997.

[22] J. Moreno. Object-code compatible represen-
tation of very long instruction word programs.
US Patent 5669001, September 1997.

[23] K. Ebcioglu and G. Silberman. Handling of ex-
ceptions in speculative instructions. US Patent
5799179, August 1998.

[24] K. Ebcioğlu, E. Kronstadt, and M. Kumar.
Method and apparatus for improving perfor-
mance of out of sequence load operations in
a computer system. US Patent 5542075, July
1996.

[25] E. Kelly, R. Cmelik, and M. Wing. Memory
controller for a microprocessor for detecting
a failure of speculation on the physical nature
of a component being addressed. US Patent
5832205, November 1998.

[26] A. Klaiber. The technology behind Crusoe pro-
cessors. Technical report, Transmeta Corp.,
Santa Clara, CA, January 2000.

[27] K. Ebcioğlu, J. Fritts, S. Kosonocky,
M. Gschwind, E. Altman, K. Kailas, and
T. Bright. An eight-issue tree-VLIW processor
for dynamic binary translation. InProc. of the
1998 International Conference on Computer
Design (ICCD ’98) – VLSI in Computers
and Processors, pages 488–495, Austin, TX,
October 1998. IEEE Computer Society.

[28] M. Gschwind and E. Altman. Optimization and
precise exceptions in dynamic compilation. In
Proc. of the 2000 Workshop on Binary Transla-
tion, Philadelphia, PA, October 2000. also in:
Computer Architecture News, March 2001.

[29] M. Gschwind and E. Altman. Precise excep-
tions in dynamic compilation. InProc. of
the 2002 Workshop on Compiler Construction,
LNCS, Grenoble, France, 2002.

[30] R. Nair and M. Hopkins. Exploiting instruc-
tion level parallelism in processors by caching
scheduled groups. InProc of the 24th Annual
International Symposium on Computer Archi-
tecture, pages 13–25, Denver, CO, June 1997.
ACM.

13

[31] A. Peleg and U. Weiser. Dynamic flow instruc-
tion cache memory organized around trace seg-
ments independent of virtual address line. US
Patent 5381533, January 1995.

[32] J.A. Fisher. Trace scheduling: A technique for
global microcode compaction.Transactions on
Computers, C-30(7):478–490, July 1981.

[33] K. Ebcioğlu and R. Groves. Some global com-
piler optimizations and architectural features
for improving the performance of superscalars.
Research Report RC16145, IBM T.J. Watson
Research Center, Yorktown Heights, NY, 1990.

14

