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Abstract

We consider the problem faced by a seller in determining an optimal price to quote
in response to a Request for Quote (RFQ) from a prospective buyer. The optimal price
is determined by maximizing expected profit, given the underlying seller costs of the bid
items and a computed probability of winning the bid as a function of price and other bid
features such as buyer characteristics and the degree of competition. An entropy-based
information-gain metric is used to quantify the contribution of the extracted features to
predicting the win/loss label. A naive Bayes classification model is developed to predict the
bid outcome (win or loss) as a function of these features. This model naturally generates
the win probability as a function of bid price required to compute the optimal price. Results
obtained by applying this model to a database of bid transactions involving computer sales
demonstrate statistically significant lift curves for predicting bid outcome. A method for
creating additional synthetic bids to improve computation of the win probability function
is demonstrated. Finally, the computed optimal prices generated via this approach are
compared to the actual bid prices approved by human pricing experts.

1 Introduction

For centuries, sellers have faced the challenge of setting prices for goods and services that will
generate maximum profit. Until relatively recently, pricing strategies have focused largely on
setting fixed prices for items sold via conventional sales channels like stores and catalogs. The
advent of electronic commerce has enabled buyers to readily access information on pricing and
other competitive product features, as well as creating the infrastructure for sellers to easily
adjust prices to reflect near-term changes in demand and/or competitor’s prices. More broadly,
dynamic [7] or flexible [2] pricing strategies establish prices that

1. may change over time (temporal dynamic pricing)

2. may differ across different buyers (price differentiation [17])

3. may depend on bundling with other products and services (product differentiation [1]).
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The stock market and electronic auctions such as eBay [5] are two everyday examples of dy-
namic pricing. Other realizations include adjustment of prices as a result of on-line experiments
[9] to measure customer price sensitivity for specific commodity-like items such as books. Rev-
enue management strategies [11] introduced in the airline industry in the 1970’s led to the first
widespread use of differentiated pricing, where different passengers may pay different fares
based on booking class. Product differention [1] is crucial in commodity markets: two other-
wise identical products may carry different consumer valuations due to bundling with other
related products, or with services and delivery terms. The problem addressed in this paper
aligns more closely with the second and third issues, namely how do we establish a price on
a bundles of goods for different classes of buyers, given a database of similar historical bid
transactions and the outcomes of these bids (won or loss). This problem is discussed further
in the following section.

2 The Bid Pricing Problem

We consider the following problem. A prospective buyer issues a Request for Quote (RFQ)
for a product configuration with a set of minimal requirements that must be satisfied by the
offering. For example, a buyer may request 1000 laptop computers, with specific requirements
on processor speed, memory, hard drive size, and other characteristics, possibly including
services such as installation and financing. These laptops may be combined or bundled with
a different number of desktop computers with different characteristics. In this paper, we
consider only relatively large RFQs, as measured by quantity and total potential revenue; small
transactions, such as the purchase of a single laptop computer, are generally not conducted
via a formal RFQ process. In a business-to-business environment, the buyer may advertise the
RFQ to a select list of suppliers or sellers. Each seller composes a bid response comprised of a
specific configuration designed to meet the RFQ requirements, along with pricing information
and possibly other terms and conditions. We will use the term pricer for the expert within the
seller organization who prepares this response.

Figure 1(a) illustrates this process. In this paper, we are in effect acting as the seller,
seeking to generate an optimal price in response to the buyer-initiated RFQ. We assume C
additional competitive sellers who have received the identical RFQ. The bidding process can
be a single, sealed-bid response, but in many cases there may be subsequent rebids in which
either the product offered is changed, and/or the price and terms and conditions are modified.
This is shown as a series of bids Bc

t in Figure 1(a). Ultimately, the buyer selects a bid winner
based on a comparative evaluation of bid characteristics.1 In multi-attribute bids, it is possible
to win a bid without necessarily having the lowest price.

In constrast to an open auction, we are generally unable to observe all of the information
shown in Figure 1(a). Figure 1(b) shows the information actually available to the target seller:
all bid iterations on behalf of this seller are known, of course, but we generally do not know
with any confidence the bid sequences generated by the competitors. Indeed, we know for
certain only the outcome (win or loss), and our sequence of bids culminating in this outcome.
Even the number and identity of the competitors may not be known with certainty.

A recent review [13] of bid pricing models and supporting tools summarizes some of the
1Quantitative techniques for buyer-evaluation of multi-attribute bids are discussed in [6].
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Figure 1: Bid response to a Request for Quote (RFQ).

earliest models in this area. These early statistical models assumed complete knowledge of
competitor’s bidding history, with the winner determined by the lowest price. The more recent
ServPrice model [3][4][13] does not require historical data, but rather utilizes input from human
experts to establish the probability of winning under different scenarios.

The pricing methodology presented here follows a more conventional machine-learning ap-
proach: rather than relying on statistical models with estimated parameters or expert classifi-
cation of potential bid scenarios, we attempt to learn directly the probability of winning from
a set of bid transactions with known outcomes. One disadvantage of this approach in that we
require extensive historical data. On the other hand, we do not need to make explicit assump-
tions about competitive behavior. Even for experts, predicting bid outcomes can be perplexing
and prone to errors, and therefore it is an advantage to rely on actual prior transactions to
accurately characterize the probability of winning a given bid.

Section 3 describes the methodology, and Sections 4 and 5 summarize results obtained
from the analysis of a set of actual transactions generated in response to RFQs for computer
equipment.

3 Methodology

In this section, we develop a classification methodology for predicting the bid outcome (win or
loss), and then show how the classification method can be used to generate the win probability
function required to optimize the offering price.
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3.1 Price Optimization

We begin by defining a set of random-variable features characterizing each item included in a
bid response. Upper-case letters will be used to denote these features, with the values of the
features given in lower-case. Let Xp denote the offered price, and Xm,m = 1, . . . , M denote
M non-price features. Combining all features yields the feature vector

X = [Xp, X1, . . . , XM ]. (1)

Each bid item n = 1, . . . , N is described by the vector of feature values

xn = [xn
p , xn

1 , . . . , xn
M ], (2)

where xn
p is the offered price for bid item n, and xn

m is the value of the non-price feature m
for bid item n. Examples of non-price features may include information about the prospective
buyer (e.g. price sensitivity), identity of the competitors, seller’s cost, posted or list price,
and seller incumbency with the prospective buyer. Each historical bid is tagged with a binary
output variable wn denoting the target label (won or loss), and thus each bid item Bn can be
represented as

Bn ≡ {xn, wn} (3)
wn ∈ [win, loss].

In specifying a price for an item in a bid offering, the seller must effectively balance the
enhanced likelihood of winning the bid with a lower price, versus the increased profits at higher
offered prices. The expected profit associated with bid item n is

Profit(xn
p ) = P (win|X = xn)

[
xn

p − Cn
]
, (4)

where Cn is the seller’s base cost, and P (win|X = xn) is the conditional probability of winning
a bid given feature values xn, including price xn

p . We adopt the simpler notation P (win|xn) to
denote P (win|X = xn), and so on. The price that optimizes the expected profit is

x̂n
p,Opt = arg max

xn
p

{
P (win|xn)

[
xn

p − Cn
]}

. (5)

Computation of the win probability P (win|xn) is the major challenge in the evaluation of
equation (5). One approach would be to assume knowledge of the competitor’s bidding stategy
under circumstances similar to the current bid, and compute the win probability based on the
probability of the offered price being lower than that of the competitor:

P (win|xn) ≡ P (xn
p < xn,comp

p |xn), (6)

where xn,comp
p denotes a competitor’s price for a bid characterized by xn. The probability on

the right-hand side could be estimated by assuming that the competitor’s price distribution
is identical to the seller’s price distribution for known prior winning bids with characteristics
“similiar” to xn using some appropriate distance metric. One problem with this approach is
that it explicitly assumes that the bid will be won with the lowest price. Another problem
is that it does not take into account historical losing bids. Finally, it is difficult to assess
the accuracy of the resulting win probability because it is not derived as part of a formal
prediction methodology. For these reasons, we consider a more formal classification approach
in the following section.
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3.2 Naive Bayes Classification

As suggested in the previous subsection, it is useful to develop and evaluate a classification
method for predicting the win/loss label as a means of assessing the validity of the computation
of the win probability. Equation (3) immediately suggests this classification problem: given
feature vectors xn, n = 1, . . . , N , predict the binary win/loss label wn. Any of a number of
different classification methods could be used. However, one essential criterion is that the
resulting method easily generate the win probability as a function of xn

p , given fixed non-price
features xn

1 , . . . , xn
M . The naive Bayes classifier [8][12][16] is particularly well-suited for this

task.
We provide a brief overview of the naive Bayes algorithm. Applied to the specific problem

here, Bayes theorem yields

P (win|xn) =
P (xn|win)P (win)

P (xn)
, (7)

where P (win|xn) is the probability of a winning a bid n characterized by feature vector xn
p ,

P (win) is the prior probability of observing a win, P (xn) is the prior probability of observing
xn, and P (xn|win) is the conditional probability of observing xn given a win outcome. The
accurate evaluation of P (xn|win) can require a potentially huge number of training examples
for even a modest number of discrete feature values. This complexity has led to widespread
use of the popular naive Bayes classifier, in which it is assumed that the feature values are
conditionally independent given the output or target label. For the specific problem here, the
naive Bayes approximation yields

P̃ (win|xn) ∝ P (win)P (xn
p |win)

∏
m

P (xn
m|win), (8)

where we have omitted the denominator in equation (7) because it is independent of the target
label. We have added a tilde to P̃ (win|xn) to denote that it is not yet normalized. The target
label has only two values, win or loss, and hence we write the loss-analog of equation (8):

P̃ (loss|xn) ∝ P (loss)P (xn
p |loss)

∏
m

P (xn
m|loss). (9)

The output label predicted by the naive Bayes classifer is

wn
pred = arg max

(win,loss)

[
P̃ (win|xn), P̃ (loss|xn)

]
. (10)

3.3 Calculation of the Win Probability

Equations (8) and (9) can be combined to obtain the normalized win probability required in
equation (5):

P (win|xn
p , xn

1 , . . . , xn
M ) =

P̃ (win|xn)
P̃ (win|xn) + P̃ (loss|xn)

, (11)

where equation (2) has been used to expand xn. For the purposes of evaluating equation (5), we
need to be able to evaluate P (win|xn

p , xn
1 , . . . , xn

M ) as a function of price xp, while holding the
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non-price features xn
1 , . . . , xn

M constant. Let xp contain a sequence of I prices [xp,1, . . . , xp,I ]
for which the win probability is to be evaluated; then

P (win|xp;xn
1 , . . . , xn

M ) ≡ [P (win|xp,1; xn
1 , . . . , xn

M ), . . . , P (win|xp,I ; xn
1 , . . . , xn

M )]. (12)

With this result, equation (5) can be rewritten as

x̂n
p,Opt = arg max

xp

{P (win|xp; xn
1 , . . . , xn

M ) [xp − Cn]} . (13)

3.4 Feature Selection

It is useful to develop a metric for characterizing the information content carried by each
feature with respect to predicting the win/loss label. For this purpose, we employ the well-
known information gain [12] used in C4.5 [15]. The entropy of the bid examples B relative to
the bid outcome is

Entropy(B) = p(win, B) log2[p(win, B)] + p(loss, B) log2[p(loss, B)], (14)

where, for example, p(win, B) is the proportion of win outcomes in B:

p(win, B) =
freq(win, B)

|B| ,

and |B| is the total number of bid examples. As above, let X denote any price or non-price
feature. Here, we assume that X evaluates to discrete values either because X is a categorical
variable, or as a result of a binned discretization of a continuous attribute. The expected
entropy after the bid examples have been partitioned according to the possible discrete values
of X is

EntropyX(B) =
∑

v∈values(X)

|Bv|
|B| Entropy(Bv), (15)

where Entropy(Bv) denotes the entropy of the subset of bid examples with feature X carrying
label v, and |Bv| is the number of such examples. The information gain associated with this
feature is the difference of these expressions,

InfoGainX = Entropy(B)− EntropyX(B), (16)

reflecting the reduction of entropy or information by knowing the values of feature X.

4 Classification Results

In this section, we describe the actual bid data used to generate results, discuss the feature
selection process, and then evaluate the accuracy of the classification method used to predict
win/loss outcomes. All models were developed in Matlab [10].
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4.1 Description of the Input Data

The data used in the analysis reported in this section were extracted from a database summa-
rizing the circumstances and outcomes of bid transactions involving computers and associated
options such as memory modules and displays. These transactions represent bids made by the
seller in response to a Request for Quote (RFQ) from a prospective buyer or customer. Here,
buyers are businesses, governmental agencies, or educational institutions; there are no individ-
ual consumers represented. The original database contains approximately 50,000 rows, where
a database row corresponds to a single transaction. Each transaction summarizes the relevant
bid information on a single part, where a part refers to either a computer or an option with a
unique identifying number. An RFQ often involves multiple parts reflecting combinations of
possibly different computers (e.g. desktops and servers) with different options (e.g. memory
upgrades) possibly included in some subset of these. Each part is marked with a final outcome,
either won, loss, or pending. Not all parts included in the same RFQ will necessarily have the
same outcome: it is possible to win only a subset of the offered parts. In this particular data
set, we do not have access to the bid iterations shown in Figure 1; only the final bid and its
outcome are available.

The data were filtered in the following manner. First, transactions with pending status
were omitted, and we retained only transactions where we had some reasonable confidence in
the win/loss label.2 In order to obtain some temporal locality, we retained only transactions
generated over a 14 week period. For the purpose of building and testing the classification
model, we included only transactions involving computers as opposed to options, since the
options tend to be much less expensive and there is less motivation to focus on optimizing
their offering price. With this filtering, we retained a total of 3744 bid items involving 376
unique desktop and mobile computers, representing bids in response to 1900 RFQs, issued by
941 different buyers.

4.2 Feature Selection and Information Gain

A significant challenge in any practical application of data-mining or machine-learning is the
extraction of relevant features from the raw input data. In the present case, this involves
reducing the data available for each bid part to a set of features as in equation (2). Table
1 shows a subset of features3 extracted from the data described in Section 4.1. Also shown
are the number of unique values for each feature, and the information gain computed using
equation (16). For categorical features (e.g. Customer Industry Name), the third column
represents the number of possible discrete values. Binary features (e.g. Incumbency) typically
have either yes or no labels. Continuous features (e.g. Bid Price) have been binned using
equal-population bins to discretize the feature.

An important issue is how to normalize the unit price, given that absolute unit prices for
low-end computers differ significantly from higher-end products. It is reasonable to consider
normalizations that reflect the seller’s cost (C) and the published list price (LP ). Denoting
the unit bid price as BP , the top section of Table 1 shows the information gain computed

2It should be noted that the final win/loss outcome is entered manually into the database, and is subject to
some subjectivity and uncertainty.

3Some features are proprietary and have been omitted from this table; these features were not used in analysis
reported here.
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Table 1: Information Gain for Selected Bid Features
Number of Information

Feature Name Feature Description Values Gain
Bid Price [(BP-C)/C] Cost-based price normalization 7 (Binned) 0.0139
Bid Price [(BP-C)/(LP-C)] Cost- and list-based price normalization 7 (Binned) 0.0062
Bid Price [BP/LP] List-based price normalization 7 (Binned) 0.0033
Customer Industry Name Government, Education, Finance, ... 9 (Discrete) 0.0304
Incumbency Strong current position with this buyer? 2 (Binary) 0.0250
Number of Employees Estimated number in buyer’s organization 5 (Binned) 0.0102
Profit Margin at List Price Profit margin if part is sold at list price 5 (Binned) 0.0066
Part Quantity RFQ quantity for each part 5 (Binned) 0.0056
Financing Opportunity Opportunity for seller-based financing in deal? 2 (Binary) 0.0055
High-profile Account Expected high future revenue from this buyer? 2 (Binary) 0.0049
Internal Advocate at Buyer Strong seller advocate within buyer organization? 2 (Binary) 0.0034
Part Revenue Opportunity Potential revenue for this part 5 (Binned) 0.0034
RFQ Revenue Opportunity Potential revenue for total RFQ 5 (Binned) 0.0033
Identity of Competitors Names of primary competitors 3 (Discrete) 0.0031
Services Opportunity Opportunity to sell additional services? 2 (Binary) 0.0004

using three different normalizations for the offered price:

x̃p1 ≡ BP−C
C (Cost-based)

x̃p2 ≡ BP−C
LP−C (Cost- and List-based)

x̃p3 ≡ BP
LP (List-based).

Note that the first of these normalizations, where the price is effectively normalized as the
fractional profit margin, yields the highest information gain of the three normalizations. For
this reason, we retain this normalization for the price feature introduced in equation (2), i.e.

xp ≡ BP − C

C
. (17)

The lower section of Table 1 shows the information gain of various non-price features
included in equation (2). Note that the Customer Industry Name and Incumbency carry the
most information relevant to predicting the win/loss label.

4.3 Model Accuracy

In this section, we evaluate the accuracy of the naive Bayes classification model described in
Section 3.2. The immediate objective is to predict the win/loss label, and we employ the
conventional approach of training the model against a subset of the bid examples, and then
evaluating the accuracy against the remaining test examples. The features shown in Table 1
are used as inputs to the model, with bid price normalized as in equation (17). For each bid
in the test set, the win/loss label is computed using equation (10), and the win probability for
the bid is obtained via equation (11).
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Figure 2: Lift curves computed for test data.

Figure 2 shows the lift curve generated from the win probabilities computed for each bid
in the test data. A random 50/50 train/test split was used: the train and test sets consisted
of 1868 and 1876 bid records, respectively. The form of the lift curve is conventional [18]: the
x-axis shows the fraction of records in the test set, and the y-axis shows the fraction of actual
win bids captured as a function of the fraction of test records. If a purely random prediction
method were used, such as assuming that some fraction α of the records contain a fraction α
of the wins (α ∈ [0, 1]), then the result (for a sufficiently large sample) is simply a straight
line as shown in Figure 2. However, if we sort the bids such that the bids with the highest
computed win probability are at the top of the list, we expect to observe a fraction α̃(> α)
of the wins in the top fraction α of sorted records. This behavior is indeed observed for the
naive Bayes results shown in Figure 2. As a reference, we also plot an upper bound: the best
achievable lift curve obtained under the assumption that the win/loss labels of all test bids are
known precisely. The naive Bayes lift curve falls roughly midway between the two bounds of
a random draw and a perfect classification scheme.

Figure 3 shows the distributions of the computed win probabilities from equation (11),
plotted separately for actual wins and losses in the 1876-record test set. Note that the two
distributions are quite different, both with respect to their means, and the skewness of the win
bids towards the higher computed win probabilities.

A quantitative measure of the obtained lift is given by the area between the lift curve and
the straight line generated by a random sample:

Area =
∫ 1

0
dx[NB(x)−R(x)], (18)
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where x denotes the fraction of total records (the x-axis in Figure 2), NB(x) is the naive Bayes
lift curve, and R(x) is the straightline random draw. It is also useful to define the ratio of the
area to its optimal value:

Ratio =

∫ 1
0 dx[NB(x)−R(x)]∫ 1
0 dx[Opt(x)−R(x)]

, (19)

where Opt(x) is the optimum lift curve assuming perfect knowledge of the test-set output
labels.

Results obtained using a single fixed train/split ratio can be potentially misleading, so we
also show results obtained using 10-fold cross validation[12]. The total set of 3744 bid items
is randomly divided into 10 equal subsets, and 10 different evaluations are run, each using
a different single subset as the test set, with the remaining 9 partitions taken as the train
set. The results of this analysis are shown in Table 2. Note that the features are sorted in
decreasing order by information gain shown in Table 1. We add features to the model one
at a time, and monitor the mean, min, and max of the quantities Area and Ratio defined
in equations (18) and (19); the statistics are taken over the 10 cross-validation runs. The
accuracy, as measured by mean(Ratio), improves monotonically with the addition of each new
feature, reaching an asymptote of approximately 38% of the optimum area. Approximately
98% of the asymptotic accuracy is captured by the first seven features (Customer Industry
Name → Financing Opportunity).

In summary, the results of 10-fold cross validation suggest a statistically significant lift in
the naive Bayes model in predicting the win/loss label of a new bid, given the features shown
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Table 2: Results of 10-Fold Cross-Validation
Feature mean min max mean min max
Number Feature Name (Area) (Area) (Area) (Ratio) (Ratio) (Ratio)

1 Customer Industry Name 0.0402 0.0173 0.0604 0.2447 0.0986 0.3616
2 Incumbency 0.0517 0.0330 0.0717 0.3125 0.2271 0.3975
3 Bid Price [(BP-C)/C] 0.0549 0.0350 0.0747 0.3313 0.2412 0.4140
4 Number of Employees 0.0584 0.0372 0.0803 0.3522 0.2558 0.4448
5 Profit Margin at List Price 0.0589 0.0385 0.0774 0.3557 0.2649 0.4629
6 Part Quantity 0.0607 0.0428 0.0794 0.3664 0.2946 0.4754
7 Financing Opportunity 0.0620 0.0449 0.0797 0.3751 0.3086 0.4767
8 High-profile Account 0.0625 0.0471 0.0811 0.3775 0.3081 0.4856
9 Internal Advocate at Buyer 0.0627 0.0475 0.0810 0.3792 0.2899 0.4850
10 Part Revenue Opportunity 0.0619 0.0442 0.0805 0.3741 0.2800 0.4818
11 RFQ Revenue Opportunity 0.0622 0.0424 0.0807 0.3756 0.2688 0.4830
12 Identity of Competitors 0.0632 0.0436 0.0810 0.3818 0.2765 0.4754
13 Services Opportunity 0.0630 0.0436 0.0809 0.3809 0.2765 0.4751

in Table 2.

5 Computation of Optimal Prices

In this section, we illustrate the computation of the win probability, develop an approach
to improve this calculation, and then provide a comparison of computed optimal prices for
historical bids with the prices generated by human pricers.

5.1 Win-Probability Calculation

Figure 4 shows the win probability as a function of the bid price computed for a single bid
item. This curve was computed from equation (12), using all 3744 bid examples4 described in
Section 4.1. As shown in Table 1, the continuous bid price is binned into 7 equal-population
bins. The win probability is therefore evaluated at the 7 discrete price values; the widths of
these segments are different due to the use of equal-population bins in the normalized price
variable. The upward move at segment 5 appears to be a statistical flucuation; it does not
appear if the number of bins is reduced from 7 to 5.

A surprising and counter-intuitive characteristic of the win probability is that it increases as
a function of bid price. One reason for this behavior may be due to implicit strategies employed
by the pricers who produced the bid prices in our historical data. It is likely that there are
certain competitive situations where a buyer may be inclined to pay a somewhat higher price
to the seller because of certain intangibles such as long-term loyalty, superior service, and so
on. It is possible that pricing experts are capable of recognizing such situations, and will
deliberately price higher to maximize profit. On the other hand, there are converse situations
where the seller realistically has little chance of winning the bid, but the pricer is willing to

4We do not retain the train/test split introduced in Section 4.3 because we do not seek to evaluate accuracy
here, and we prefer to use all available data to improve the statistics of the conditional probabilities.
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Figure 4: Win probability as a function of bid price.

gamble with a very low price offer. These two scenarios, if they occur with some frequency, will
force the observed behavior: the seller will win preferentially at higher prices because pricers
exploit these opportunities, and the seller will lose preferentially at lower prices because the
pricer is willing to price aggressively to avoid an almost certain loss, that, indeed, is ultimately
realized.

A different explanation for the increased win probability as a function of bid price has to
do with the way in which a single bid item is presented to the naive Bayes model. Each record
explicitly presents an outcome (win or loss) at a single price, namely the price quoted by the
pricer. However, this event implicitly represents more information than a simple win/loss at
the stated price. Indeed, it is completely reasonable to assume that a win at price xn

p for bid
item n implies a win at all lower prices for this item, and a loss at price xn

p implies a loss at
all higher prices[14].

This observation suggests adding “mirrored” bid items to the existing data that completely
replicate all features of an existing bid, with the exception that the bid price is decreased for
bids with win labels, and increased for bids with loss labels. Let xn

p,i denote a bid price for
item n falling in price bin i, i = 1, . . . , I, where I is the number of bins used to discretize bid
price. (I ≡ 7 here.) With reference to equation (3), we define a winning bid as

Bn(win) ≡ {xn
p,i,x

n
M , win}, (20)

where xn
M denotes the M non-price features. Consistent with the above discussion, we replicate

this bid at all lower price bins, retaining the identical non-price features xn
M and win label. An

analogous procedure is followed for lost bids, yielding the following algorithm for the generation
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Table 3: Results of 10-Fold Cross-Validation With Added Mirrored Bid Records
Feature mean min max mean min max
Number Feature Name (Area) (Area) (Area) (Ratio) (Ratio) (Ratio)

1 Customer Industry Name 0.0434 0.0282 0.0560 0.2560 0.1595 0.3225
2 Incumbency 0.0595 0.0489 0.0716 0.3508 0.2948 0.4142
3 Bid Price [(BP-C)/C] 0.1043 0.0953 0.1124 0.6157 0.5901 0.6505
4 Number of Employees 0.1049 0.0952 0.1130 0.6194 0.5975 0.6542
5 Profit Margin at List Price 0.1106 0.0996 0.1184 0.6526 0.6271 0.6817
6 Part Quantity 0.1144 0.1034 0.1226 0.6752 0.6509 0.7056
7 Financing Opportunity 0.1146 0.1034 0.1232 0.6763 0.6511 0.7093
8 High-profile Account 0.1143 0.1020 0.1229 0.6744 0.6423 0.7074
9 Internal Advocate at Buyer 0.1135 0.1005 0.1228 0.6697 0.6325 0.7069
10 Part Revenue Opportunity 0.1133 0.1006 0.1228 0.6686 0.6334 0.7070
11 RFQ Revenue Opportunity 0.1145 0.1015 0.1228 0.6758 0.6388 0.7067
12 Identity of Competitors 0.1151 0.1021 0.1237 0.6791 0.6426 0.7118
13 Services Opportunity 0.1150 0.1021 0.1236 0.6788 0.6423 0.7116

of mirrored bids ñ from bid n:

{xn
p,i,x

n
M ,win} → {xñ

p,i−1,x
ñ
M , win} . . . {xñ

p,1,x
ñ
M ,win},

{xn
p,i,x

n
M , loss} → {xñ

p,i+1,x
ñ
M , loss} . . . {xñ

p,I ,x
ñ
M , loss},

xñ
M ≡ xn

M . (21)

A desirable characteristic of this algorithm is that it adds win and loss bids in approximately
the same ratio as the original win/loss ratio, and therefore approximately retains the prior
probability of observing a win label.

Equation (21) generated 12086 mirrored bid items, and these records were added to the
original 3744 examples. The naive Bayes model was regenerated against this aggregated data
set of 15830 records, and the 10-fold cross-validation described in Section 4.3 was repeated over
the aggregated set. These results are shown in Table 3. In comparison with the initial results
in Table 2, these results show significantly improved prediction accuracy: the asymptotic value
of the mean(Ratio) increases from 38% in Table 2 to 68% in Table 3. This improvement is due
primarily to the enhanced information carried in the price feature (BP − C)/BP as a result
of the addition of the mirrored bids.

Figure 5 shows the win probability curve computed with the addition of the mirrored bids.
This function shows the expected monotonic decrease with respect to bid price, reflecting the
additional information incorporated in the analysis via the addition of the mirrored bid items.

5.2 Optimal-Price Calculation

Given the win probability curve as a function of bid price for a specific bid item, the price that
optimizes profit for the transaction is readily computed from equation (13). Figure 6 shows a
sample calculation of the expected profit [from equation (4)] as a function of bid price. The
expected profit is computed over the same bins as used to discretize the bid price, and the

13



1200 1400 1600 1800 2000 2200 2400 2600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bid price ($)

W
in

 p
ro

ba
bi

lit
y

Cost List Price

Bid item 8551

Figure 5: Win probability with added mirrored bid records.
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Figure 6: Expected profit as a function of approved price.

14



−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

50

100

150

200

250

δ = (Pricer Price − Optimal Price) / Optimal Price

C
ou

nt

3744 bid items        
Mean(δ)   = 0.016
Mean(|δ|) = 0.065

Figure 7: Comparison of computed optimal prices with pricer-generated prices.

optimal price is taken as the mean bid price within the bin that yields the maximum expected
profit.

Figure 7 addresses the interesting question of how the computed optimal prices compare
with pricer-generated prices. The histogram shown here was generated for the actual data
set of 3744 bid items. Interestingly, the optimal prices show little bias relative to the pricer-
generated prices: the mean of the difference is only 1.6%, which indicates that the optimal
prices are slightly lower (i.e. more aggressive) than the human-generated prices. The mean of
the absolute difference is 6.5%. Note, however, that our objective here is to compute optimal
prices, not to predict human-generated prices, so we do not necessarily expect close agreement
between these two sets of results. Moreover, while the performance of a predictive algorithm
is straightforward to analyse by assessing the accuracy against test or holdout data, it is much
more difficult to quantify the accuracy of the optimal-price computation considered in this
paper: we do not have a practical means of rebidding the original RFQs with the optimal
prices, and comparing the profit so obtained with the profit generated by the prices quoted by
pricing experts.

6 Summary and Future Work

We have presented a machine-learning approach to optimizing the bid price in response to a
Request for Quote, taking into account seller costs and the probability of winning as a function
of various bid features, including offered price. Rather than relying on statistical models with
estimated parameters or expert classification of potential bid scenarios, we attempt to learn
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directly the probability of winning from a set of bid transactions with known outcomes.
A naive Bayes classifier is developed to predict the win/loss outcome of new bid. Results

of applying this model to actual bid data demonstrate a statistically significant lift for test
data. Independent of the primary objective of optimizing bid pricing, these results suggest a
useful capability to prioritize bids (and available supply, if supply is constrained) based on the
likelihood of winning a bid.

Win probabilities are computed from the naive Bayes model, with additional synthetic
bids systematically added to improve the calculation. Optimal prices generated using this
methodology are shown to be slightly more aggressive than human-generated bid prices.

An important issue in the development of the current pricing model is the sparsity of data
concerning the competitive circumstances at the time of the bid. It is likely that the robustness
of the model could be improved by incorporating additional features characterizing the overall
state of market demand at the time of each historical bid. Given more extensive historical
data, additional metrics could also be developed, such as enhanced customer price sensitivities
and better quantification of price-elasticity curves.

Finally, a related machine-learning problem is to develop a method to predict human-
approved bid prices, based on analysis of prices generated by expert pricers. Such a capability
would be useful both for training new pricers, as well as for providing an independent check
on the results of experienced pricers.
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