
RC 22470 (W0205-219) May 31, 2002

IBM Research Report

A Web-Services-Based Deployment Framework in Grid
Computing Environment

Zongwei Luo, Shyh-Kwei Chen, Santhosh Kumaran, Liang-Jie Zhang,
Jen-Yao Chung, Henry Chang

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Web-Services-Based Deployment Framework In Grid Computing
Environment

Zongwei Luo, Shyh-Kwei Chen, Santhosh Kumaran, Liang-Jie Zhang, Jen-Yao Chung, Henry

Chang
IBM TJ Watson Research Center

PO Box 218
Yorktown, NY 10598, USA

Email: zongwei@us.ibm.com

ABSTRACT

Grid computing offers great opportunities for
companies to tap new streams of revenues by
taking advantages of the wired computing
powers based on the grid service architectures.
Resource allocation is one of the key concerns
in such a computing environment. In this paper,
we present a deployment framework for grid
computing. The framework enables open grid
services to dynamically deploy (deploy, update,
and remove) computing powers including
services, and services supporting runtime, etc.
in the grids. One of the key components in this
framework is the service deployment gateway
that offers grid deployment services. The
gateway is built upon an integration platform
that captures the deployment logics.
Implementation details are also provided in this
paper to demonstrate this framework.

Keywords: Deployment Framework, Grid
Computing, OGSA, Web Services, Web
Services Gateway.

1. INTRODUCTION

In the software development life-cycle,
deployment is the step to deliver the software
package over actual runtime systems. Our
experience told us that a large amount of time
was spent on the software deployment. A lot of
work is mostly mechanical and highly
repeatable but still requires specific skills.
Software deployment is thus a perfect re-
engineering target.

In the Internet computing environment, various
cooperates form virtual computing coalitions
from disparate resources. To meet the demands

of dynamic business operations, mechanisms
are needed to realize dynamic deployment
services. Such dynamic service deployment
systems also make it possible for the companies
to better utilize the wired computing power.

As the virtual organizations become more
common, it is increasingly required to deploy
services remotely. Existing solutions like
Installshields (www.installshields.com) help
users to package the software into an installable
file. The file is then distributed to deploy the
packaged software.

In web services enabled systems, service client
can invoke a web service by using a known
URL or searching the Universal Description,
Discovery and Integration (UDDI) registries for
service invocation information. The UDDI-
based search and discovery method enables
web services as the building blocks for
dynamic e-business. Since resources are
allocated across different service locations, it is
critical to deploy services, removing services,
updating services, and re-deploy services to
another locations without disrupting the
currently running services.

In this paper, we propose a web services
deployment framework in the grid computing
environment based on the Open Grid Service
Architecture (OGSA) [1]. Our deployment
framework does not replace common
deployment software products like
Installshield, but provides a higher layer to
utilize such deployment software in the grid
environment. We envision the deployment
service as one of the basic services in the grid
environment. Organization of this paper is as
follows. We first present the deployment

1

framework in grid environment in Section 2.
We develop a deployment language to describe
the deployment task in grid environment in
Section 3. Then we present the deployment
service gateway in Section 4. The services in
the framework are described in Section 5. The
service implementations are described in
Section 6. Section 7 concludes this paper with
discussion.

2. DEPLOYMENT FRAMEWORK

The deployment framework is based on open
grid architecture. The deployment services are
described in web services description
languages. Interfaces specified in Open Grid
Architecture are also implemented. The
required interface for OGSA is GridService [1]:
• FindServiceData: Query a variety of

information about the grid service instance,
including basic introspection information
(handle, reference, primary key, home
handleMap), richer per-instance
information, and service-specific
information (e.g., service instances known

to a registry). Extensible support for
various query languages.

• SetTerminationTime: set (and get)
termination time for Grid service instance.

• Destroy: Terminate Grid service instance.

The deployment framework deploys
applications in runtimes that are heterogeneous
and distributed in nature. Each runtime has its
own deployment syntax. Instead of creating
another syntax that requires each runtime to
adapt to, the deployment framework takes a
mediation approach. The deployment service
gateway mediates the deployment tasks. To
ease the deployment integration, a deployment
mediation language is used. The mediation
language describes the deployment tasks. The
deployment service gateway accepts
deployment requests specified through the
deployment language via deployment connector
and invokes the deployment implementation.
The deployment adapter implements the
deployment.

Client

Web
Service
Proxy

(OGSA
Based)

Deployment
Services

(Assembling,
Packaging,

Installation)

Service
Implementation
(Deployment

Tools)

Figure 1. OGSA based deployment service framework

A possible functional architecture for the
deployment framework is shown in Figure 1.
• Client: a client can request deployment

services remotely via web services calls.
• Deployment service gateway: it provides

deployment services compatible with
OGSA. It allows clients to discover
available services provided. It also provides
advanced deployment services such as
solution assembling, solution packaging, in
addition to solution installation services.

• Deployment services language: it is the
language used to describe the deployment
tasks that may be the payload in the web
services requests by clients. It is platform

independent, and compatible with the Web
Services Description Language (WSDL)
[3] and the Web Services Flow Language
(WSFL) [4].

The framework is layered conceptually as
follows:
• Deployment description layer: it is the

layer for the deployment service language.
• Deployment interpretation layer: this is the

layer that interprets the deployment request
described in deployment services language.

• Deployment request brokering layer: this is
the layer that routes the deployment

2

services request to appropriate deployment
service implementations.

• Deployment adapter layer: this layer
contains various deployment service
modules, including deployment
assembling, deployment packaging, and
deployment installation modules.

• Deployment implementation layer: this is
the layer that deploys solutions into target
systems.

3. DEPLOYMENT SERVICE LANGUAGE

In the service deployment domain, we propose
a deployment language to describe the service
deployment task. The deployment task
described in the language is then mapped to a
specific runtime system.

Deployment language includes the following:
• Solution package description: it describes

the solution packages using concepts from
deployment taxonomy.

• Solution package provider profile: it
describes the solution package provider.

• Solution deployment model: it describes
the solution deployment implementation.

• Service description: it describes the open
grid web service provided.

• Service model: it describes how the open
grid web services are implemented.

• Service provider model: it describes the
open grid service provider profile.

• Service connection profile: it describes the
open grid service connection profile.

• Service quality profile: it describes the
quality of the open grid services provided.

The deployment service language follows and
extends the WSDL [3] and the WSFL [4]
syntax to include software deployment
taxonomy. Service descriptions are accessible
freely by service clients and WSDL and WSFL
compatible.

The software deployment taxonomy includes
the following concepts. They are consistent
with concepts used in common software
modeling languages such as Universal
Modeling Language (UML) [5].

• Package
• Node
• Node instance
• Component
• Component instance
• Interface
• Object
• Composition
• Communicates
• Dependency
• Constraint
• Comment

4. DEPLOYMENT SERVICE GATEWAY

The key component to interpret the deployment
language is the deployment service gateway.
The gateway reads in the deployment language
and then takes corresponding actions to deploy
the software packages. The gateway could be
implemented in any platform. In our
implementation, the gateway is based on an
application server platform. The interface to
incoming request is the web service proxy. The
service proxy accepts web service requests
wrapped in an acceptable transport protocol.
The web service proxy is built to intercept
HTTP/SOAP (Simple Object Access Protocol
[6]) requests or service requests through other
bindings. The adapter provides capabilities to
deploy service implementation into a runtime
system.

Services
Connector

Deployment
Services

Application Server

Services
Adapter

Figure 2. Deployment service gateway

component view

3

The component architecture for service
gateway is shown in Figure 2. Current
implementation for this architecture is as
follows:

• The web services proxy is built as a

Deployment Connector that is responsible
for making the connection using the http
transport and the SOAP protocol for
exchanging messages. This connector is
agnostic to the type of the message. Such a
connector in the future will typically
present a Java Connector Architecture
(JCA) interface.

• The web services gateway also consists of
one or more Deployment Adapters that use
the Deployment Connector. The Adapter is
specific to the type of message (e.g.
Purchase Order Application Adapter) and

essentially consists of the business logic
that is used to process the message.

• The Deployment Services implemented by
the Deployment Adapters are exposed as
Web Services. These Web Deployment
Services connections are described using
WSDL. The service connection
descriptions are made OGSA consistent as
well.

Figure 3 shows the Web Deployment Service
interaction pattern when the Deployment
Gateway component is engaged as in the
deployment interaction.

• A business partner client (i.e. application)

makes a request, e.g., buyer invoking a web
business service provided by the
deployment gateway.

Deployment Client Web Server RPCRouter Deployment Service Service Adapter Target System

HTTP_Request()

ServiceRequest()

InvokeService()

CheckService()

Execute()

ProcessRequest()

Deployment()

Figure 3. Interaction diagram in deployment service gateway

• The web server in the Deployment

Connector receives the request, a SOAP
message, and routes it to the SOAP Servlet
for handling.

• The SOAP Servlet (also know as the
rpcrouter) in the Deployment Connector
checks against the registry of deployed
services.

• The SOAP Servlet invokes the pluggable
service provider, i.e., the Deployment
Service.

• The Deployment Service in turn invokes
the Deployment Adapter that provides the
implementation for the Web Deployment
Service.

4

• The Deployment Adapter processes the
incoming SOAP message.

• The deployment tasks eventually are
fulfilled upon the target systems.

5. DEPLOYMENT SERVICES

The deployment services gateway provides
various services for deploying solutions in the
grid computing environment. It offers OGSA-
based web services connections. It provides
assembling services to assemble the solutions
according the clients’ requests. It provides
packaging services to package different
solution parts for their deployment platforms. It
can invoke various deployment tools to install
solutions in the target systems. It can also
record and verify the package dependences.
• Connection service: This is the service

fulfilled by the web service proxy. The
actual communication binding is the web
services bindings such as SOAP[6].

• Assembling service: Currently the solution
assembling is based on a state-machine-
based process language. A partial schema
described in XML Schema [7] is shown in
Figure 4. Assembling based on WSFL is
being implemented. The process or flow
language links different parts in the
deployable solutions. The actual
deployment is made persistent, i.e., the
deployment configuration information is
stored in a persistent storage.

• Packaging service: It includes the solution
package services. Different platforms will
accept different package formats. The
packages for WebSphere Application
Server (WAS) [8] platform, e.g., will be
like EAR, WAR, and PAR etc. formats.
One package tool used in WAS platform is
ejbdeploy tool.

• Installation service: It includes the services
for solution installation, update, and
remove, etc.

Figure 4. Schema for a state-machine-based process flow language

6. SERVICES IMPLEMENTATION

In this section, the deployment service
implementations will be described using a

concrete example platform – an application
sever platform.

WAS application deployment adapter is one of
the deployment services adapters. The adapter

5

reads WAS XML configuration information
[8], then loads in corresponding EAR files and
configures the web application server.

Before the XML configuration files are read,
different parts in the solutions may need to be
packaged. The current version of the packaging
tool reads in the package XML description that
is part of the solution deployment request in
deployment service language. The XML
description contains the solution definition,
from which, information about the available
platforms is retrieved. In the case of EAR
packaging, the ejbdeploy is invoked to create
necessary EAR files when they do not exist in
the packaged solution.

During the installation, user interaction is
possible. When this mode is activated, the
installation tools will let the user select a
packaged solution and provide information for
where every package of components is to be
transferred. Once all components are
transferred, all configurable components are
shown so the user can select them and load the
appropriate application to configure them.

In summary, the EAR solution deployment
steps in WAS platform are as follows:

• Deployment gateway receives the

deployment request and retrieves the
solution deployment XML files.

• Deployment gateway develops the
necessary resources for the solution. The
code generator in the gateway could
generate certain resources such as EJB and
JSP. Deployment gateway publishes the
resources in a deployment repository. A
notification is generated saying the solution
is ready for deployment.

• Solution deployment gateway retrieves the
solution package when it receives the
notification and reads the notification.

• Solution deployment gateway launches the
XMLConfig application to deploy the
solution.

7. DISCUSSION

In this paper, we have presented a deployment
framework in grid environment. The key
component in the framework – deployment
services gateway presents web services
interfaces for the provided deployment services
such as assembling service, packaging service,
and installation services, etc. A deployment
service language is developed to describe the
deployment services.

Grid computing offers great opportunities for
companies to tap new streams of revenues by
taking advantages of the wired computing
powers based on the grid service architectures.
Resource allocation is one of the key concerns
in such a computing environment. The
framework presented enables open grid
services to dynamically deploy (deploy, update,
and remove) computing powers including
services, and services supporting runtime, etc.
in the grids.

8. REFERENCE

[1] UDDI,
http://www.uddi.org/pubs/Iru_UDDI_Technical
_White_Paper.pdf
[2] I. Foster, etc. The Physiology of the Grid,
An Open Grid Services Architecture for
Distributed Systems Integration,
http://www.globus.org/research/papers/ogsa.pd
f
[3] WSDL, http://www.w3.org/TR/wsdl
[4] WSFL, http://www-
4.ibm.com/software/solutions/webservices/pdf/
wsfl.pdf
[5] M. Fowler, K. Scott, UML Distilled: A
Brief Guide to the Standard Object Modeling
Language, 2nd Edition, August 1999
[6] SOAP, http://www.w3.org/TR/2001/WD-
soap12-part0-20011217/
[7] XML Schema,
http://www.w3.org/XML/Schema
[8] WebSphere Application Server,
http://www.ibm.com/software/webservers/apps
erv

6

	A Web-Services-Based Deployment Framework In Grid Computing Environment

