
RC22477 (W0206-013) June 5, 2002
Computer Science

IBM Research Report

Analysis of Design Alternatives for Reverse Proxy Cache
Providers

Bruno Ciciani, Daniel M. Dias
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

F. Quaglia
DIS, University of Rome "La Sapienza"

Via Salaria 113, 00198 Rome Italy

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Analysis of Design Alternatives for Reverse Proxy

Cache Providers

B. Ciciani, D. Dias

IBM T.J. Watson Research Center

Yorktown Heights, NY 10598

F. Quaglia

DIS, University of Rome \La Sapienza"

Via Salaria 113, 00198 Rome Italy

Abstract

Reverse proxy caches are used to provide scalability and improved latency to popular sites on

the Web. In this paper we provide analytical performance models for distributed reverse proxy

cache architectures, and study the trade-o�s between various design alternatives. Speci�cally,

we consider static and dynamic assignment of proxy cache nodes to Web sites, with di�erent

levels of sharing of proxy caches among Web sites. Innovative analytical modeling contributions

have been introduced to handle real design constraints, such as bounded cache size and bounded

processing power, and of di�erent characteristics related to the hosted objects, including ref-

erence rates, popularity distributions and update rates. In the analysis we have modeled both

system steady state as well as transient interaction between Proxy sites and Web sites. We have

found di�erent trade-o�s between various design alternatives depending on characteristics of the

Web site workloads.

1 Introduction

With the growth of tra�c to popular sites on the World Wide Web (Web), various Web caching

techniques have been developed to improve the client response time, and to o�oad tra�c from the

heavily loaded Web sites. In one technique, so-called \reverse proxy (Web) caches" retain the hot

pages from speci�c Web sites. These reverse proxy caches may be co-located with the Web site

itself, be distributed but owned and hosted by the Web site owner/provider, or may be provided

by third party reverse proxy caching services [11, 15, 16, 17, 18, 20, 25]. Various architectures

have been used for distributed reverse proxy caches, in terms of the number and location of proxy

cache sites, how the cache nodes are allocated or related to the Web sites supported, how cache

misses are handled, among other design alternatives. In this paper we provide an analytical model

for estimating the performance of distributed reverse proxy cache architectures, and study the

trade-o�s between various design alternatives.

Reverse proxy caches di�er from forward proxy caches (typically referred to as proxy caches

without quali�cation) in that the former cache Web objects from speci�c Web sites only, while

the latter cache objects from all Web sites. Typically, reverse proxy caches are associated with,

1

and payed for, by the end Web sites. On the other hand forward Web proxy caches are typically

owned by enterprises for caching Web requests from browsers within the enterprise, or by Internet

Service Providers (ISPs) to cache requests from their client Web browsers. In this paper we focus

on reverse proxy caches exclusively. Initially, reverse proxy Web caches were co-located at the Web

sites, in order to reduce the load on the Web servers, and to improve the throughput [5, 6]. In

order to provide better scaling, high availability and lower latency to clients, the Web caches were

distributed and often co-located at network access points (NAPs), such as for Sports and Events

Web sites [4, 13]. Finally shared reverse proxy caching services were provided to cache objects

from multiple Web sites [1, 8]. The basic organization of the reverse proxy caches is one in which

there are a number of geographically distributed locations at which a cluster of Web cache nodes

are located. The locations are typically either co-located with ISPs (e.g. [1]), or located at NAPs

(e.g. [8]), in order to reduce the latency to clients. The number of locations varies from the tens,

typically for the case with the caches at the NAPs, to hundreds, typically for the case with caches

co-located at ISPs. As study of the measured performance of reverse proxy caching services using

each of these architectures can be found in [12]. In this paper, we focus on the former case, where

there are on the order of tens of sites.

There are various alternatives for distributed reverse proxy cache architectures; this is discussed

in further detail in Section 2, and summarized here. In the simplest case, each of the geographically

distributed site independently caches objects from all of the Web sites, and speci�c nodes at each

site are statically assigned to cache objects from speci�c sites. The static assignment could be

random, or based on measured load for each Web site. Multiple nodes could cache objects from

the same Web site for scaling, and the assignment could be static or dynamic. Similarly, there

could be sharing across geographically distributed sites to minimize the miss ratio to the Web sites

(actually this solution is not analyzed in this paper, it will be object of a following contribution).

There are trade-o�s between each of these alternatives, which are examined in detail in this paper.

For example, static assignment of a small number Web sites per node can leads to higher hit ratios

in RAM because fewer sites share the same cache, but can lead to signi�cantly worse performance

during tra�c surges. These and other trade-o�s are the subject of this paper. We analyze the

behavior of the di�erent architectures with variation of the popularity of the objects accessed,

object request rates, object update probability, available RAM size in each cache node, available

processing capability in each cache node, among other parameters.

The organization of the paper is as follows. Section 2 describes the reverse proxy cache archi-

tectures considered and provides a qualitative comparison. Section 3 describes the model for the

various architectures and design alternatives. Quantitative comparisons from the model appear in

Section 4. Finally, Section 5 has concluding remarks, and a summary of the contributions of the

paper.

2

Cache Nodes

Proxies

Web Sites

Clients

Internet

Internet/Virtual Private Network

Figure 1: Target System.

2 Reverse Proxy Cache Architectures

As shown in Figure 1 the target system consist of Web sites and Proxy sites, connected through the

Internet or a (virtual) private network. Each Proxy site, in turn, has a set of cache nodes and a load

balancer that directs object requests to cache nodes according to the IP address of the associated

Web site. Each cache node has a two-level storage system (RAM/disk), and is directly connected

both to the Internet, and, if necessary, to the virtual private network connecting the cache nodes

to the Web server nodes.

A cache node can be either assigned to a unique Web site (exclusive assignment) or be shared

among multiple (as an extreme all) Web sites (shared assignment). With exclusive assignment, the

cache node maintains copies of objects from a single Web site. Instead, with shared assignment, it

maintains copies of objects from multiple Web Sites.

The assignment of a cache node to a Web site can be either static or dynamic, depending on

workload conditions. Similarly, in case of shared assignment, the portion of the cache node RAM

destined for objects of a speci�c Web site is established either statically or dynamically. In this

section, we qualitatively discuss the bene�ts and drawbacks of the di�erent options.

Exclusive vs Shared Cache Node Assignment. Sharing of cache nodes among multiple Web

sites allows balancing the load of object requests, so that surges in tra�c for requests to one

or a few of the Web sites can be supported. Further, having multiple cache nodes handle

requests for the same object can be expected to reduce the response time for the \hottest"

objects, because the load on these hot objects can be handled by multiple nodes. On the other

hand, sharing of cache nodes implies assigning only a portion of the cache node RAM to each

Web site, with increase in the likelihood that the assigned portion can not maintain copies of

3

all the cacheable objects of that Web site. In this case, disk access might be required, with

consequent increase in the response time, and reduction in the throughput relative to hits in

RAM.

Static vs Dynamic RAM Partitioning. Cache node sharing among multipleWeb sites requires

partitioning of the cache node RAM to assign a speci�c portion to each Web site. Static RAM

partitioning allows controlling the RAM hit ratio for each Web site on the basis of the object

relative popularities and of the amount of objects that can be maintained in the speci�c RAM

portion. On the other hand, dynamic RAM partitioning (i.e. with a variable RAM portion

assigned to each Web site depending on the object access pattern), allows maximizing the

global RAM hit ratio in case classical LFU (or LRU) is adopted as the object replacement

policy.

Static vs Dynamic Cache Node Assignment. Static assignment of a cache node to a Web

site is easy to handle but does not allow support of time-varying workloads or surges in tra�c

across the Web sites, since the statically assigned nodes may become overloaded. Dynamic

assignment of additional nodes can handle a surge in tra�c to one or a fewWeb sites. However,

it gives rise to cache node \warm-up" periods, leading to high loads at the Web sites during

the warm-up period. Speci�cally, upon a new cache node assignment to a Web site, the miss

ratio for requests related to objects of that Web site might be extremely high since the new

cache node maintains no cached object related that Web site.

3 Analytical Model

To ease the presentation we assume that the tra�c of HTTP requests related to the k-th Web site,

namely WSk, is equally distributed among all Proxy sites. Generalizing the analysis to the case of

non-uniform tra�c distribution is straightforward. Speci�cally, it only requires solving the model

we propose using a set of distinct values, one for each Proxy site, for the request tra�c related to

WSk.

We denote as �k the the arrival rate of HTTP requests related toWSk, and we suppose requests

arrive according to a Poisson process. Although a log-normal distribution is typically considered as

a better model for the arrival rate [3], the exponential assumption is reasonable since the request

distribution can be approximated as a Markovian arrival rate [21] or as a Markovian Modulated-

Poisson process [21, 22], and each state if this stochastic process is actually characterized by request

arrival distributed according to a Poisson process. In addition, it has been shown that the expo-

nential distribution better matches real workloads, as compared to the log-normal distribution,

during the busiest periods [9, 19]. We assume that object replacement within the RAM of any

cache-node/Web-site is made according to the LFU policy. Also, we assume that cache node disk

has unbounded capacity, but limited throughput.

4

cache
node Proxy

DISK

Requests to WSk

�CNk

RAM

Figure 2: Split of Requests Between Cache Node and Web Site.

3.1 Evaluation of the Cache Node Hit/Miss Ratio

In this section we evaluate the cache node hit ratio at the level of both the cache node RAM

and the cache node disk. An innovative contribution in our analysis consists of extending existing

analytical results in the context of the evaluation of steady-state properties of Web caching systems

with unbounded cache size [26], in order to include the e�ects of capacity misses. Actually there

already exists a result that takes into account capacity misses [3], however it applies only to the

case of non-updateable objects. We will consider updateable objects in the analysis.

To ease the presentation we assume that all cacheable objects of WSk have the same size, we

note however that extending the analysis to the case of di�erent sizes is relatively straightforward.

We denote as nk the total number of cacheable objects associated with WSk, and with Ck the

cache node RAM capacity associated with cacheable objects of that same Web site. The relative

popularity of cacheable objects of WSk follow a Zipf-like distribution with parameter �k [3]. We

denote as pk;j the relative popularity associated with the j-th object of WSk. According to the

Zipf-like distribution, the value of pk;j decreases vs j. Also, the j-th cacheable object of WSk has

update rate equal to �k;j, with exponential distribution of the length of the time interval between

updates. Finally, �CNk denotes the request arrival rate, associated with WSk, seen by any single

cache node of the Proxy site.

As show in Figure 2, each request in the ow �CNk is either served through an object cached

within the cache node RAM/disk, or is forwarded to WSk. Given that the cache node disk capacity

is assumed as unbounded, at steady state all the nk (cacheable) objects associated with WSk are

actually maintained into the cache node disk (some of them are also maintained into the cache node

RAM). Therefore, (cacheable) object misses within the cache node RAM/disk can occur only in

case of object staleness. As a consequence, the miss ratio MRk within the cache node RAM/disk

for requests associated with WSk can be computed as

MRk =
nkX

i=1

pk;i
�k;i

�CNk pk;i + �k;i
(1)

5

1 �MRk is the fraction of the requests that are served through non-stale objects maintained

within the RAM/disk of each cache node. These requests are split, in turn, depending on whether

the corresponding object is found within the RAM or not. Given the LFU replacement policy, the

cache node RAM maintains the most requested objects of WSk (i.e. the most popular), therefore

the cache node RAM hit ratio RHRk related to requests associated with objects of WSk can be

expressed as

RHRk = (1�MRk)

min(Ck ;nk)X

i=1

pk;i (2)

The min operator for the upper limit in the previous sum captures the fact that, in case

Ck > nk, all the cacheable objects of WSk are actually maintained into the cache node RAM.

Trivially, the cache node disk hit ratio DHRk related to requests associated with objects of WSk

can be expressed as

DHRk = (1�MRk)(1�RHRk) = (1�MRk)
nkX

i=min(Ck;nk)+1

pk;i (3)

In some sense the modeled scenario can be see as a two-level hierarchical caching system in

which the second level, i.e. the disk, has unbounded capacity, while the �rst level, i.e. the RAM,

has limited capacity. The disk maintains replicas of objects maintained in the RAM, and ob-

ject staleness into the RAM implies object staleness into the disk. Therefore only those requests

associated with non stale objects and with RAM capacity misses go to the disk.

Note that our analysis di�ers from those already proposed for two-level caching systems [10, 22].

Speci�cally, those analyses are based on the assumption of unbounded cache size at both the �rst

and the second level, therefore, miss at the �rst level can be due only to object staleness. Also, the

caching systems considered are di�erent. Speci�cally, a second level cache manages object misses

from multiple �rst level caches, instead, in the system we consider, a second level cache, namely the

cache node disk, serves capacity misses of a single �rst level cache, namely the cache node RAM.

As a last point, the value of both Ck and �CNk depend on the selected Reverse Proxy Cache

organization among those discussed in Section 2 (for example they depend on the amount of Web

sites assigned to a speci�c cache node and also on how the cache node RAM is partitioned among

these Web sites). We shall report a complete analysis of each organization in the following section.

3.2 Exclusive Cache Node Assignment

In the exclusive cache node assignment organization, each cache node serves requests for a single

Web site. Indicating with NP the total number of Proxies, with NCNk the number of cache nodes

within a Proxy that are assigned to WSk and with Ctot the total cache node RAM capacity, in

terms on number of objects, we get

Ck = Ctot (4)

6

and

�CNk =
1

NCNk

�k

NP
(5)

Expression 5 simply states that, to get the request tra�c �CNk , we have to divide �k for the

total number of Proxy sites NP due to the homogeneity assumption of load distribution among

the Proxy sites, and then we have to split the obtained tra�c value among the number of cache

nodes NCNk assigned to WSk.

Denoting with:

� E[ram hit] the expected CPU time for serving a request (supposing the object is already in

the cache node RAM);

� E[disk request] the expected CPU time for a disk/RAM object transfer request at the cache

node;

� E[http] the cache node CPU time for an HTTP session to download an object from the Web

site;

� E[disk] the expected time for handling an object transfer from/to the cache node disk;

we get the following expressions for the utilization factors of the cache node CPU and the cache

node disk

�
CPU

= �CNk (E[ram hit] +DHRkE[disk request] +MRkE[http]) (6)

�disk = �CNk (DHRk +MRk)E[disk] (7)

Note that in expression (7) the multiplier factor for E[disk] contains both DHRk and MRk

since cache node disk access occurs in case of RAM capacity miss and also in case of staleness miss,

with consequent download of the object from WSk.

Denoting with:

� Ck
WS the RAM capacity (in terms of objects) of WSk;

� E[WS http] the CPU time at WSk for an HTTP session to upload an object to a Proxy;

� E[WS disk request] the expected CPU time for a disk/RAM object transfer request atWSk;

� E[WS disk] the expected time for handling a disk/RAM object transfer at WSk;

we get the following expressions for the utilization factors of the CPU and the disk of WSk

�
WS CPU

= �kMRk(E[WS http] +
nkX

i=min(Ck
WS

;nk)+1

pk;iE[WS disk request]) (8)

7

�WS disk = �kMRk

nkX

i=min(Ck
WS

;nk)+1

pk;iE[disk] (9)

where the term
nkP

min(Ck
WS

;nk)+1

pk;i in both previous expressions indicates the probability that a

requested object is not in the RAM of WSk due to a capacity miss (recall that due to the LFU

replacement policy, only the most popular objects are maintained into the Web site RAM).

Modeling as usual the cache-node/Web-Site CPU with an M/G/1/PS queue [9] (this matches

our assumption of exponential distribution for the HTTP request arrival process), and the cache

node disk with an M/M/1 queue [14], and denoting with � the delay for object transfer between the

Web site and a Proxy site (1), we can express the expected latency time T of a request, evaluated

at the cache node level, as (2)

T =
E[ram hit]

1� �
CPU

+DHRk(
E[disk request]

1� �
CPU

+
E[disk]

1� �disk
) +

+MRk(
E[WS http]

1� �
WS CPU

+
nkX

i=min(Ck
WS

;nk)+1

pk;i
E[WS disk]

1� �WS disk
+�) (10)

Expression (10) can be evaluated by computing MRk, RHRk and DHRk (as expressed by (1),

(2) and (3)) on the basis of the constraints in expressions (4) and (5), and then computing the

utilization factors expressed in (6)-(9).

3.3 Shared Cache Node Assignment with Static RAM Partitioning

In the shared cache node assignment organization with cache node RAM statically partitioned,

each cache node serves requests for multiple Web sites. Also, the cache node RAM is split into

equal portions, each one assigned to objects of a speci�c Web site. Exploiting notation already

introduced in Section 3.2, and indicating with N the total number of Web sites hosted by the cache

node and, again, with NCNk the total number of cache nodes within a Proxy assigned to WSk,

we get

Ck =
Ctot

N
(11)

and

�CNk =
1

NCNk

�k

NP
(12)

1As pointed out in Section 2, the presence of a (virtual) private network between Web sites and Proxies allows

approximating the object upload latency to a Proxy with a constant value.
2Considering for the CPU model an M/G/1/PS queue with non-minimal amount of concurrency in the PS disci-

pline, i.e. a relatively large maximum amount of requests that can be handled concurrently, the CPU response time

can be approximated with the formula related to the M/M/1 queue.

8

Similarly to expression (5) related to the case of exclusive cache node assignment, �CNk is

computed by dividing �k for the total number of cache nodes assigned to WSk among all the

Proxies. This is due to homogeneous split of the workload among the proxies and also among all

the cache nodes assigned to WSk within each Proxy site.

Using the same notation as in Section 3.2 for expected CPU times and disk access cost at the

cache node, we get the following expressions for the cache node CPU and the cache node disk

utilization factors

�
CPU

=
NX

k=1

�CNk (E[ram hit] +DHRkE[disk request] +MRkE[http]) (13)

�disk =
NX

k=1

�CNk (DHRk +MRk)E[disk] (14)

The previous expressions point out that, in case of shared node assignment, the cache node

CPU and disk utilization factors are computed by considering request tra�c for multiple Web

sites, weighted by the RAM/disk hit/miss ratios.

The expressions for the utilization factors of the CPU and the disk of WSk remain identical to

those in (8)-(9). The same is true for the latency time as in expression (10). Therefore, solving this

model requires the same steps as those listed at the end of Section 3.2, with the di�erence that the

constraints to be used in order to compute MRk, RHRk and DHRk are those in expressions (11)

and (12).

3.4 Shared Cache Node Assignment with Dynamic RAM Partitioning

In the shared cache node assignment organization with cache node RAM dynamically partitioned,

each cache node serves requests for multiple Web sites, however the cache node RAM capacity is

not split into equal portions among the Web sites. Speci�cally, the objects maintained in the cache

node RAM (and therefore the amount of RAM capacity assigned to each Web site) are determined

dynamically on the basis of the LFU policy considering the spectrum of access frequencies, related

to the whole set of cacheable objects of the Web sites, seen by any single cache node.

In other words, we can construct an ordering among those objects based on their access fre-

quencies seen by the cache node (we recall that in this con�guration the access frequency at each

cache node for the j-th object of WSk is computed as �k
NCNk NP

pk;j) and we can associate with the

j-th object of WSk an index , namely Ik;j, indicating the position of that object in the ordering.

The j-th object of WSk is maintained into the cache node RAM if Ik;j � Ctot, therefore the amount

of cache node RAM capacity Ck assigned to WSk can be computed as:

Ck =
X

8Ik;j�Ctot

1 (15)

For estimating the value of �CNk , the utilization factors and the latency time, we get the same

expressions as the ones related to the case of static RAM partitioning in Section 3.3. Therefore

9

solving the model for dynamic RAM partitioning requires the same steps as those for static RAM

partitioning, with the only exception that the constraint in expression (11) must be replaced with

the constraint in expression (15).

3.5 Transient Behavior

As already discussed in Section 2, independently of the partitioning policy adopted for the cache

node RAM, the two organizations based on shared cache node assignment are characterized by

better load balance among the cache nodes within each Proxy, with consequent better balanced

utilization of the CPUs and disks among all the cache nodes. This is not the case for the exclusive

cache node assignment organization, where strongly unbalanced utilization of distinct cache nodes

might arise in case distinct Web sites are associated with very di�erent request rates.

As pointed out, to improve the caching system performance, especially in case of exclusive cache

node assignment, a cache node might be dynamically switched between Web sites. Speci�cally, it

might be de-assigned from a lightly loaded Web site and re-assigned to a Web site whose load tends

to become heavy. However, upon the assignment of a cache node to WSk, the cache node itself

maintains no cached object related to WSk. As a consequence, requests directed to that cache

node must be forwarded to WSk in order to download (for caching) the corresponding objects. In

other words, we might get a tra�c peak on WSk in the interval between the instant of the cache

node assignment and the instant in which the cache node reaches a steady state for what concerns

cached objects of WSk.

We now evaluate the peak tra�c on WSk due to requests occurring during the cache node

warm-up period. We denote as Xk;j(M) the conditional probability that no request for the j-th

object ofWSk occurs at the newly assigned cache node, given that M requests related to objects of

WSk have been issued to that cache node since the new assignment. This quantity can be evaluated

as

Xk;j(M) = (1� pk;j)
M (16)

Therefore, the cache node miss ratio (related to WSk) due to warm-up at the M +1-th request

arrival, namely MRWUk(M + 1), can be evaluated as

MRWUk =
nkX

i=1

pk;iXk;i(M) =
nkX

i=1

pk;i(1� pk;i)
M (17)

Actually, to derive expression (17) we have implicitly assumed that cache node misses due to

object staleness have a negligible impact during the cache node warm-up period. This assumption

is likely to be true in practice since dynamic assignment of a cache node to WSk takes place in case

of high request arrival rate that is likely to produce a very short warm-up period, during which few

objects are likely to be updated at the Web site.

The frequency of requests associated with WSk and directed to the newly assigned cache node

is �CNk as expressed by (5), with the parameter NCNk taking into account the newly assigned

10

cache node. Therefore, M can be expressed as a function of the time interval �t since the cache

node assignment as

M = �CNk �t (18)

We can now evaluate the request tra�c to WSk (due to cache miss at the newly assigned cache

node) at any instant of the warm-up period, which we denote as �WU
k , as

�WU
k = �CNk MRWUk = �CNk

nkX

i=1

pk;i(1� pk;i)
�CN
k

�t (19)

4 Quantitative Comparison

By the previous analysis we argue that the performance of the di�erent architectural alternatives

depends mainly on the cache node RAM miss ratio and on the workload assigned to each cache

node. Therefore, given a number of Web sites to serve, performance optimizations can be achieved

by keeping the RAM miss ratio low, while simultaneously avoiding load bottlenecks. Note that the

RAM miss ratio depends on the RAM capacity and on object relative request rates, which, in turn,

depend on the request arrival rate for each Web site and on the distribution of the object popularity;

meanwhile, the workload on each each cache node depends on the number of Web sites assigned to

that cache node and on their request arrival rate. In this section, we shall compare architectural

alternatives that analyze the performance behavior of design alternatives that attempt to keep the

RAM miss ratio low and/or the cache node utilization within bounds.

To keep low the RAM miss ratio, we should try to have most of the (very) popular objects of

each Web site into the RAM. This could be achieved by assigning few Web sites to each cache node

in order to allow a reasonable size RAM partition to be assigned to each site. On the other hand,

avoidance of load bottlenecks can be obtained by allowing all the Web sites to share all the cache

nodes. However, this type of sharing does not favor RAM hit given that a reduced percentage

of cacheable objects of each Web site can be maintained in the cache node RAM. In other words,

there is a clear tradeo� between advantages due to RAM hit and those due to balanced request load

distribution. Such a tradeo� can be optimized through intermediate architectural con�gurations

where a group of Web site share a group of cache nodes. These con�gurations, as well as extreme

con�gurations, will be the object of this quantitative study.

We consider a reverse proxy cache architecture consisting of 10 Proxy sites and 10 cache nodes

per Proxy site. The cache node RAM has capacity of 1 GB that, assuming 8 KB as the average

size of cacheable objects [6], allows maintaining about 130000 cacheable objects. Other system

parameters, chosen on the basis of estimates reported in [23], related to standard hardware/software

systems, are listed in Table 1.

We will study the performance provided by di�erent con�gurations of the Proxy architecture

while varying the number of Web sites. Speci�cally, we will consider the case of 50 (CASE A) and

100 (CASE B) Web sites hosted by the Reverse Proxy Cache architecture. In both cases, each Web

11

Table 1: System Parameters.
E[ram hit] 0.5 msec.

E[disk request] 0.05 msec.

E[http] 1 msec.

E[disk] 10 msec.

E[WS http] 1 msec.

E[WS disk request] 0.05 msec.

E[WS disk] 10 msec.

� 100 msec.

site maintains 15000 cacheable objects and has a RAM able to maintain all the 15000 cacheable

objects. Additional Web site related system parameters, always selected on the basis of the results

in [23], are listed in Table 1.

For the parameter � characterizing the Zipf-like distribution for the object popularity, several

values have been identi�ed in the literature. For example, we have an estimated � of 1.37 for the

1998 World Cup Web site [2], 0.77 from DEC traces, 0.78 from University of Pisa traces, 0.83 from

FuNet traces, 0.69 from UCB traces, 0.73 from Questnet traces and 0.64 from NLAR traces [3].

In our study we will assume di�erent values of � ranging between 0.6 and 1.4 so as to cover an

interval containing all the values identi�ed above.

Cacheable objects of each Web site are considered to have update rates ranging between 1/15

min. and zero (passing through 1/30 min., 1/1 hour, 1/12 hours and 1/24 hours), with update rate

decreasing with decrease in the object popularity.

Finally, according to [7], we assume that the 20% of the requests directed to a speci�c Web site

are related to non-cacheable objects, that need to be obtained from the Web site. These requests

produce on the CPU same overhead as that one for dowloading a cacheable object. Instead they do

not produce disk overhead since non cacheable objects are not retained by the cache node memory

system.

4.1 CASE A

As mentioned above, CASE A refers to 50 Web sites. We consider for this case 3 di�erent con-

�gurations. In each con�guration, two cache nodes of each Proxy site host 10 Web sites, namely

WS0; : : : ;WS9, each with di�erent request arrival rates. Speci�cally, the total request arrival rate

that we denote as 10 � ��, is distributed among the 10 Web sites according to the distribution in

Table 2. Speci�cally, there are six Web sites with light relative load, three Web sites with slightly

higher relative load and one Web site with signi�cantly higher relative load.

The 3 con�gurations are as follows:

Con�guration 1. WS0 �WS4 are assigned to the �rst node of the couple of cache nodes, while

WS5�WS9 are assigned to the second one. In other words, each cache node hosts the same

number of Web sites. Given that the entire set of cacheable objects of each Web site requires

12

Table 2: Load Distribution Among the 10 Web Sites.
WS0 WS1 WS2 WS3 WS4 WS5 WS6 WS7 WS8 WS9

1/24 1/24 1/24 2/24 2/24 1/24 1/24 1/24 2/24 12/24

120 MB, this con�guration allows all the objects of the 5 Web sites hosted by each node to

be maintained into the cache node RAM, thus favoring RAM hit (i.e. RAM misses can be

due only to object staleness). On the other hand, the request load is unbalanced among the

cache nodes.

Con�guration 2. WS0 �WS8 are assigned to the �rst node of the couple of cache nodes, while

WS9 is assigned to the second one (exclusive cache node assignment). In this case we get

balanced load (each node handle 12/24 of the whole request tra�c), but a reduced amount

of cacheable object per Web site is retained into the RAM of the �rst cache node, thus not

favoring RAM hit on this cache node. On the other hand, we favor RAM hit on the second

cache node for the heavily loaded Web site, namely WS9.

Con�guration 3. All the ten Web sites WS0�WS9 are assigned to both the cache nodes. In this

case we get again balanced load, at the expense of RAM hit ratio on both the cache nodes

due to the larger number of Web sites hosted by each cache node.

For all the three con�gurations we consider the case of both dynamic and static RAM parti-

tioning among the Web sites hosted by the same cache node. In the case of static partitioning,

equal portions of the RAM capacity are assigned to the Web site hosted by a cache node.

The results are reported in Figures 3-5 (the \average request arrival rate per WS" on the x axis

represents ��). Each reported value is the worst case among the pair of cache nodes.

From the plots, the CPU is the bottleneck for Con�guration 1, while the disk is often the

bottleneck for the other two con�gurations, especially for small values of �. For con�guration 1,

the CPU is the bottleneck because of load imbalance between the pair of nodes, while in the other

con�gurations, better load balance is achieved. The throughput at which the disk saturation point

occurs in Con�gurations 2 and 3 increases with increasing values of � . This is because, in the

Zipf-like distribution, increasing � means higher skew of the object access pattern towards the most

popular objects, leading to higher hits in the RAM for higher values of �.

The latency at the proxy server is always under 10 milliseconds, except when system (CPU/disk)

saturation occurs. Also, the latency curves exhibit a minimum for intermediate values of the average

request arrival rate. This phenomenon is due to the e�ect of object updates. Speci�cally, for low

throughput, there is a higher likelihood of requests for stale objects than that for intermediate

workloads.

With respect to Con�guration 1 (see Figure 3), we recall that cache node disk load is due

exclusively to downloads of updated objects upon a staleness miss; this is because the cacheable

13

1000 2000 3000 4000 5000
average arrival rate per WS

0.0

0.5

1.0
ca

ch
e

no
de

 C
P

U
 u

til
iz

at
io

n
fa

ct
or

0 1000 2000 3000 4000 5000
average request arrival rate per WS

0.00

0.03

0.05

0.08

0.10

0.12

ca
ch

e
no

de
 d

is
k

ut
ili

za
tio

n
fa

ct
or

1000 2000 3000 4000 5000
average request arrival rate per WS

0.000

0.025

0.050

0.075

0.100

la
te

nc
y

(s
ec

on
ds

)

alpha 0.6 - dynamc RAM partitioning
alpha 0.6 - static RAM partitioning
alpha 1.0 - dynamic RAM partitioning
alpha 1.0 - static RAM partitioning
alpha 1.4 - dynamic RAM partitioning
alpha 1.4 - static RAM partitioning

LEGEND

Figure 3: Con�guration 1.

objects of the Web sites assigned to the cache nodes can all be maintained in the cache node RAM.

From the plots we get the disk utilization factor increases quickly and then tends to be stable. This

is because, at low throughput, requests are often to updated documents, which also need to be

written to disk; at higher rates, most requests of cacheable objects are hits in the RAM cache, and

the disk access rate stabilizes.

Overall, as expected, Con�guration 1, keeps low the RAM miss ratio, thus su�ering from no

overload on the cache node disk, at the expense of earlier CPU saturation due to unbalanced load

among the cache nodes. Con�guration 2, characterized by better load balance among the cache

nodes, su�ers from disk overload especially for low values of the the Zpif-like distribution parameter

� (i.e. in case of limited skew in the access pattern to the cacheable objects of a Web site). Such a

phenomenon is less evident for Con�guration 3, due to the balanced split of the requests for objects

of the same Web site among the two cache nodes.

As a last point, one drawback of Con�guration 2 is the need for cache node re-assignment when

signi�cant changes in the request arrival rate for one or more Web sites occur. To provide insight

into this issue, we report in Figure 6 plots related to the workload experienced by a Web site during

14

1000 2000 3000 4000 5000
average request arrival rate per WS

0.0

0.5

1.0
ca

ch
e

no
de

 C
P

U
 u

til
iz

at
io

n
fa

ct
or

1000 2000 3000 4000 5000
average request arrival rate per WS

0.0

0.5

1.0

ca
ch

e
no

de
 d

is
k

ut
ili

za
tio

n
fa

ct
or

1000 2000 3000 4000 5000
average arrival rate per WS

0.000

0.025

0.050

0.075

0.100

la
te

nc
y

(s
ec

on
ds

)

alpha 0.6 - dynamic RAM partitioning
alpha 0.6 - static RAM partitioning
alpha 1.0 - dynamic RAM partitioning
alpha 1.0 - static RAM partitioning
alpha 1.4 - dynamic RAM partitioning
alpha 1.4 - static RAM partitioning

LEGEND

Figure 4: Con�guration 2.

the cache node warm-up period for three di�erent values of the Zipf-like distribution parameter �.

These plots have been obtained for the case of access rate to the Web site of 10000 requests per

second considering that one of the two cache nodes in the pair is dynamically reassigned to that

Web site. These plots indicate that surges in tra�c to the home Web site occur during the warm-up

period of the newly introduced cache, and these surges persist for a signi�cant period. Often, the

home Web site is not con�gured to handle such a surge, and the length of the warm up period

would be longer, with disruption in the service. Thus, con�guration 2 is unacceptable, without a

solution to the cache warm-up problem. Possible solutions include pushing the cache content from

the existing data on the warm cache node, having the new cache fetch data on demand from the

�rst cache, or adding a hierarchy of caches.

4.2 CASE B

CASE B refers to 100 Web sites. For this case we also consider three di�erent con�gurations,

similar in nature to those previously discussed. The di�erence is that, this time, each pair of cache

15

1000 2000 3000 4000 5000
average request arrival rate per WS

0.0

0.5

1.0
ca

ch
e

no
de

 C
P

U
 u

til
iz

at
io

n
fa

ct
or

1000 2000 3000 4000 5000
average request arrival rate per WS

0.0

0.5

1.0

ca
ch

e
no

de
 d

is
k

ut
ili

za
tio

n
fa

ct
or

1000 2000 3000 4000 5000
average request arrival rate per WS

0.000

0.025

0.050

0.075

0.100

la
te

nc
y

(s
ec

on
ds

) alpha 0.6 - dynamic RAM partitioning
alpha 0.6 -static RAM partitioning
alpha 1.0 - dynamic RAM partitioning
alpha 1.0 - static RAM partitioning
alpha 1.4 - dynamic RAM partitioning
alpha 1.4 - static RAM partitioning

LEGEND

Figure 5: Con�guration 3.

nodes of each Proxy site host 20 Web sites, (WS0; : : : ;WS19), with di�erent relative request arrival

rates according to that shown in Table 3, and the three con�gurations are as follows:

Con�guration 1. WS0 �WS4 and WS10 �WS14 are assigned to the �rst node of the couple of

cache nodes, while WS5 �WS9 and WS15 �WS19 are assigned to the second one. Here we

again favor RAM hit against load balancing.

Con�guration 2. WS0 �WS8 and WS10 �WS18 are assigned to the �rst node of the couple

of cache nodes, while WS9 and WS19 are assigned to the second one (exclusive cache node

assignment). Here again we get balanced load with reduced RAM hit on the �rst of the two

cache nodes.

Con�guration 3. All the twenty Web sites WS0 �WS19 are assigned to both the cache nodes.

Here again we get balanced load, at the expense of RAM hit ratio on both the two cache

nodes.

16

0 20 40 60 80 100
warm-up period (seconds)

0

1000

2000

3000

4000

W
eb

 s
ite

 lo
ad

 d
ur

in
g

w
ar

m
in

g-
up alpha 0.6

alpha 1.0
alpha 1.4

Figure 6: Web Site Load (Requests per Second Due to Cache Node Miss) vs Warm-up Period.

Table 3: Load Distribution Among the 20 Web Sites.
WS0 WS1 WS2 WS3 WS4 WS5 WS6 WS7 WS8 WS9

1/48 1/48 1/48 2/48 2/48 1/48 1/48 1/48 2/48 12/48

WS10 WS11 WS12 WS13 WS14 WS15 WS16 WS17 WS18 WS19

1/48 1/48 1/48 2/48 2/48 1/48 1/48 1/48 2/48 12/48

This time we have �xed the parameter � at 1.0. From the plots in Figure 7 we observe that, even

though Con�guration 1 still exhibits the higher CPU utilization factor, it provides better latency

as compared to the other con�gurations. This is because, when each cache node serves more than

10 Web sites (which occurs for both con�gurations 2 and 3), disk overload becomes a more critical

factor. However, additional disks could be added per node to mitigate this e�ect.

Actually, Con�guration 3 performs worse than Con�guration 2 for dynamic RAM partitioning.

This is because in Con�guration 3 two Web sites with request rate values roughly an order of

magnitude higher than the other Web sites are assigned to both the cache nodes in the pair. As a

consequence, most of the objects from both these Web sites are retained into the cache node RAM

at the expense of reducing the amount of retained objects from the other Web sites. Instead, in

the case of static RAM partitioning, Con�guration 3 performs a little better than Con�guration 2

since, even if the requests for the two most accessed Web Sites generate a large load, they do not

push out the cache data for the other sites sharing that node.

5 Conclusions

In this paper we analyzed trade-o�s between di�erent design options for reverse proxy caches, and

provided an analytical model for quantitatively comparing these designs. Speci�cally, we examined

designs where reverse proxy caches are shared to support several Web sites. The alternatives include

17

500 1500 2500 3500 4500
average request arrival rate per WS

0.0

0.5

1.0
ca

ch
e

no
de

 C
P

U
 u

til
iz

at
io

n
fa

ct
or

500 1500 2500 3500 4500
average request arrival rate per WS

0.0

0.5

1.0

ca
ch

e
no

de
 d

is
k

ut
ili

za
tio

n
fa

ct
or

500 1500 2500 3500
average request arrival rate per WS

0.000

0.025

0.050

0.075

0.100

la
te

nc
y

(s
ec

on
ds

)

conf3 - dynamic RAM partitioning
conf3 - static RAM partitioning
conf1 - dynamic RAM partitioning
conf1 - static RAM partitioning
conf2 - dynamic RAM partitioning
conf2 - static RAM partitioning

LEGEND

Figure 7: Results for the 100 Web Sites Case.

partitioning the Web sites among the proxy nodes or sharing a subset of the proxy nodes among

multiple Web sites. Partitioning schemes include the balancing load of the proxy nodes by suitable

assignment of the Web sites to nodes, or random assignment of Web sites to proxy nodes. We also

examined static or dynamic partitioning of the RAM in each proxy node among the Web sites.

Finally, we examined the impact of transient behavior when a new node is introduced to handle a

surge in tra�c to a Web site.

From the analysis in Section 4, we can extrapolate the following conclusions:

Architectural alternatives (such as Con�guration 1), that try to minimize the miss ratio through

the assignment of the minimal number of Web sites to each cache node, have no problem with the

disk, but, in case of unbalanced load on the nodes, or surges in tra�c, their CPUs can quickly

saturate. These solutions work well when the load is well balanced among all the nodes and if the

majority of the cacheable objects are in the cache node RAM their performance is independent of

the Zipf-like distribution parameter �.

Architectural alternatives (such as Con�guration 2), that try to optimize the load balance

among the nodes by assigning each Web site to just one node per proxy server and maintaining

18

roughly the same aggregate load per proxy server, have good steady state performance; however,

this can lead to larger RAM miss rates especially when the Zipf-like distribution parameter � is

below a threshold, and consequently their disk access frequency becomes high and the disk can

quickly saturate. Another drawback of this alternative that it is unable to handle surges in Web

site tra�c, because the non-shared, static assignment of Web sites to proxy cache nodes leads to

overload of that proxy node. Furthermore, if an additional node is dynamically assigned to a Web

site detected to have a surge in tra�c, the cache warm-up of the new node can overload the home

Web site.

Cache node sharing alternatives (like Con�guration 3), that try to balance the load of the

node assigning each WS to more nodes, are a good compromise between the two previous kind of

alternatives. However, even in this case, because a larger number of Web sites now share the same

set of nodes than the other alternatives with partitioning, there is a higher RAM cache miss rate

and the disk often becomes the bottleneck. For this reason a number of disks, proportional to the

number of hosted Web sites, should be used in each cache node.

As this summary indicates, there is no clear "winner" among these approaches. The third

alternative, with sharing across multiple proxy nodes, is best when hot documents dominate. The

second option, with dynamic assignment of additional proxy nodes is good for both high and

moderate skew, but only if the cache warm-up problem is solved. Further work includes study of

hierarchical caching or other alternatives to reduce the tra�c to the home Web server during cache

warm up.

References

[1] http://www.akamai.com

[2] M. Arlitt, and T. Jin, "A Workload Characterization Study of the 1998 Wold Cup Web Site", IEEE

Network, May/June 2000, pp.30-37.

[3] L. Breslau, P. Cao, L. Fan, G. Phillipps, and S. Shenker, "Web Caching and Zipf-like Distributions:

Evidence and Implications", Proc. of IEEE INFOCOM, 1999.

[4] J. Challenger, A. Iyengar, and P. Dantzig, "A Scalable System for Consistently Caching Dynamic Web

Data", INFOCOM 1999.

[5] J. Challenger, A. Iyengar, and D. Dias, "High-PerformanceWeb Site Design Techniques", IEEE Internet

Computing, Vol.4, No. 2, March/April 2000.

[6] J. Challeger, A. Iyengar, P. Dantzig, D. Dias, and N. Mills, "Engineering Higly Accessed Web Sites for

Performance", Web Engineering 2001.

[7] P. Dantzig, Manager High Volume Web Serving of IBM T. J. Watson Research Center, personal comu-

nication.

[8] http://www.digisle.com

19

[9] Y. Fujita, M.Murata, and H. Miyahara, "Analysis of Web Server Performance Toward Modeling and

Performance Evaluation of Web Systems", Proc. of IEEE SICON, 1998.

[10] S. Gadde, J. Chase, and M. Rabinovich, "Web Caching and Content Distribution: A View From the

Interior", Computer Networks and ISDN Systems, Feb. 2001.

[11] http://www.inktomi.com

[12] K. Johnson, J. Carr, M. Day, and M. Kaashoek, "The Measured Performance of Content Distribution

Networks", International Web Caching and Content delivery Workshop, May 2000.

[13] D. Karger, E. Lehman, T. Leighton, M. Levin, D. Lewin, and R. Panigrahy, "Consistent Hashing and

Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web", Proc.

of ACM STOC, 1997.

[14] L. Kleinrock, "Queuing Systems", Volume I: Theory, John Wiley & Sons, 1975.

[15] E. Levy-Abegnoli, A. Iyengar, J. Song, and D. Dias, "Design and Performance of a Web Server Accel-

erator", Proc. of IEEE INFOCOM, 1999.

[16] http://www.netcache.com

[17] http://www.squid-cache.org

[18] http://www.novell.com

[19] F. Quaglia, B. Ciciani, and M. Colajanni, "An Analitical Comparison of Cooperation Protocols for

Web Proxy Servers", Proc. of IEEE MASCOTS, 1999.

[20] http://www.faqs.org/rfcs/rfc3040.html

[21] A. Riska, M. Squillante, S. Yu, Z. Liu, and L. Zhen, "Matrix-Anlytic Analysis of a MAP/PH/1 Queue

Fitted to Web Server Data", International Conference on Matrix Analytic Methods in Stochastic Mod-

els, July 2002.

[22] P. Rodriguez, C. Spanner, and E. W. Biersack, "Analysis of Web Caching Architectures: Hierarchical

and Distributed Caching", IEEE/ACM Transactions on Networking, Vol. 9, No. 4, Aug. 2001, pp.

404-418.

[23] D. Rosu, A. Iyengar, and D. Dias, "Web Proxy Accelerator", Cluster Computing (Baltzer) Vol. 4, No.

4, October 2001.

[24] L. San-qi, and C. Hwang, "On the Convergence of Tra�c Measurement and Queueing Analysis: A

Statistical-Matching and Queueing (SMAQ) Tool, IEEE/ACM Transactions on Networking, Vol. 5,

No. 4, Feb. 1997, pp. 95-110.

[25] J. Song, E. Levy-Abegnoli, A. Iyengar and D. Dias, "Architecture of a Web Server Accelerator",

Computer Networks, Vol. 38 , No. 1, January 2002.

[26] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. Levy, " On the Scale and Perfor-

mance of Cooperative Web Proxy Cahing", 17th ACM Symposium on Operating Systems Principles,

December 1999.

20

