
RC22480 (W0206-029) June 10, 2002
Computer Science

IBM Research Report

Personalizing Behavior in Context-Aware Workspaces

Sachiko Yoshihama, Paul B. Chou, Danny Wong
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Personalizing Behavior in Context-Aware Workspaces

Sachiko Yoshihama, Paul Chou, Danny Wong

IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
{sachiko, pchou, dcwong}@us.ibm.com

Abstract. It has become increasingly important to support agile organizations
with easily re-configurable work environments. This paper describes the on-
going work on a framework for personalizing the dynamic behavior of context-
aware workspaces. The framework promotes the development of futuristic
workspaces that support people's work practices in an unobtrusive, context-
aware, and personalized manner. The framework accommodates individual
preferences and organizational policies in a way that allows rapid and
impromptu customizations. There are several advantages to this, in particular,
the ability to represent users' preferences about their work environments
separately from the actual configurations of the physical spaces they occupy at
a given time, thus supporting emerging workplace needs such as hoteling and
impromptu group settings.

1 Introduction

The advent of pervasive computing technologies that allows employees to work from
anywhere at anytime and the continuous pressure for businesses to reduce cost have
prompted corporations to re-evaluate their workplace objectives and strategies [1]. In
addition to providing a place for individuals and teams to function, the ability to
dynamically tailor workspace's functions based on its usage has become more
desirable for the support of better space utilization and enhanced individual
satisfaction with the work.

Already digital technologies are integrated with the furniture and architectural
elements of the physical space, particularly in the areas of communication and
audio/video support [2][3]. We envision that workspaces will become increasingly
intelligent with the integration of additional technology elements such as smart
sensors, actuators, and displays. From a user's perspective, not only the workspace
supports her work in an unobtrusive [4][5], context-aware manner [6][7][8], but also
supports it in the way consistent to her preferences. No longer must the user be
bounded to a particular office in order to enjoy the familiar workspace experience, she
can be working in any available space yet still feels like at home.

This paper describes the work aimed at supporting dynamic behaviors of context-
aware workspaces as a part of an on-going office-of-the-future research project. Our
goal is to provide a framework that makes such workspaces easily programmable and
customizable. Towards this goal, the framework makes extensive use of common
programming metaphors that have made other programming environments, such as

2 Sachiko Yoshihama, Paul Chou, Danny Wong

graphical user interfaces, simple to program and to customize. The overall framework
is composed of two parts. The core is a context aggregation framework for expressing
the structure and condition of the workspace – essentially providing a model of the
context. The second is a behavior management framework , which facilitates the
interactive nature of the workspace. The behavior management framework builds
upon the data aggregation and dissemination capabilities of the context aggregation
framework.

2 Behavior in Context-Aware Workspaces

Behavior is an important characteristic of context-aware environments. A behavior
can be viewed as an action, response, or interaction that is carried out within a
particular context. Behaviors often involve the participation of human users, but may
also occur in a natural, unobtrusive background mode. Behaviors may occur for a
variety of reasons, for example, in relation to some physical stimulus, the satisfaction
of some condition, the arrival of a user, or for non-physical reasons such as the
expiration of a timer. The macroscopic behavior of a workspace is defined through
the aggregate effect of a collection of individual behaviors, as well as through the
interplay among individual behaviors. For example, a key aspect of the overall
configuration of a workspace is deciding which behavior should occur when the user
enters the workspace. The framework provides a systematic way of expressing and
managing preferences about the overall behavior of the context-aware workspace. The
framework also provides a way of associating particular behaviors with elements of
the workspace, in configuring which of them should provide a particular response.

There are several key design goals in managing behavior. First, behaviors must be
easily configurable and extendable. Secondly, the overall behavior of the space should
be treated as an aggregate of many individual behaviors; each of them is adaptable
and reusable. Finally, behaviors are not hard-wired to a particular space. The
behaviors must be dynamically reconfigured as the situation changes; e.g., as the
owner of the space changes.

3 The Context Aggregation Framework

The context aggregation framework provides a mechanism for modeling, describing,
and managing the state of the various entities in the physical environment, such as
people, spaces, services, and devices. The framework also allows the representation of
conceptual entities such as conditions, tasks, and intermediate concepts such as the
presence or absence of a user.

The context aggregation framework is an extension of several well-known
programming constructs. In particular, it extends a “blackboard” model [9] to support
a hierarchical representation of entities. In this model, the context of the workspace is
represented, essentially, as a tree. The nodes of the tree represent either physical or
conceptual elements of the workspace. Parent and ancestor nodes may represent
groupings or higher-levels of abstraction of the physical and conceptual elements. The

Personalizing Behavior in Context-Aware Workspaces 3

workspace
A

Active
Badge Desktop

owner=true|false
visitor=true|false

detected=id1, id2,...

Fig. 1. Example Workspace Hierarchy

Presence Display

Projector

blackboard mechanism provides a publish-subscription capability. Each node of the
tree may be addressed by a simple path expression. Data values may be published to
the nodes of the hierarchy. Interested application components may register themselves
as subscribers to a node. Subscribers subsequently received event notifications when
the condition of the data associated with the node changes, when the node is created
or removed, or when application-specific events are explicitly posted to the node.
Additionally, an event propagation mechanism allows an event to “bubble-up” from
the node it occurred toward the root of the tree. It allows subscribers to intercept and
handle events occurring in subordinate nodes in the hierarchy, thus allowing
subscription at a proper level of abstraction of the context.

Fig. 1 shows an example
hierarchy that represents a
workspace and contextual
information. In this case the
workspace is modeled as a
collection of two conceptual
entities, with the Presence node
representing the status of
occupancy, and the Display mode
representing display capabilities
within the workspace. Note that
the Presence node has two
properties associated with it,
indicating whether the presence
of the owner and/or a visitor have
been detected. Additionally, the

hierarchy includes nodes representing three specific devices, ActiveBadge
representing a radio frequency badge reader and Desktop and Projector representing a
desktop display device and a projection device respectively. Publishing values to
these nodes results in the display of the published value. The dynamic behavior
management capabilities of the system, described below, provide an automatic
mechanism for sequencing responses and interactions among these elements of the
workspace in a way that useful end-to-end behaviors are formed.

4 The Behavior Management Framework

Programmability of behavior is achieved through the use of application-defined
components known as agents. At its simplest level, an agent is an application
component that carries out its action by responding to events that occur at one or more
context nodes. An agent is activated upon an event being posted to that node, or upon
a datum being published to that node. The agent can then analyze information from
the posted event or published datum, may collect further information from data
associated with other context nodes, and execute commands that cause physical
actions within the environment. It may generate and post further events, or publish
data to other context nodes. This may, in turn, cause other agents to be activated.

4 Sachiko Yoshihama, Paul Chou, Danny Wong

4.1 Managing Behavior by Managing Agents

Proper behaviors are achieved by choosing, assigning, and configuring agents and
their relationship to particular nodes within the context aggregation framework. In the
example above, a simple behavior would be achieved by associating an HTML
renderer agent with the Desktop node in the context hierarchy. Whenever an HTML
datum is published to that node, the renderer agent is activated, causing the datum to
be interpreted and displayed in an HTML browser. Associating a different renderer
agent with the Desktop context element, for example, a voice browser, would result in
a different behavior, and a completely different experience, at the desktop. More
complex behaviors are achieved by arranging sequences or groupings of agents and
associating them with nodes of the workspace model.

Individual behaviors are defined through agent definitions, and are stored in a
preference repository. Agent definitions consist of several parts that describe the
agent’s basic nature, capabilities, and how it should interact with the context
hierarchy as well as with other agents. The basic elements of an agent definition
include: a unique agent identifier, a set of targets that contains the context nodes with
which the agent should be associated, an optional filter that may be specified to
discriminate among the posted events and published data arriving at a targeted context
node, and most importantly, the implementation of the action associated with the
agent.

4.2 Managing Aggregate Behaviors

A core component of the behavior management framework is the agent manager that
manages the aggregate behavior of the workspace. The agent manager provides a
clearly defined life cycle for agents as shown in Fig. 2. In its life cycle, an agent can
be in one of the 3 states: idle, ready or active. An instance of an agent is created using
the information in the agent implementation field of the agent definition. The agent is
initially placed in the idle state. Then the target field is evaluated to identify the
relevant context nodes. If all of the target nodes exist, the agent is attached to them as
an event listener and is placed in the ready state. An agent that is not attached to its
target nodes and awaiting subsequent attachment, remains in the idle state. When an
agent in the ready state is notified of the arrival of an event, it is placed into the active
state, in which it can proceed to take appropriate actions. Upon completion of its
action, it then returns to the ready state to wait for the next activation. When the agent

Ready Active

Agent
Manager

Instantiation

Termination

Events

End of Action

Agents
Definition

Attach

Detach

Idle

Fig. 2. Agent Life Cycle

Personalizing Behavior in Context-Aware Workspaces 5

is no longer needed, it is detached from what it is listening to, then terminated.
The agent manager observes particular types of events that may trigger life cycle

changes in agents. There are several key situations that are monitored. First, the agent
manager monitors the inventory of agent definitions. When an agent definition is
updated, the agent manager awaits the existing agent to exit from the active state,
terminates it and creates a new instance of the agent based on the updated agent
definition to adopt the new behavior. Second, the agent manager monitors the
structure of the context hierarchy and attaches or detaches the agents as the certain
context nodes are created or removed. The subscription mechanism provided by the
context aggregation framework makes this job easier, as the agent manager may
simply subscribe to the root node. When any change occurs anywhere in the
hierarchy, the agent manager is notified as the result of event propagation. Third, the
agent manager monitors ownership of the physical space. It instantiates appropriate
agents when a user is associated with (or gains the ownership of) the space. The agent
manager may terminate certain agents when the user is unassociated from (or releases
the ownership of) the space.

4.3 Managing Behavioral Preferences through Agent Selection

Behaviors are grouped according to whether they are general (or universal), whether
they belong to a particular user or a space. For example, universal behaviors are
generally expected to apply to all workspaces (e.g., to turn-on the light when
somebody is there), other user behaviors may signify individual overriding
preferences (e.g., to turn-on only the task light and not the ceiling lights). Similarly,
space behaviors may be expected to apply to a particular space. For example, pull-
down the window shade at 3:00 p.m. only if the space has windows facing the west.

The agent definitions are stored in a preference repository, which is logically
divided into 3 categories: universal, user, and space. Each user or space has an entry
in the repository, which contains agent definitions. As a situation requiring the change
of the behavior arises, such as a new owner of the space has been identified, the agent
manager composes the new behavior by selecting and initializing an appropriate set of
agents from the repository according to the identities of the user and space.

For example, in a simple approach, the agents defined in the different categories
with the same name may be regarded as the competing agents, thus, only one of them
will be selected for instantiation. First, the agent manager attempts to initialize each of
the universal agents, unless a space agent overrides the universal agent with the same
name. Similarly, a user agent may override the space agent with the same name. It is
possible to explicitly specify a flag in the universal or space agent definition, so that a
space or user agent cannot override it.

4.4 An Example of Programmable Behavior: Personalized Wallpaper

Let's use a simple wallpaper application to demonstrate how the context aggregation
and behavior management frameworks work together to support dynamic behaviors.
Again, let's assume the workspace is equipped with an active badge reader that

6 Sachiko Yoshihama, Paul Chou, Danny Wong

provides the presence information and two display devices: a desktop display and an
Everywhere Display projector (ED-projector) [10]. The wallpaper application
displays a graphical image on a wall using the projector or on the desktop display.
The choice of the image depends on the identity of the current owner of the space and
the status of occupancy. The owner may choose different pictures for different
occasions: a family portrait when she is alone, the view of Niagara Falls when a
visitor is present, and a smiley when she is away. The owner may also specify a
preferred location for displaying the image in different circumstances.

Figure 3 illustrates how personalized wallpaper application behavior can be
accomplished with the use of three agents. The Presence Aggregator Agent analyzes
the badge data reported by the ActiveBadge node and updates the properties of the
Presence node. The Wallpaper Agent listens to the events on the Presence node.
When the office owner arrives, the Wallpaper Agent sends a command to the display
service represented by the Display node to display his family portrait. Similarly when
a visitor drops in, the Wallpaper Agent issues another command to replace the picture
with the view of Niagara Falls. The Display Selector Agent, upon receiving a
command event from the Display node, forwards the incoming request to a suitable
display device currently available. Note that the Wallpaper Agent is defined in the
"user" category and the Display Selector Agent is in the "space" category.

When the workspace is assigned to a new owner, the agent manager terminates the
existing instance of the Wallpaper Agent and creates a new instance of the Wallpaper
Agent based on the new owner's preference stored in the preference repository. When
the previous owner moves into a different office, the wallpaper application employs a
different Display Selection Agent specific to new office, tailored to the display
devices that are available in there.

Presence
Aggregator

Agent Display
Selector
 Agent

Wallpaper
Agent

Fig. 3. Wallpaper Application

workspace
A

Active
Badge Desktop

owner=true|false
visitor=true|false

detected=id1, id2,...

Presence Display

ED

Personalizing Behavior in Context-Aware Workspaces 7

5 Current Implementation

The context aggregation and the behavior management frameworks are being tested to
support the BlueSpace prototype [11] in a hoteling [12] environment. The workspace
incorporates a set of sensors for measuring environment conditions such as ambient
lighting, temperature, humidity, and noise level. It employs an active badge reader
and a seating sensor for detecting occupant presence and position (i.e. sitting vs.
standing). Lighting (both ceiling and task lights), local temperature, and airflow of the
workspace can be digitally controlled. In addition, the workspace is equipped with an
office-front display for showing the office owner's information and status to people
walking by. Two flat-panel displays are installed on the desktop with one used as a
peripheral display designed to provide easy control of the devices and quick access to
frequently accessed information. The space also provides an ED-projector capable of
projecting content onto various surfaces in the space. Currently a set of application
behaviors can be personalized in BlueSpace, including the situation triggered
environment adjustment, alert delivery, wallpaper display, and status sharing. The
reader is referred to [11] for a more detailed description of these behaviors.

The overall framework is written in Java and packaged as an OSGi [13] bundle.
Device drivers, services, and applications are installed as separate bundles. The OSGi
framework allows us to dynamically change the system configuration through
dynamic installation and update of bundles.

Remote access to the context aggregation framework is provided by a set of API's
exposed through SOAP/HTTP. Remote processes can subscribe, query, and update
property values or post data into the context hierarchy. They can also initiate structure
changes to the hierarchy such as adding a node that represents a new device service
available to the environment.

Presently, three types of agent implementation are supported. The developer may
choose to use a simple XML-based scripting language or the familiar JavaScript for
implementing simple agents. Or, she may choose to write in Java to implement more
complicate actions. The Java-based implementations can be packaged as additional
OSGi bundles. The agent instantiation mechanism for each type of implementation is
pluggable, allowing easy incorporation of additional types.

6 Conclusions and Future Work

The context aggregation and behavior management framework described in this paper
represents an attempt to provide a consistent and scaleable treatment for developing,
deploying, and personalizing context-aware workspaces. The framework provides a
simply yet powerful mechanism for representing, aggregating and disseminating
contextual information with a hierarchical model. It also provides the support of
customizable and re-configurable behaviors by employing a programming model that
promotes composition and adaptability. The support of the BlueSpace applications
suggests that the framework is capable of supporting rich, composite behaviors.

Much work remains, however. The subject of identifying and resolving conflicts
among agents competing for the control of the same resources deserves a thorough

8 Sachiko Yoshihama, Paul Chou, Danny Wong

treatment. It is also interesting to extend the framework to treat behaviors as first-
class entities that can be composed, selected, instantiated, and terminated. Another
interesting topic for further exploration is the support of fine-grain access control of
the entities in the hierarchical model to accommodate privacy and confidentiality
considerations. Lastly, it is important to address the need of supporting mobile
devices in light of the emerging web services architecture.

Acknowledgments

We would like to thank other members of the BlueSpace team: Scott McFaddin,
Anthony Levas, Marco Gruteser, Jennifer Lai, Mark Podlaseck, Claudio Pinhanez,
and Marisa Viveros. Their contributions and creative minds made this work possible.
We would also like to acknowledge our partners from Steelcase: Joe Branc, Joel
Stanfield, Charlie Forslund, Mark Baloga, and Jason Heredia for sharing their
workspace knowledge and contributions to the BlueSpace prototype design.

References

1. Budd, C.. The Office: 1950 to the Present. In Workspheres: Design and Contemporary
Work Styles, P. Antonelli (ed.). The Museum of Modern Art, New York, New York, NY.
pp. 26-35, 2001.

2. Raskar, R., G. Welch, M. Cutts, A. Lake, and L. Stesin, and H. Fuchs. The Office of the
Future: A Unified Approach to Image-Based Modeling and Spatially Immersive Displays.
SIGGRAPH 1998.

3. Fox, A., B. Johanson, P. Hanrahan, and T. Winograd. Integrating Information Appliances
into an Interactive Workspace. IEEE Computer Graphics and Applications, pp 54-65,
May/June 2000.

4. Roman, M., C. Hess, A. Ranganathan, P. Madhavarapu, B. Borthakur, P. Viswanathan, R.
Cerqueira, R. Campbell, and M. D. Mickunas. "GaiaOS: An Infrastructure for Active
Spaces," UIUCDCS-R-2001-2224, University of Illinois at Urbana-Champaign, 2001.

5. Weiser, M. . The computer for the 21st Century. Scientific American 265(3): 66-75, 1991.
6. Schilit, B. N., Adams, N., Want, R. Context-Aware Computing Applications. IEEE

Workshop on Mobile Computing Systems and Applications, 1994.
7. Salber, D., A. K. Dey, Abowd, G.D.. The Context Toolkit: Aiding the Development of

Context-Enabled Applications. Proceedings of CHI’99, pp 434 - 441, 1999.
8. Dey, A.K.. Understanding and Using Context, to appear in Personal and Ubiquitous

Computing, Vol. 5, 2001.
9. Lehman, T. J., Stephen W. McLaughry, and Peter Wyckoff. T Spaces: The Next Wave.

Hawaii International Conference on System Sciences (HICSS-32), 1999.
10. Pinhanez, C.. The Everywhere Displays Projector. Ubicomp 2001, pp. 315-331, 2001.
11. Chou, P., M. Gruteser, J. Lai, A. Levas, S. McFaddin, C. Pinhanez, and M. Viveros.

BlueSpace: Creating a Personalized and Context-Aware Workspace. IBM Research
Technical Report RC 22281, 2001.

12. Steelcase Inc.. Alternative Officing Strategies. Grand Rapids, MI. 2000.
13. Open Services Gateway Initiative. OSGi Service Platform. http://www.osgi.org. 2001.

