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Abstract

The clustering problem concerns the discovery of homogeneous groups of data

according to a certain similarity measure. Clustering su�ers from the curse of di-

mensionality. It is not meaningful to look for clusters in high dimensional spaces as

the average density of points anywhere in input space is likely to be low. As a con-

sequence, distance functions that equally use all input features may be ine�ective.

We introduce an algorithm that discovers clusters in subspaces spanned by di�erent

combinations of dimensions via local weightings of features. This approach avoids

the risk of loss of information encountered in global dimensionality reduction tech-

niques. Our method associates to each cluster a weight vector, whose values give

information of the degree of relevance of features for each set in the partition. We

formally prove that our algorithm converges, and experimentally demonstrate the

gain in perfomance we achieve with our method.

1 Introduction

The clustering problem concerns the discovery of homogeneous groups of data according to a

certain similarity measure. It has been studied extensively in statistics [3], machine learning

[6, 11], and database communities [12, 8, 14].
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Given a set of multi-dimensional data, (partitional) clustering �nds a partition of the points

into clusters such that the points within a cluster are more similar to each other than to points

in di�erent clusters. The popularK-means or K-medoids methods compute one representative

point per cluster, and assign each object to the cluster with the closest representative, so that

the sum of the squared di�erences between the objects and their representatives is minimized.

Finding a set of representative vectors for clouds of multi-dimensional data is an important

issue in data compression, signal coding, pattern classi�cation, and function approximation

tasks.

Clustering su�ers from the curse of dimensionality problem in high dimensional spaces. In

high dimensional spaces, it is highly likely that, for any given pair of points within the same

cluster, there exist at least a few dimensions on which the points are far apart from each other.

It is not meaningful to look for clusters in such a high dimensional space as the average density

of points anywhere in input space is likely to be low. As a consequence, distance functions

that equally use all input features may be ine�ective.

Furthermore, several clusters may exist in di�erent subspaces, comprised of di�erent com-

binations of features. In many real world problems, in fact, some points are correlated with

respect to a given set of dimensions, and others are correlated with respect to di�erent dimen-

sions. Each dimension could be relevant to at least one of the clusters.

The problem of high dimensionality could be addressed by requiring the user to specify

a subspace (i.e., subset of dimensions) for cluster analysis. However, the identi�cation of

subspaces by the user is an error-prone process. More importantly, correlations that identify

clusters in the data are likely not to be known by the user. Indeed, we desire such correlations,

and induced subspaces, to be part of the �ndings of the clustering process itself.

An alternative solution to high dimensional settings consists in reducing the dimensional-

ity of the input space. Traditional feature selection algorithms select certain dimensions in

advance. Methods such as Principal Component Analysis (PCA) (or Karhunen-Loeve transfor-

mation) [7, 9] transform the original input space into a lower dimensional space by constructing

dimensions that are linear combinations of the given features, and are ordered by nonincreasing

variance. While PCA may succeed in reducing the dimensionality, it has major drawbacks.

The new dimensions can be di�cult to interpret, making it hard to understand clusters in

relation to the original space. Furthermore, all global dimensionality reduction techniques
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Figure 1: (Left) Clusters in original input space. (Right) Clusters transformed by local weights.

(like PCA) are not e�ective in identifying clusters that may exist in di�erent subspaces. In

this situation, in fact, since data across clusters manifest di�erent correlations with features,

it may not always be feasible to prune o� too many dimensions without incurring a loss of

crucial information. This is because each dimension could be relevant to at least one of the

clusters.

These limitations of global dimensionality reduction techniques suggest that, to capture the

local correlations of data, a proper feature selection procedure should operate locally in input

space. Local feature selection allows to embed di�erent distance measures in di�erent regions

of the input space; such distance metrics reect local correlations of data. In this paper we

propose a soft feature selection procedure that assigns (local) weights to features according

to the local correlations of data along each dimension. Dimensions along which data are

loosely correlated receive a small weight, that has the e�ect of elongating distances along that

dimension. Features along which data are strongly correlated receive a large weight, that has

the e�ect of constricting distances along that dimension. Figure 1 gives a simple example. The

left plot depicts two clusters of data elongated along the x and y dimensions. The right plot

shows the same clusters, where within-cluster distances between points are computed using the

respective local weights generated by our algorithm (GenProClus). The weight values reect

local correlations of data, and reshape each cluster as a dense spherical cloud. This directional

local reshaping of distances better separates clusters, and allows for the discover of di�erent

patterns in di�erent subspaces of the original input space.

3



1.1 Our Contribution

The contributions of this paper are as follows:

1. We formalize the problem of �nding di�erent clusters in di�erent subspaces. Our algo-

rithm discovers clusters in subspaces spanned by di�erent combinations of dimensions

via local weightings of features. This approach avoids the risk of loss of information

encountered in global dimensionality reduction techniques.

2. The output of our algorithm is twofold. It provides a partition of the data, so that the

points in each set of the partition constitute a cluster. In addition, each set is associated

with a weight vector, whose values give information of the degree of relevance of features

for each partition.

3. We formally prove that our algorithm converges to a local minimum of the associated

error function, and experimentally demonstrate the gain in perfomance we achieve with

our method.

2 Related Work

Local dimensionality reduction approaches for the purpose of e�ciently indexing high dimen-

sional spaces have been recently discussed in the database literature [10, 5, 13]. Applying

global dimensionality reduction techniques when data are not globally correlated can cause

signi�cant loss of distance information, resulting in a large number of false positives and hence

a high query cost. The general approach adopted by the authors is to �nd local correlations in

the data, and perform dimensionality reduction on the locally correlated clusters individually.

For example, in [5], the authors �rst construct spacial clusters in the original input space using

a simple tecnique that resembles K-means. Principal component analysis is then performed

on each spatial cluster individually to obtain the principal components.

In general, the e�cacy of these methods depends on how the clustering problem is addressed

in the �rst place in the original feature space. A potential serious problem with such techniques

is the lack of data to locally perform PCA on each cluster to derive the principal components.

Moreover, for clustering purposes, the new dimensions may be di�cult to interpret, making it
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hard to understand clusters in relation to the original space.

The problem of �nding di�erent clusters in di�erent subspaces of the original input space

has been addressed in [2]. The authors use a density based approach to identify clusters. The

algorithm (CLIQUE) proceeds from lower to higher dimensionality subspaces and discovers

dense regions in each subspace. To approximate the density of the points, the input space

is partitioned into cells by dividing each dimension into the same number � of equal length

intervals. For a given set of dimensions, the cross product of the corresponding intervals (one

for each dimension in the set) is called a unit in the respective subspace. A unit is dense if

the number of points it contains is above a given threshold � . Both � and � are parameters

de�ned by the user. The algorithm �nds all dense units in each k-dimensional subspace by

building from the dense units of (k � 1)-dimensional subspaces, and then connects them to

describe the clusters as union of maximal rectangles.

While the work in [2] successfully introduces a methodology for looking at di�erent subspaces

for di�erent clusters, it does not compute a partitioning of the data into disjoint groups. The

reported dense regions largely overlap, since for a given dense region all its projections on

lower dimensionality subspaces are also dense, and they all get reported. On the other hand,

for many applications such as customer segmentation and trend analysis, a partition of the

data is desirable since it provides a clear interpretability of the results.

The problem of �nding di�erent clusters in di�erent subspaces is also addressed in [1]. The

proposed algorithm (PROjected CLUStering) seeks subsets of dimensions such that the points

are closely clustered in the corresponding spanned subspaces. Both the number of clusters

and the average number of dimensions per cluster are user-de�ned parameters. PROCLUS

starts with choosing a random set of medoids, and then progressively improves the quality of

medoids by performing an iterative hill climbing procedure that discards the 'bad' medoids

from the current set. In order to �nd the set of dimensions that matter the most for each

cluster, the algorithm selects the dimensions along which the points have the smallest average

distance from the current medoid. The authors do not prove that the algorithm converges to

the optimality criterion they choose.

Our method (that we call GENeralized PROjected CLUStering) can be seen as a generaliza-

tion of PROCLUS. Our method does not require to specify the average number of dimensions

to be kept per cluster. For each cluster, in fact, all features are taken into consideration,
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but properly weighted. The PROCLUS algorithm is more prone to loss of information if the

number of dimensions is not properly chosen. For example, if data of two clusters in two

dimensions are distributed as in Figure 2, PROCLUS may �nd that feature x is the most

important for cluster 0, and feature y is the most important for cluster 1. But projecting

cluster 1 along the y dimension doesn't allow to properly separate points of the two clusters.

We avoid this problem by keeping both dimensions for both clusters, and properly weighting

distances along each feature within each cluster.

3 Problem Statement

We de�ne what we call weighted cluster. Consider a set of points in some space of dimension-

ality N . A weighted cluster C is a subset of data points, together with a vector of weights

w = (w1; : : : ; wN ), such that the points in C are closely clustered according to the L2 norm

distance weighted using w. The component wj measures the degree of correlation of points in

C along feature j. The problem becomes now how to estimate the weight vector w for each

cluster in the data set.

In this setting, the concept of cluster is not based only on points, but also involves a weighted

distance metric, i.e., clusters are been discovered in spaces transformed by w. Each cluster

is associated with its own w, that reects the correlation of points in the cluster itself. The

e�ect of w is to transform distances so that the associated cluster is reshaped into a dense

hypersphere of points separated from other data.

In traditional clustering, the partition of a set of points is induced by a set of representative

vectors, also called centroids or centers. The partition induced by discovering weighted clusters

is formally de�ned as follows.

De�nition: Given a set S of D points x in N -dimensional Euclidean space, a set of k cen-

ters fc1; : : : ; ckg, cj 2 <N , j = 1; : : : ; k, coupled with a set of corresponding weight vectors

fw1; : : : ;wkg, wj 2 <N , j = 1; : : : ; k, partition S into k sets fS1; : : : ; Skg:

Sj = fxj(
NX

i=1

wji(xi � cji)
2)1=2 < (

NX

i=1

wli(xi � cli)
2)1=2; l 6= jg (1)

The set of centers and weights is optimal with respect to the Euclidean norm, if they
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minimize the error measure:

E1(C;W ) =
kX

j=1

NX

i=1

wjie
(Xj�Xji) (2)

subject to the constraints
PN

i=1 w
2
ji = 1 8j. C and W are (N � k) matrices whose column

vectors are cj and wj respectively, i.e. C = [c1 : : : ck] and W = [w1 : : :wk]. Xj and Xji are

de�ned as follows: Xj =
1

jSj j
(maxl(

P
x2Sj (cjl � xl)

2)) and Xji =
1

jSj j
(
P

x2Sj (cji � xi)
2). Xji

represents the average distance from the centroid cj of points in cluster j along dimension i,

and Xj is the largest of such average distances 8i.

The minimization of the error function E1 as de�ned in (2) has a speci�c geometric in-

terpretation. The optimal solution aims to minimize, for each cluster, the (exponential of

the) discrepancy between the largest spread (Xj) of data along each dimension, and each of

such spreads (Xji). As a result, in the space transformed by optimal weights, the correspond-

ing cluster has the shape of a hypersphere well separated from other data. The exponential

function in (2) has the e�ect of making the weights wji more sensitive to the discrepancy

(Xj � Xji), and therefore to changes in local feature relevance. As a consequence, clusters

are better separated in the transformed spaces, and large performance improvements can be

achieved as also demonstrated with our experimental results.

In the following we present an algorithm that �nds a solution (set of centers and weights)

that is a local minimum of the error function (2).

4 Generalized Projected Clustering Algorithm

We start with well-scattered points in D as the k centroids [1], and initially set the weights'

values to 1. We progressively improve the quality of the centroids and of the weights by

investigating the space near the centers, in order to estimate the dimensions that matter the

most, i.e. the dimensions along which local data are mostly correlated. Speci�cally, we proceed

as follows.

Given the initial centroids cj , for j = 1; : : : ; k, we compute the corresponding sets Sj as

de�ned in (1), where wji = 1 8j and 8i. We then compute the average distance along each

dimension from the points in Sj to cj . Let Xji denote this average distance along dimension
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i, and let Xj the largest average distance among the N dimensions for cluster j. The smaller

Xji is, the larger is the correlation of points along dimension i. Thus, the di�erence Xj �Xji

gives us a value that is proportional to the amount of correlation of points along feature i. Let

X 0
ji = Xj �Xji. We use the value X 0

ji in an exponential weighting scheme to credit weights

to features (and to clusters):

wji = exp(h�X 0
ji)=(

NX

l=1

(exp(h � 2�X 0
jl)))

1=2 (3)

where h is a parameter that can be chosen to maximize (minimize) the inuence of X 0
ji on

wji. When h = 0 we have wji = 1=N , thereby ignoring any di�erence between the X 0
ji.

On the other hand, when h is large a change in X 0
ji will be exponentially reected in wji.

We empirically determine the value of h through cross-validation in our experiments. The

exponential weighting is more sensitive to changes in local feature relevance [4] and gives rise

to better performance improvement. In fact, it is more stable because it prevents distances

from extending in�netely in any direction, i.e., zero weight. This, however, can occur when

either linear or quadratic weighting is used.

These weights wji enable to elongate distances along less important dimensions, i.e. dimen-

sions along which points are loosely correlated, and, at the same time, to constrict distances

along the most inuential ones, i.e. features along which points are strongly correlated. Note

that the technique is centroid-based because weightings depend on the centroid.

The computed weights are used to update the sets Sj , and therefore the centroids' coor-

dinates. The procedure is iterated until convergence is reached, i.e. no change in centers'

coordinates is observed.

The resulting algorithm, that we call GenProClus, is summarized in the following.

Input: Set D of points x 2 RN , and the number of clusters k.

1. Start with k initial centroids c1; c2; : : : ; ck;

2. Set wji = 1, for each centroid cj , j = 1; : : : ; k and each feature i = 1; : : : ; N ;

3. For each centroid cj , j = 1; : : : ; k, and for each data point x:

� Set Sj = fxjj = argminlWDist(cl;x)g,

where WDist(cl;x) = (
PN

i=1 wli(cli � xi)
2)1=2;
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4. Compute new weights. For each centroid cj , j = 1; : : : ; k, and for each feature i:

� SetXji =
P

x2Sj (cji�xi)
2=jSj j, where jSjj is the cardinality of set Sj (Xji represents

the average distance of points in Sj from cj along feature i);

� Set Xj = maxiXji;

� Set X 0
ji = Xj �Xji;

� Set wji = exp(h�X 0
ji)=
PN

l=1(exp(h � 2�X 0
jl))

1=2;

5. For each centroid cj , j = 1; : : : ; k, and for each data point x:

� Recompute Sj = fxjj = argminlWDist(cl;x)g;

6. Compute new centroids. Set cj =

P
x

x1Sj (x)P
x

1Sj (x)
, for each j = 1; : : : ; k, where 1S(:) is

the indicator function of set S;

7. Iterate 3,4,5 until convergence (i.e., no change in centroids' coordinates)

5 Convergence of the GenProClus Algorithm

To formally prove convergence of the GenProClus algorithm we need an error function that is

di�erentiable with respect to both wji and cji. We observe that the error measure in (2), while

sound in theory, is not di�erentiable due to the de�nition of Xj in terms of a max function. We

solve this problem by substituting Xj with a value X that measures the largest spread of the

projections of data in any dimensions. We observe that X is constant given the data set, and

therefore does not depend on wji or cji. X provides an upper bound for all Xj , j = 1; : : : ; k.

Thus, the resulting error function obeys the same principle that motivates the original error

measure (2).

The resulting error function to be considered is:

E2(C;W ) =
kX

j=1

NX

i=1

wjie
(X�Xji) (4)

where X = 1
D (maxl(

P
x2S(ml � xl)

2)), m = 1
D

P
x2S x, and Xji is de�ned as before. Our

objective becomes the minimization of (4) subject to the constraints
P

iwji
2 = 1 8j. We can

9



solve this constrained optimization problem by introducing the Lagrange multipliers �j (one

for each constraint), and minimizing the resulting (unconstrained now) error function

E(C;W ) =
kX

j=1

NX

i=1

wjie
(X�Xji) +

kX

j=1

�j(1�
NX

i=1

w2
ji) (5)

We prove the following theorem.

Theorem. The GenProClus algorithm converges to a local minimum of the error function

(5).

Proof. For �xed cji and xi, we compute the optimal wji by setting @E
@wji

= 0 and @E
@�j

= 0. We

obtain:

@E

@wji
= eX�Xji � 2�jwji = 0 (6)

@E

@�j
= 1�

NX

i=1

w2
ji = 0 (7)

Solving equation (6) with respect to wji we obtain wji =
eX�Xji

2�j
. Substituting this expression

in equation (7), and solving with respect to �j we obtain �j =
1
2(
PN

i=1 e
2(X�Xji))1=2. Thus,

the optimal wji is

wji =
eX�Xji

(
PN

l=1 e
2(X�Xjl))1=2

as in step 4 of the GenProClus algorithm.

For �xed j and wji, we compute the optimal cji by setting @E
@cji

= 0. We obtain:

@E

@cji
= wjie

(X�Xji)(�
2

jSj j

X

x2Sj

(cji � xi)) = 0 (8)

Solving equation (8) with respect to cji we obtain:

cji =
1

jSjj

X

x2Sj

xi

as in step 6 of the GenProClus algorithm.

This shows that at each iteration the GenProClus algorithm computes the optimal wjis and

cjis for the given partition of data. Thus at each iteration points are re-distributed among
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clusters according to the optimal wjis and cjis. Therefore the value of E decreases after each

iteration, and the algorithm converges in a �nite number of steps to a local minimum of E.

6 Experimental Evaluation

In our experiments we have designed six di�erent simulated data sets. Clusters are distributed

according to multivariate gaussians with di�erent mean and standard deviation vectors. We

have tested problems with two and three clusters up to ten dimensions. For each problem,

we have generated 10 training data sets, and for each of them an independent test set. In

the following we report performance results obtained via 10-fold cross-validation comparing

GenProClus and K-means algorithms. The k centroids for both algorithms are initialized

by choosing well-scattered points among the given data. To facilitate the interpretation of

weight values, we require that
P

iwji = 1 8j in our experiments, by properly adjusting the

normalization factor of the weighting scheme (3).

6.1 The Problems

1. Example1. This data set consists of n = 2 attributes and J = 2 clusters. Data for

one cluster are generated from a multivariate normal distribution with mean vector (1; 1) and

standard deviations (1; 4). Data for the other cluster are generated from a normal distribution

with mean vector (10; 3) and standard deviations (4; 1). Figure 2 shows the distributions of

data for the two clusters. Average results obtained over 10 independent training and testing

sets of size 2000 each are shown in Table 1.

2. Example2. This data set consists of n = 3 attributes and J = 2 clusters. One cluster

is drawn from a multivariate normal distribution with mean vector (1; 1; 1), and standard

deviations (1; 4; 1). The second cluster is drawn again form a multivariate normal distribution

with mean vector (5; 5; 1), and standard deviations (1; 1; 4). Average results obtained over 10

independent training and testing sets of size 2000 each are shown in Table 1.

3. Example3. The data set consists of n = 3 input features and J = 2 clusters. Both clusters

are distributed according to multivariate gaussians. Mean vector and standard deviations for

one cluster are (1; 1; 1) are (1; 4; 1) respectively. For the other cluster the vectors are (3; 1; 1)
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and (1; 1; 4). Figures 3-4 shows the two clusters projected in x � y, x � z, and y � z spaces

respectively. Table 1 shows the results for this problem. We generated 40000 data points, and

performed 10-fold cross-validation with 20000 training data and 20000 testing data.

4. Example4. The data set consists of n = 5 input features and J = 2 clusters. Both clusters

are distributed according to multivariate gaussians. Mean vector and standard deviations for

one cluster are (1; 1; 1; 1; 1) and (1; 4; 1; 4; 1) respectively. For the other cluster the vectors are

(5; 1; 1; 1; 1) and (4; 1; 1; 1; 4). Table 1 shows the results for this problem. We generated 40000

data points, and performed 10-fold cross-validation with 20000 training data and 20000 testing

data.

5. Example5. The data set consists of n = 2 input features and J = 3 clusters. All

three clusters are distributed according to multivariate gaussians. Mean vector and standard

deviations for one cluster are (2; 0) are (4; 1) respectively. For the second cluster the vectors

are (10; 0) and (1; 4), and for the third are (18; 0) and (4; 1). Table 1 shows the results for this

problem. We generated 60000 data points, and performed 10-fold cross-validation with 30000

training data and 30000 testing data.

6. Example6. The data set consists of n = 10 input features and J = 2 clusters. Both clusters

are distributed according to multivariate gaussians. Mean vector and standard deviations for

one cluster are (1; : : : ; 1) and (1; 5; 1; 5; 1; 5; 1; 5; 1; 5) respectively. For the other cluster the

vectors are (5; 1; : : : ; 1) and (5; 1; 5; 1; 5; 1; 5; 1; 5; 1). Table 1 shows the results for this problem.

We generated 40000 data points, and performed 10-fold cross-validation with 20000 training

data and 20000 testing data.

Table 1: Average error rates.

Ex1 Ex2 Ex3 Ex4 Ex5 Ex6

GenProClus 2.7 0.9 7.0 4.8 11.4 0.1

K-Means 11.9 7.2 19.2 35.1 24.2 42.2
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Table 2: Average number of iterations.

Ex1 Ex2 Ex3 Ex4 Ex5 Ex6

GenProClus 5.3 3.9 6.1 5.4 7.2 3.1

K-Means 16.1 10.7 28.5 33.8 16.8 32.7
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Figure 2: Example1: Distributions of clusters.

Table 3: GenProClus: Confusion matrix for Example1.

C0 (input) C1 (input)

C0 (output) 9917 464

C1 (output) 83 9536

Table 4: Kmeans: Confusion matrix for Example1.

C0 (input) C1 (input)

C0 (output) 8364 737

C1 (output) 1636 9263
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Table 5: GenProClus: Weight values for Example1.

Cluster Std1 Std2 w1 w2

C0 1 4 0.999 0.001

C1 4 1 0.045 0.955

Table 6: GenProClus: Confusion matrix for Example2.

C0 (input) C1 (input)

C0 (output) 9895 72

C1 (output) 105 9928

6.1.1 Results

The performance results reported in Table 1 clearly demonstrate the large gain in performance

obtained by the GenProClus algorithm against K-means. In particular, the large error rate of

K-means (42.2) for the 10 dimensional data set (Example 6) shows how ine�ective a distance

function that equally use all input features can be in moderately high dimensional spaces. The

gain in performance achieved by locally weighting features is huge in this case.

Table 2 shows the average number of iterations performed by each algorithm to achieve

convergence. For each problem, the rate of convergence of GenProClus is at least three times

faster (except for problem 5 where is 2.3 times faster); for problem 6 is 10 times faster.

To further test the accuracy of the algorithms, for each problem we have computed the

Table 7: Kmeans: Confusion matrix for Example2.

C0 (input) C1 (input)

C0 (output) 8578 25

C1 (output) 1422 9975
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Table 8: GenProClus: Weight values for Example2.

Cluster Std1 Std2 Std3 w1 w2 w3

C0 1 4 1 0.40 0.02 0.58

C1 1 1 4 0.33 0.66 0.01
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Figure 3: Example3: (Left) Distributions of clusters in x-y space. (Right) Distributions of

clusters in x-z space.

confusion matrices. The entry (i; j) in each confusion matrix is equal to the number of points

assigned to output cluster i, that were generated as part of input cluster j. We also report

the average weight values per cluster obtained over the 10 run conducted in our experiements.

Results are reported in Tables 3-20.

Tables 5,8,11,14,17 and 20 show that there is a perfect correspondence between the weight

values of each cluster and the correlation patterns of data within the same cluster. This is of

great importance for applications that require not only a good partitioning of data, but also

information to what features are relevant for each partition. Figures 3 and 4 show the data

distributions of the two clusters of Example 3 projected in the x� y, x� z, and y� z planes,

respectively. We observe that data of cluster 0 are closely correlated in the subspace x � z,

whereas data of cluster 1 are closely correlated in the subspace x � y. Table 11 shows that

the resulting weight values reect such local correlations, i.e., larger weights w1 and w3 are

credited to cluster 0, and larger weights w1 and w2 are credited to cluster 1.
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Figure 4: Example3: Distributions of clusters in y-z space.

Table 9: GenProClus: Confusion matrix for Example3.

C0 (input) C1 (input)

C0 (output) 9313 705

C1 (output) 687 9295

As expected, the resulting weight values for one cluster depends on the con�gurations of

other clusters as well. If clusters have the same standard deviation along one dimension i, they

receive almost identical weights for measuring distances along that feature. This is informative

of the fact that feature i is equally relevant for both partitions. On the other hand, weight

values are largely di�erentiated when two clusters have di�erent standard deviation values

along the same dimension i, implying di�erent degree of relevance of feature i for the two

partitions (see for example Tables 11, 14, and 17).
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Table 10: Kmeans: Confusion matrix for Example3.

C0 (input) C1 (input)

C0 (output) 7786 1629

C1 (output) 2214 8371

Table 11: GenProClus: Weight values for Example3.

Cluster Std1 Std2 Std3 w1 w2 w3

C0 1 4 1 0.22 0.01 0.77

C1 1 1 4 0.21 0.78 0.01

7 Conclusions

We have introduced an algorithm to discover clusters in subspaces spanned by di�erent com-

binations of dimensions via local weightings of features. This approach avoids the risk of loss

of information encountered in global dimensionality reduction techniques. Our experiments

show that there is a perfect correspondence between the weight values of each cluster and lo-

cal correlations of data. We formally prove that our algorithm converges, and experimentally

demonstrate the gain in perfomance we achieve with our method. We plan to conduct more

extensive experiments using real data and comparisons with other algorithms in our future

work.

Table 12: GenProClus: Confusion matrix for Example4.

C0 (input) C1 (input)

C0 (output) 9688 654

C1 (output) 312 9346
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Table 13: Kmeans: Confusion matrix for Example4.

C0 (input) C1 (input)

C0 (output) 7249 4265

C1 (output) 2751 5735

Table 14: GenProClus: Weight values for Example4.

Cluster Std1 Std2 Std3 Std4 Std5 w1 w2 w3 w4 w5

C0 1 4 1 4 1 0.49 0.02 0.05 0.02 0.42

C1 4 1 1 1 4 0.04 0.45 0.05 0.45 0.01
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