
RC22494 (W0206-107) June 20, 2002
Computer Science

IBM Research Report

Web Services: Promises and Compromises

Ali Arsanjani*, Brent Hailpern, Joanne Martin**, Peri L. Tarr
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

**IBM
Rt 100/MD 2302

Somers, NY 10589

*IBM Global Services
105 North D St.

Fairfield, IA 52556

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Web Services: Promises and Compromises

ALI ARSANJANI BRENT HAILPERN JOANNE MARTIN PERI TARR

Abstract
This article will introduce the foundational concepts of Web services, levels of service
integration, discuss the real promise of intra-enterprise integration through an underlying
component-based development and integration approach on which Web Services can be built,
and then review the technical problems that any implementer or development manager should
realize will be part of Web services for th e foreseeable future. Although much of the craze
surrounding Web services revolves around inter-enterprise distributed computing, much of
the initial power will come from integration within a single enterprise, either with existing
legacy applications or with new business processes that span organizational silos.
Enterprises will need organizational structures that support this new paradigm and its
distribution of control and ownership of information. Finally, technical challenges will be
paramount, as Web services are required to satisfy serious, demanding SLAs. When that is
the environment, developers will need to confront the task of designing, building, configuring,
deploying, and managing software that must meet, and continue to meet, constraints beyond
functional correctness.

Keywords : Web Services, Component-based Architecture, UDDI, SOAP, WSDL, Service-oriented
Architecture.

Introduction
Web services are the latest software craze: the promise of full-fledged application software that can
deliver its function across the World Wide Web without being installed on your local computer. Their
magic comes from using XML and a distributed systems model based on Web standards (e.g., SOAP,
WSDL, UDDI) to provide an infrastructure for applications just as the Web provides the infrastructure
for hyperlinked multimedia documents. The use of XML and other Web standards will enable systems
running in different environments and at different locations to exchange information, interoperate, and
be combined more readily than ever before.

The first generation of Web-service infrastructure and applications is already in development, allowing
Web services to issue requests to others and to register/describe/find a service to use. Though much of
the craze surrounding Web services revolves around this nirvana of inter-organizational distributed
computing (supply chains being integrated across enterprises and across continents with applications
built out of small parts that are supplied on demand by many distinct vendors), much of the initial
power of Web services will come from integration of legacy applications within a single enterprise.

Web services infrastructure and the tools that will help build Web services "applications" hold out the
promise that investments in large quantities of existing software can be leveraged into new applications
both for the productivity of employees and for the benefit of customers. The promise is there, but there
are numerous pitfalls along the way: security, performance, and software engineering issues of
development, testing, deployment and maintenance.

Web Services involves a lot of new technology and as such business and technological teams are
rapidly engaged in surmounting initial hurdles. But the time to start with these technologies that are
gaining extremely rapid adoption is now and the place to start with them is within the enterprise. This
will insulate the enterprise from initial technology hurdles that are imminently being resolved and as

1

well as the ones that remain to be resolved before this architectural paradigm and its associated
technologies become ubiquitous.

Foundations of Web Services
Web services, and service-oriented architectures, have the potential to enable a new paradigm for
enterprise application development and deployment. A web service is a self-contained and self-
described modular application that can be published, located, and invoked across the Web. Based on
standards and designed to exploit existing infrastructure, Web services provide significant
opportunities for technical and business innovation. They encourage an approach to application
development that is evolutionary, building on investments previously made within an IT organization,
and developing new capabilities incrementally.

The service-oriented architecture is distributed, permitting elements of an application to be deployed on
multiple systems and executed across connected networks. Because the transport mechanism is built on
HTTP, which is ubiquitous in today's computing environments and supports compliance with basic
firewall policies, it is possible for program elements to interact within and across enterprises. The
elements of an application are designed to support specific tasks within a broader workflow or business
process. Each of these service elements is responsible for defining its inputs and outputs using the
standards for Web services, so that other application elements are able to determine how this element
operates, how to make use of its functionality, and what result to expect from its execution.

The service-oriented architecture is built on a foundation of standards, which define the roles and
activities of the architectural elements, and thus support the interoperability of incompatible systems
across the Web.
n Simple Ob ject Access Protocol (SOAP) [10] is the XML-based communication protocol used to
access Web services

o SOAP is a lightweight XML-based protocol for sending messages to and invoking
methods on remote objects. Messages and method invocations are defined as XML
documents and are sent over a transport protocol, typically HTTP. SOAP is language
and platform independent.

n Web Services Description Language (WSDL) [11]is the Web services description API
o The WSDL description of a service is an XML document with a specific format that

provides the technical aspects of that service. The description includes the operations
that can be invoked, their associated data types, the supported transport protocols,
and the endpoint for the service. The description is typically used by tools to generate
client code that accesses the service.

n Universal Description, Discovery, and Integration (UDDI)[12] is the publishing and discovery
API for Web services

o UDDI is a SOAP-based API for publishing and discovering Web services. The
publishing API allows service providers to register themselves and their services.
UDDI registry nodes replicate Web services information among themselves to
provide the same information from any node. The discovery API allows service
subscribers to search for available services. The UDDI registry provides the WSDL
document, which allows the consumer to use the Web service.

Within this architecture, there are typically three participants: a service provider, a service broker, and
a service requestor. The service provider creates a service and publishes it description in a UDDI
directory. The service broker maintains the UDDI repository and acts a 'yellow pages' capability for
Web services. The service requestor finds a service in the UDDI repository and then binds to that
service. (Need a diagram here)

2

The standards provide the foundation for developments in this new paradigm. Built on that foundation
will be the application structures and the solutions that drive businesses by integrating key business
processes. In some cases, new solutions will be developed in this model in a greenfield approach. More
frequently, solutions will be built by extending current systems, extracting value from the existing
business rules [1] and databases, and combining with other applications across the Web.

Domains of Enterprise Component-based Development and Integration with Web
Services
The authors have been engaged in implementing multiple component-based development and
integration (CBDi) projects across diverse industry sectors in telecommunications, mortgage, financial
services, government and banking. Over the past two years, with the rapid growth of interest in Web
Services the integration side of CBDi has come to the forefront. One of the key success factors in these
projects has been to manage issues and apply approaches and methods and many cases best-practices
across five domains of CBDi [5] which have become the five domains of Web Services, namely:

Organizational – the project management, skill development, and change control, business-driven
decisions that impact the growth and evolution of software within larger organizations. Also, this
pertains to making sure that the selection of which services to expose is done correctly and ties the
business and technology side of things together.

Methodology – The need to extend and refine current methods to utilize a smaller set of more pertinent
artifacts and activities that will support the creation of a service-oriented architecture on top of a
component-based paradigm which is currently not completely supported within object-oriented
analysis and design methods that focus primarily on the design and creation of small-grained objects
rather than larger grained Enterprise Components.

Architecture – The set of best practices and patterns to help build solid yet flexible designs that
leverage the highly re-configurable architectural style that is synonymous with building Web services.

Technology Implementation – The choice of technology with which to implement the design; often a
slew of technologies exists and need to be integrated.

Infrastructure and Tools – The standards, tools and technology that is needed to actualize this
service-oriented paradigm. This includes development tools, gateway servers, APIs, middleware,
browsers, etc.

Although Web Services and service-oriented architectures have definite applicability to both inter- and
intra-enterprise contexts, it is important to address the migration to a web services architecture in a
stepwise manner. Starting from within the enterprise, gaining the skills and expertise, overcoming the
technological barriers and organizational issues first will insulate the organization from exposure to
early adopter woes. The time to start adoption is now, but start inside the enterprise and work yourself
outwards as you establish standards and culture for each of the above domains.

Business and Organizational Challenges
Although we will focus in this article on the technical challenges associated with the Web Services
phenomenon, there is a corresponding set of business and organizational challenges that will need to be
addressed as this technology proliferates.

3

Today, there is a clear boundary that designates ownership of data, process, and application code. As
we move to a distributed model in which components are developed and integrated across silos, we
will enable the sharing of key processes, thus streamlining business operations and reducing costs. The
opportunity here is to re-use components, to automate business processes that today might require
multiple manual operations, to transform manual or batch processes into efficient self-service queries,
or to increase the visibility of a senior management team into core business operations parameters.
Each of these opportunities can enable significant improvements in efficiency, productivity, and cost.
However, they're not free. The corresponding challenge is to understand, in the context of this
connected world, who has responsibility for the pieces, and even more important, who has
responsibility for the whole. Where does responsibility lie for the overall architecture, for the
development of the components? How is performance managed? And, who ensures that each of the
service components is available and accurate during the execution of any particular end-to-end task?
Organizations will need to be structured to support this new paradigm that distributes control and
ownership. The notion of resolving the issues associated with an enterprise application will not be able
to be solved independently within any part of the organization, but rather will require a management
structure that facilitates shared responsibility.

Moving to the next stage of Web Services adoption, there is a scaling of both the opportunities and the
challenges. Managing the distributed infrastructure and application domain within an enterprise has the
significant advantage that all functions exist within the corporate firewall. Departments need to learn to
trust their data and their processes to other departments within the organization, but they remain 'safe'
from external intrusions. However, to exploit the full value of the service-oriented architecture is to
move across the firewall, and to interact with processes made available from outside the organization,
or to make internal processes externally available. The security and authentication capabilities that
exist today are not sufficient for this level of interaction and need to be developed. But, once those
technical issues are resolved, there will remain the business issues associated with who to trust, which
processes to protect and not make public, what to consider proprietary, where benefits can be derived
from sharing, which to trust from others, and how to best leverage the spectrum of possibilities that
will be available. Businesses will need to sort through the value propositions associated with buying or
selling access to processes. And, the community will need to confront the question of how to charge for
Web Services in general. Today, nearly all of these services that have been made available are free. We
will need to understand how and when to charge and the terms of use for Web Services.

Finally, the business potential of the dynamic interconnection of business processes that can
continually re-form and re-connect is enormous. The result is a loosely-coupled and heterogeneous set
of relationships between a company and its environment, whether that includes suppliers, customers, or
partners. There may be, in this mix, changing partnerships depending on geography, product mix, or
market situations, implying an agility that few organizations are prepared for today. Although the
notion of a supply chain seems to indicate a fixed set of links, that will give way to a broader notion of
sets of links that will be selected based on conditions at a particular time. Managing this level of
complexity will require new models for business designs, and the organizations that support them. On
the positive side, the breadth of possibilities for linkage may provide fast, cheap, and rich interactions.
On the negative, this model will bring with it very complex boundaries and corresponding management
challenges.

Mergers and Acquisitions . The result of mergers and acquisitions are multiple redundant systems
with design mismatches that have to be somehow integrated to function in unison within the current I/T
architecture. The challenge is to identify and isolate commonality and externalize variations so the
variations can be configured and then applied to the application.

Methodological Implications
The implication on methods is that we need to chisel away some of the baggage of current methods and
add some relevant artifacts and activities that are conducive to building a component-based architecture
of large-grained, message aware, enterprise scale, highly-re-configurable Enterprise Components that

4

expose their services as Web Services. Internally, we build a Component Enterprise Architecture
exposing its services for reuse within the organization. Externally a subset of those services will be
exposed based on business drivers and competition; while not succumbing to expose every I/T asset
that has been painstakingly developed within the organization and needs to be maintained for
competitive advantage and liability reasons, among other issues.

Some additions include Subsystem Analysis, Variation-oriented Analysis and Design and Business
Language Specification [4].

Integration Across the Extended Enterprise
Large businesses today are confronted by conflicting imperatives. The need to compete in the
eBusiness environment brings with it demands from customers, suppliers, and business partners to
access information that has been embedded within the internal workings of the enterprise. According to
Gartner Group, 80% of the world's business continues to run on COBOL applications. These
applications contain proprietary algorithms and techniques that offer competitive advantage and
enormous databases of accumulated knowledge and historical data. The environment associated with
those applications has tended to be batch processing, with little flexibility in the systems since they
were not designed in modular fashion. In addition, maintenance can be costly as the skills base
dwindles and the challenges of poorly documented systems are confronted. Nevertheless, significant
business value is locked into the applications in the form of business rules, and those business rules
need to be made available to a broader set of users than has historically been necessary.

A number of paths exist for organizations that are confronted with the need to move away from
systems that have become costly to maintain and that no longer meet the needs of end users. Among
the possibilities are the non-invasive techniques associated with screen-scraping, integration techniques
at the transaction or application level, and large-scale replacement by package solutions. Each of these
techniques has benefits and challenges. Screen-scraping is an easy and fast way to make legacy
applications available to the web at the user-interface level, but it does not address the modification of
the business process or data, and so has limited flexibility and can create maintenance issues. The
integration techniques can be assisted by numerous products available in the market, but again do not
capture business process knowledge, may have dependencies on vendors for implementations, and may
not scale well. Probably the most robust option is to move to full packages, integrating a standard
business process into the environment. This path can provide access to new and advanced functionality,
but it requires abandoning investments in existing systems, and can be disruptive to implement. In
addition, the ability for many packages to support web interactions is still evolv ing.

Emphasis is beginning to shift to legacy transformation, as companies explore different mechanisms to
extract data and make it available to new constituents. Industries leading the charge here include
financial services, insurance, and government. This strategy will include enabling legacy systems for
integration within an enterprise (making the data and transactions enabled across the enterprise instead
of being limited to the specific vertical application that the legacy code was developed for) as well as
allowing the transformation of core business functions to a web-capable environment.

In an ideal world, businesses could preserve the investments they have made in their core systems over
the past 20-30 years, while addressing the challenges with which they are confronted today. One path
to that ideal is to focus on the transformation of legacy systems through a series of actions, with the
goal being to encapsulate business rules into standalone components, which can then operate as
individual web services in a flexible manner. Methods, tools and techniques have matured to a state of
readiness for componentization and an evolutionary web services approach that exploits existing
investments. We will address a number of the challenges in this approach, but first consider why it
might be useful, and some of the steps required to make it work.

5

As an example of where the restructuring of legacy code into components could provide value,
consider a large insurance company and the contrast between how they currently process claims and
how they might prefer to have the processing managed. Today, the claims system might be a strategic
Cobol program with over 1M lines of code. That system might collect flat files from a number of
partner agencies. The system was designed to operated in a batch mode, with data feeds arriving once a
day, and the individual flat files being merged into a single transaction file, which could then be
processed in an overnight window. This process results in a minimum of 24 hours response time to
customers. Access to the web has caused a population of customers to be unwilling to wait 24 hours for
information that could be provided during a single online session. Trying to address the demand for
shorter response times within the existing system would put severe strains on the system. This
company needs to be able to extract the core business rules on which its claims engine is based, but
change the operational process around those rules so that individual claims can be processed
continuously, providing rapid response to customers, while evening the load distribution on the system
since claim requests arrive throughout the day. The requirement to changing the process means that the
techniques associated with screen scraping and non-invasive integration methods will not suffice. This
company needs to identify the specific business rules that govern the process that they want to change,
extract those rules from the legacy system, create new components to satisfy those rules, and then those
components can expose the services they provide in various forms, the most promising of which is as
web services; to be exploited dynamically and independently.

There are many opportunities in the legacy transformation domain. There is an existing and rapidly
growing set of mining tools available today to help in legacy mining, integration and transformation.
These tools can be used not only as a programming productivity tool, but as a management decision
tool. Mining tools enable companies to understand their systems, by creating calling trees and maps of
system components. Primarily, the tools available address the legacy understanding portion of the
problem, including analysis to extract business rules. Approaches are being developed to create
components from the extracted rules. It is important to note that in order to succeed with this approach,
the tools themselves are to be applied within the context a recognized set of best-practices and legacy
transformation methodologies.

The promise of Web services provides an opportunity to leverage the legacy transformation discussion.
The use of components to encapsulate, extend, and carry forward legacy applications into Web-based
applications by exposing their services as Web services is an emerging trend. It is easy to talk about
legacy code and Web services at the philosophical level, but the practicality and feasibility of it
remains to be demonstrated. Access to legacy enterprise assets such as databases and systems of
record is a necessary but not a sufficient condition to enable enterprise components and services to
succeed in the extended enterprise. Business process integration through the careful selection of
enterprise component boundaries is critical to provide a layer of process extension across the extended
enterprise, rather than merely data or information integration. Nevertheless, working through the
challenges to enable the promise is extremely appealing, and would provide significant business value.

Integrating the New and Transforming the Old
The challenges of transforming “older”, legacy systems is further complicated by the need to integrate
this transformation with the new development efforts that typically consist of n-tier architectures,
application servers. This integration is at least on two levels: data integration, process integration.
Access to legacy data is important; access to business rules locked within legacy systems is crucial to
enable business process integration. To achieve this, the need for a component-based development and
integration (CBDi) approach is necessary to enable development of newly integrated systems that
leverage legacy assets and to guarantee that the necessary approaches, methods, architecture,
technology implementations and infrastructure are there to support the integration and transformation
with the legacy within the larger enterprise context. We will briefly describe such an approach in the
following sections.

6

Integration of Services Within the Enterprise
For many large corporations that partake in component-based projects, the promise of components and
services; leveraging legacy and exposing them to the agility of dynamic e-business lies not merely
across business partners, but right within the enterprise. The enterprise itself consists of information
silos that serve individual lines of business. Integration of services within an enterprise across multiple
business lines (e.g., retail, wholesale) and product lines (e.g., financial services, credit card, travelers
cheques, etc.) is best done by identifying the units of business functionality required and provided by
each portion of the business in order to complete a business process.

Conceptual componentization at the business level is critical to achieve this enterprise agility and
information and process integration capabilities that are crucial to dynamic e-business.
Componentization consists of characterizing chunks of business-driven functionality that corresponds
to business goals. This process is a first step towards identifying services within the organization that
can be used by many, if not at, business lines within an organization rather than being locked within an
information or application ‘silo.’ Unlocking these embedded services is often accomplished through
Component-based Development and Integration (CBDi) where old systems are integrated to function
with the newer ones often running on n-tier architectural platforms. This integration may be taken
further than mere “wrappering” of functionality and may involve the refactoring of back-end business
logic on hitherto unexposed services residing in legacy systems.

Often a common conceptual best-practice such as the Enterprise Component pattern can be used to
provide the analysis and development teams a reference point for consistent design and development of
large-grained enterprise-scale business components.

These components provide a set of services that other components from other product lines may
customize, re -configure or directly reuse; with the preference being for the ability to rapidly re-
configure components to be used within new contexts rather than any intrusive changes applied for
customization. These services can be exposed at the department, corporate enterprise level as a
migration path towards the extended enterpris e.

Thus, in order to avoid the initial hurdles that new technologies often present, it is advisable to
commence the adoption of Web Services from within the enterprise. This will bypass the current
technology related issues of security, intellectual property exposure, and performance that follow from
exposing web services outside the enterprise. Use the current state of the technologies to help the
business without having to deal with the details of security and performance within the enterprise,
especially if there exist communication infrastructure (such as message-oriented middleware)
adequately supporting internal non-functional requirements.

Migrating to a Service-Oriented Architecture
The process of strategic migration to a service-oriented architecture can be seen as having five levels of
evolution as depicted in [17]. In the first level, data transfer between legacy “silo” systems occurs in
batch mode. There is little processing of information relevant to the other silos; merely raw data being
transported often for ELT (Extract Load Transform) scenarios. The next level or phase (in this case) is
information flow coordination where an enterprise application integration hub-and-spokes architecture
may be put into place or handled with other rudimentary technologies that effectively do the same
kinds of things.

7

Figure 1 : Levels of Integration of Services, The Strategic Path to E-services

Figure 1Caption: “Experienced driver on a closed course!”
The authors have experienced these kinds of durations on real projects. It should be realized that these
timeframes are not typical and come only with experienced teams and skills. The durations for projects
without these criteria of best-practices and skills may vary.

Current Architecture: “Where we are”
In order to migrate from the more static state imposed by legacy systems to a more dynamic
architecture and process required in today’s competitive market, the current level of the enterprise
architecture must be identified, characterized and inventoried to facilitate the identification of
functional areas that partition the domain into business lines and product lines. The data interaction
needs of these systems can be coordinated through a hub-and-spokes architecture that takes the
enterprise from data transfer to information coordination. The coordination of information is then
considered in light of business processes and the boundaries of enterprise scale components that
collaborate to create a business process that maps back to business goals.

There are a number of tools that are being introduced into the marketplace and yet tools alone will not
solve organizational or methodological problems. Tools can help you make the system work; but not
creating a robust, architecturally sound design. Web Services and its tools are not a substitute for sound
architecture and strong life-cycle management and methodology within the software development life-
cycle. Tools or infrastructure will not migrate enterpris e architecture from data transfer across legacy
silos to service-based models of inter and intra -enterprise computing. Thus, the impact from five
dimensions have been determined to be known and prepared for: organizational aspects (such as
project management implications, education programs), methodology aspects (such as extension to
current methods to provide full-life -cycle support for component-based development) , architectural
aspects (such as best-practices and patterns such as Enterprise Component and the issue sin creating
scalable architectures) as well as Technology Implementation aspects which cover how to map a given
design onto a technology standard such as Enterprise JavaBeans or .NET.

8

One of the typical issues that is often encountered is not only that of component granularity but of
service granularity: “should we expose a method on a class as a web service?” Or what is the right
level of service granularity?

Component-based Architecture: “The Next Step”
The partitioning of the business domain into a set of sometimes overlapping subsystems that
correspond to business process boundaries leads to a natural separation of concerns for the domain in
question. For example, a financial services company can differentiate between its various product lines
and business lines by considering the partitioning of Enterprise scale business components (called
Enterprise Components): Customer Management, Account Management Product Management,
Security Management, Billing, Rating could all provide the boundaries to create large-grained
Enterprise Components as depicted in [17] that encapsulate a set of loosely coupled and mediated
medium- to small-grained components, objects or proxies and adaptors to legacy systems.

Figure 2: Enterprise Component Pattern Enables the
Creation of a Highly Re-configurable Architectural Style

Figure 3: Enterprise Components provide multiple protocol
access to business rules and functionality

Service-oriented Architecture: “The Future”
Enterprise Component services can be expressed and exposed for invocation within the enterprise
using WSDL. Such service descriptions are often defined in an internal UDDI registry. How much of
the set of services and which ones to expose to the outside world of business partners, suppliers and
customers (consumers) is then driven by business imperatives, roles, business rules and competitive
analyses. In this scheme, there is a gradual process in which the WSDL residing in the internal UDDI
registry is migrated out to the public or partner UDDI registry for greater public exposure where that
service provision is guaranteed to provide competitive advantage or otherwise address business needs.

Once the service has been defined and exposed for finding and binding and ultimate invocation, an
essential question arises: “what protocol should be used to perform the invocation?” This is an
important design decision that impacts functional and non-functional requirements of the application
environment and the business model and its goals as realized through the I/T structure. Many of these
requirements can be defined in a configurable fashion through rapid re-configuration of a the EC’s
Configurable Profile in order to ensure that the component has the characteristics of self-description,

9

rapid collaboration alteration and dynamic configuration. However, this is not the only means of
achieving a robust yet pragmatic architecture that satisfies service level agreements (SLAs).

Standards and technologies such as the Web Services Invocation Framework (WSIF) [13] or Web
Services Inspection Language (WSIL) help support protocol transparency for achieving acceptable
levels of service without compromising the flexibility provided by this highly re-configurable
architectural style that dynamic e-business provides.

WSIF provides a way to describe the underlying services directly, and also how to invoke them
independently of the underlying protocol or transport. The ports and bindings of WSDL are extensible.
WSIF allows the creation of new grammars for describing how to access enterprise systems as
extensions of WSDL. This allows the enterprise developer, for example, to use a tool to create a
description of the CICS transaction, EJB or other service directly. The user of the service builds their
application or process based on the abstract description. At deployment time or runtime, the service is
bound to a particular port and binding.

WSIF is an extensible framework, which can be enhanced by creating new “providers”. A provider
supports a specific extensibility type of WSDL, for example SOAP or Enterprise JavaBeans. The
provider is the glue that links the code the developer wrote to use the service to the actual
implementation available.

The Web Services Inspection Language complements the discovery features of UDDI . UDDI provides
for a global or wide-scale directory of services. Analogous to large-scale web-content directories such
as the Open Directory Project, UDDI is key to finding and identifying services. However, it is also
important to be able understand which local services are available on a particular site. The Inspection
standard offers this ability to query a given site or server and retrieve a list of available services. The
list of services includes pointers to either WSDL documents or UDDI service entries. WSIL is a useful
lightweight way of accessing a service description without requiring access to a UDDI server. Most
person facing Web sites provide a “site map” to help guide users. WSIL is a similar function for
programs that wish to explore a site.

A Financial Services Industry Project Outline
Next we will outline a typical financial services project within which a heterogeneous environment of
legacy and Greenfield applications are functioning or being built. In one such project, the organization
had five back-end legacy systems running on different hardware and software platforms. Each
application was built piecemeal as a silo to address a particular business need. Many of them had been
added to the I/T infrastructure through mergers and acquisitions, resulting in an inordinate amount of
redundancy which not only led to maintenance difficulties but presented challenges when new
functionality was added. In some cases this functionality had to be replicated across all systems.

Most of the organization’s business knowledge was locked within the business rules embedded within
these five legacy applications. But the business rules did not have access points and could not be
invoked from other applications that needed the same functionality.

Furthermore, the enterprise was encountering serious competition from smaller, more “web-aware”
rivals. They needed to make the back-end legacy applications accessible through the web. Furthermore,
the interface to the web user had to be uniform; they were to experience one system not five different
ones. This was difficult because the business processes and business rules for each system were
different and had not been architected to function in unison or even coordinate information flow other
than through nightly batch processes. This created lengthy turnaround times to the customer; frequently
business partners who were relying on the timeliness of services.

Using the CBDi approach and addressing the domains of CBDi, the back-end legacy systems were
inventoried, knowledge mined, message-enabled and componentized as shown in . This was done in
preparation for interaction with a set of J2EE style program running on an application server that could
now access the chunks of business functionality and business rules that were hitherto locked within the

10

legacy systems. Furthermore, this facilitated a common unified user-experience that made it appear as
if there was one single back end systems handling everything.

Enterprise components as shown in Figure 2 and Figure 3 were built to encapsulate the functionality of
middle-tier business logic that would encapsulate the utilization of back-end legacy systems.

Figure 4 : Target Architecture

Figure 5: Legacy Applications with inaccessible and
redundant functionality

Figure 6: Legacy Transformation : Componentizing
Valuable Legacy Assets

Recurrent Themes
Within the multiple systems of larger organizations reside legacy applications with overlapping
functionality. The redundant functionality can be grouped into the services of an Enterprise Component
that will serve as an asset providing a consistent, reusable and re-configurable interface into its services
required by internal and external clients.

11

The as-is architecture for a typical Customer Management system consists of a set of redundant
systems per business line: card services, financial advising services, mortgage, insurance, etc., that all
have a customer information component to them. Each hold slightly different data elements and
interact with different business rules and in the context of different processes.

Business partners would like to integrate directly with each of these systems in a uniform manner to,
for example, provide services for the financial services company’s customer loyalty programs (frequent
user points) third party vendors would like to dynamically invoke and utilize a certain subset of
services that are exposed as web services.

A highly re-configurable and consistent Enterprise Component consolidated the access to data services
and business rules that varied from product line to product line. Multiple ECs were defined following a
domain analysis that partitioned the domain into its business process level of granularity subsystems.

Technical Challenges
The current generation of web service infrastructures and tools have the obvious set of problems one
would expect to see from early software: performance, interoperability, and usability. We will take as
an example the problems associated with performance. The basis of web services is XML, which
represents all data as tagged text. Both the tagging and the text representation cause an “explosion” in
data sizes when compared with carefully crafted binary representations. More data means slower
information transfer rates. Add to that the need to parse the XML data, whenever it is read into an
application or system, to create the internal representations of the data, and you have more overhead
whenever data goes between independent applications (or services or systems). Further complicating
the performance picture is the need to read in and parse the definition of the tag definition set (the
DTD), if it has not already been read in, parsed, and cached by the application. Security (encryption
and de-encryption) causes even greater overhead. All these performance issues can and will be
addressed as Web services technology matures, but today developers can expect factors of 10 to 100
slow down compared to conventional distributed computing operations (such as remote procedure calls
using RMI or IIOP).

Beyond these initial problems, the future direction of Web services holds more serious technical
challenges. Eventually, Web services will grow beyond the new distributed computing infrastructure
of SOAP, WSDL, UDDI, etc., to become electronic utilities (eUtilities) that are delivered to end users
over the Internet. EUtilities represent a critical new application domain in electronic commerce. Like
traditional utilities, such as telephone and electricity, Web services will be metered and customers will
pay for their use of the eUtility.

The terms of use (called service level agreements, or SLAs) of the eUtilities will include functionality,
availability, scalability, performance, resources, and reliability. These terms of use may vary from
customer to customer, and they may change over time. This, in turn, necessitates dynamic monitoring
of eUtilities, dynamic control over SLAs, and the ability to respond quickly to changing customer
needs and available resources. Providing these important eUtility capabilities impose some
challenging requirements on the design, development, deployment, and evolution of web services.
SLAs represent a legal description of a service—not simply in terms of its functional interface, but also
in terms of performance, payment, legal consequences of non-compliance, and levels of support and
access. Because SLAs are legal agreements, it must be possible to monitor Web services to verify that
the services being provided conform to those that were negotiated, and to redress any conformance
failure immediately.

As soon as Web services must satisfy serious, demanding SLAs, developers will have to confront the
task of designing, building, configuring, deploying, and managing software that mu st meet, and
continue to meet, constraints beyond the simple functional correctness with which we have been
struggling for 50 years. Web service applications must include both the conventional APIs, and also
interfaces for metering, performance, manageability, auditability, replication, and reliability. These
interfaces, though distinct, reflect capabilities that must interact with one another in deep and profound

12

ways. Supporting the description, realization, integration, and separate evolution of these interfaces
will be a major challenge facing eUtility engineers.

To increase the complexity even further, we note that Web services must be dynamically configurable.
Just as the telephone company depends on the electric utility in providing its phone services, so future
Web service applications will depend on eUtilities provided by others. So the environment in which
this software runs will be subject to change without notice – both in terms of the underlying eUtilities
and in terms of the number and kind of users (where some of those users may be higher-level Web
services). Other services on which a given eUtility depends may disappear or may change in some way
that affects the eUtility, and it must be able to detect and respond to such changes whenever possible.
When it is not possible, they must be able to degrade gracefully, since organizations may rely on them
for critical parts of their business.

Note that the following discussion is based upon terms from object-oriented (OO) technology. OO
provides us with languages and methodologies for describing, creating, and using self-contained
entities with clean definitions. From the point of view of Web services, however, not all objects are
created equal. Avoid thinking of objects in the classical text-book “small” sense (like the Cartesian-
coordinate point object with methods for pen-up, move, and pen-down). Web services need larger-
grained objects – objects that represent a business function (like a customer account or a purchasing
service) or a large IT component (like a security or authentication service). There are two main reasons
for this perspective: overhead per service (described above) and the constraints of the Web service
design methodology.

Our description of the technical challenges associated with the software engineering of Web services is
based on, but goes beyond, notions Multidimensional Separation of Concerns (MDSOC) [6,7] and the
allied discipline of Aspect-Oriented Software Development (AOSD - notably, Hyper/J™ and
AspectJ™ [8])). MDSOC is a convenient language for describing the issues involved. MDSOC
supports the identification and creation of “crosscutting” concerns that affect many modules throughout
an OO system. By modularizing aspects of a system that do not conveniently fit the dominant
hierarchy (e.g., OO inheritance), one can avoid duplication and error in implementation and isolate
changes during maintenance. Various aspects are then woven into the base code to form a new
program. In fact, a well designed MDSOC system eliminates the distinction between “base code” and
“aspect code” – the system is built out of a fabric woven from the different concerns. MDSOC will be
useful in the definition of particular Web services, for example interfaces for one particular subset of
customers of the eUtility. Different Web services that must ultimately work together will be developed
independently (and will be able to run as standalone applications), by different organizations, so
MDSOC’s ability to permit the separation of interacting concerns, such as a monitoring service from
one supplier along with a multileveled-performance service from another supplier, will be essential to
the Web service development process.

We believe that the engineering of Web services will require developers to identify a set of concerns—
both functional and non-functional, such as performance, scalability, security, manageability, and
monitoring; implement the software to realize and address these concerns, and to integrate some set of
these concerns together—possibly dynamically—to produce Web services that can be configured
differently to meet the needs of different customers.

In this sense the underlying principles of “design for change” implementing a highly-re-configurable
architectural style needs to be adopted. We expect that performance management, for example, will
impact many portions of an eUtility (what level of resources are available for a user or class of users,
who has legal requirements that must be met, and so on). Hence, collecting those issues together in a
concern can serve both as a design, implementation, and evolution tactic. Dependence on remote
services can also be modularized as another dimension, so that the underlying application can be
prepared to switch between a variety of competing (or failing) suppliers – this concern, then, becomes a
configuration/deployment tactic. Providing run-time interfaces during execution for
monitoring/control will meet the legal needs without cluttering up the functional APIs. Finally,

13

maintenance will enjoy the usual simplification that having a multidimensional separation of concerns
provides.

Issues in building and deploying eUtility applications
To motivate the issues we are addressing, we begin with a description of our view of an object-oriented
Web service (OOWS)1. As shown in Figure 7, we view an OOWS as a software component that is
built on top of a highly reliable infrastructure and possibly other OOWS, providing such services as
those listed above. Like other kinds of components, OOWSs provide functional interfaces (APIs), and
each API supports some set of functional interfaces. Unlike other components, however, OOWSs must
be dynamically controllable by SLAs, so that they can change their behavior and characteristics in
response to changes in SLAs.

Thus, these components must also provide non-functional management interfaces either as direct
programming interfaces (similar to the APIs above) or through configurable profiles (using a re-
configurable architectural style through the use of manners and Enterprise Component Configuration
Profiles [13]). These non-functional interfaces or profiles will permit control over such attributes as
performance, scalability, reliability, mo nitoring, metering, level of service, and potentially, the set of
capabilities the OOWS provides including the composition of particular components using which it is
constructed. Because SLAs may change at any time, it must be possible to control a service’s
functional and non-functional properties at any time during the software lifecycle —build-time,
integration-time, or runtime.

E-Utility
Service

Leve l of Service

Gold

Silver

Basic

Performance

Metering

Monitori ng
query,

control

Figure 7: Web Services (eUtilities), SLAs, and Interaction Among Functional, Management,
and Infrastructure Interfaces

Interaction among functional, management, and infrastructure APIs: Web services
challenge the software engineering models that have dominated application development for traditional
clients and server platforms. In particular, note that traditional applications are specified and
implemented in terms of a single set of functional requirements. These requirements are generally
uniform for all end users; thus, these applications define one or more functional interfaces (APIs). A
Web service (and the components that comprise it) also addresses traditional functional requirements,
but each customer also negotiates for the particular functionalities, levels of service, performance and
reliability that they will obtain from the service, and they will pay for their use of the service. Thus, a
Web service must define one or more functional APIs (possibly different ones for different customers),
but it must also present non-functional interfaces that permit control over performance, reliability,
metering, and level of service. These interfaces must interact with one another in some deep and
fundamental ways, as suggested by Figure 7. For example, obtaining high performance may

1 Remember that we are thinking of large-grained objects in this discussion.

14

necessitate the use of different communication protocols, search algorithms, and concurrency control
models, or it may preclude the use of certain functions that cannot be made to achieve that
performance. The definition and support for such deeply interacting interfaces presents a significant
challenge to service engineering and deployment.

Figure 8: Different capabilities are implemented using different domain models and different
class hierarchies. These hierarchies are reconciled and integrated when they are composed.

Figure 8 suggests two key characteristics of Web services. One is that capabilities embodied in the
non-functional management interfaces may crosscut capabilities present in the functional APIs, making
them good targets of MDSOC technologies. The other characteristic is that some functional and
management capabilities may require their own class and interface hierarchy to implement the
necessary domain model, and that these different hierarchies must be integrated as the capabilities are
combined into a particular OOWS. In fact, the same issue arises when different OOWSs are composed
together to help build a new service. This is likely to be a critical problem for OOWS developers, who
do not have control over the domain models used in underlying eUtilities.

While both MDSOC technologies are promising, they do not, at present, fully address all the critical
issues in the interaction of functional and management interfaces:

• Semantic mismatch: A semantic mismatch will occur when two or more capabilities have
mutually incompatible assumptions or requirements. For example, a client may negotiate for a
level of service that cannot be attained with a given concurrency control mechanism or with the
particular strategy employed to implement some feature. For OOWSs, it is necessary to be able to
identify semantic mismatches before they bite a client. Thus, for example, it is important to be
able to tell that a particular set of requirements in a client’s SLA cannot be satisfied
simultaneously, or that doing so will necessitate new components, algorithms, or infrastructure,
and this must be determined before the capabilities are promised to the client. It is imperative to
be able to detect semantic mismatches early enough to fix them, or to prevent agreement on an
unsatisfiable SLA.

• Interference: Interference is a common kind of semantic mismatch problem in concurrent
software, but there is real potential for interference to occur in OOWSs between and within the

15

management and functionality interfaces. It happens when an action taken by one part of the
software interacts with another’s actions in an undesirable manner, causing an effect that does not
occur when the actions occur independently. An example of interference can be found when
messaging and transactions are present together. To allow a transaction manager to preserve
atomicity and serializability, messages should not generally be sent until a transaction commits. A
messaging capability could easily send messages independently, thus interfering with the ability of
the transaction manager to satisfy its requirements.

• Unpredictability: As the discussions of semantic mismatch and interference suggest, it is not
always possible to determine, a priori, what a piece of composed software will look like. Unlike
non-compositional paradigms, where one does not get behaviors that one did not directly program
(excluding problems like concurrency errors), developers using compositional paradigms will
encounter circumstances where their composed software behaves unexpectedly and unpredictably.
This is, in part, because compositors add logic, as noted earlier, but it is also because compositors
break existing encapsulations to integrate concerns. The developers of those encapsulations made
certain assumptions about the behavior of the module, and those assumptions are easy to violate
when code from new concerns is interposed within an existing module. The unpredictable effects
of composition tend not to be found until they manifest as erroneous behavior at runtime. This
will not be acceptable in an OOWS context.

Verifiable and controllable conformance to SLAs: Each customer’s contract for a service is
described and governed by an SLA (see Figure 7). It must, therefore, be possible to determine whether
the appropriate SLA(s) is/are being satisfied, to determine how and why it is not being satisfied, and to
control the service to bring it into compliance with the SLA(s). This suggests again the need for
programmatic interfaces to control metering, performance, and other crosscutting, non-functional
capabilities. It also potentially requires dynamic addition, removal, and replacement of capabilities.
The interaction between these management capabilities and the functional capabilities is again apparent
here, since an OOWS may not provide certain functionality or performance for users who request
lower levels of service.

Building services when the “components” are neither local nor locally controllable: As
with all software, it is reasonable to assume that “composite” OOWSs may be built—i.e., where one
service depends on other (lower level) services, each with their own SLAs. Hence, the designer/builder
of a service may—indeed, should—spend more effort in integrating services than in constructing new
ones from scratch. But this designer/builder is confronted with a body of services (comparable to
traditional components) that may not be under his/her direct control, since some else may own the
service and may be delivering it over the network. Thus, such a designer/builder will not be able to use
traditional software engineering methodologies in developing composite services, since these
methodologies depend on the centralized control and static deployment assumptions that clearly do not
hold.

Inevitable, unpredictable, dynamic changes and need to limit the impact of such
changes: Any given OOWS may change or become unavailable without notice, thus potentially
causing a cas caded impact on all the services that depend upon it. Services are subject to significant
reliability and availability constraints, so the change or loss of an underlying service cannot, in general,
be allowed to crash or impede other services. Thus, services must come with integration and runtime
support systems that can identify service change or loss and respond to it. This likely includes, though
is not limited to, the ability to handle real-time version control, configuration management and “hot
swapping” of bits and pieces of services, and the ability to upgrade and degrade gracefully. Note again
that changes and unavailability affects both the functional and non-functional (management) aspects of
a dependent service (and the legal implications of such a change). The version control and
configuration management problem is considerably more complex than its traditional build-time
analogue. At build-time, a version control or configuration management system need only be

16

concerned with choosing a set of modules to put together, but at runtime, it must be possible to replace
much smaller-grained pieces, to ensure the lowest impact of change on the modified service (the larger
the pieces that are replaced, the larger the potential impact on other parts of the service, and on any
services that depend on it). Advanced configuration management approaches, like [9], may be of use
here.

SLAs are software, too: SLAs themselves must be considered a key component in the software
engineering of services. In particular, they both define and configure the functional and non-functional
aspects of a service. They are, therefore, a specification for the service, and it must be possible to
ensure that they are satisfied both statically and dynamically. If SLAs are to be monitored and their
requirements satisfied, they must be treated as software artifacts in their own right—perhaps as
declarative specifications of services, or as some kind of operational semantics. In either case, they
must have their own build/integrate/test/deploy cycle, which must tie in directly with the capacity
planning, design, and architecture of the OOWS, the monitoring/execution/control of the service, and
the compliance checking and reporting to the provider and the end-user of the service. Given the
competitive nature of the first generation of OOWS-like vendors (ASPs), one can expect rapid
evolution of SLAs (at least in terms of cost of service options provided). Hence these SLA “programs”
will have to accommodate change during execution.

Conclusion
The evolution of enterprise architectures to capitalize on the capabilities of Web Services to provide
strategic advantage for leveraging current assets and assimilating them into a dynamic structure of
services on demand is well under way. New technologies and methods are maturing to achieve
acceptable service level characteristics. One of the more successful ways of designing and
implementing web services is to start with a component-based architecture of large-grained Enterprise
Components that expose business process level services as web services. Start using these within the
organization rather than exposing them externally. With more project experience in this domain, best
practices are uncovered and utilized with increasingly greater success. Then the decisions to migrate to
a full service-oriented architecture that externalizes useful business services can be made and a subset
of the internal enterprise services can be migrated outwards.

References

[1] Arsanjani, A., Rule Object: A Pattern Language for Flexible Modeling and Construction of

Business Rules, Washington University Technical Report number: wucs-00-29, Proceedings of
the Pattern Languages of Program Design, 2000.

[2] Arsanjani, A., Alpigini., J., “Using Grammar-oriented Object Design to Seamlessly Map Business
Models to Software Architectures”, Proceedings of the IASTED 2001 conference on Modeling and
Simulation, Pittsburgh, PA, 2001.

[3] Arsanjani, A., “CBDI : A Pattern Language for Component-based Development and Integration”,
European Conference on Pattern Languages of Programming, 2001.

[4] Arsanjani, A.; “Grammar-oriented Object Design: Creating Adaptive Collaborations and Dynamic
Configurations with Self-describing Components and Services”, Proceedings of Technology of
Object-oriented Languages and Systems 39, 2001.

[5] Arsanjani, A.; “A Domain-language Approach to Designing Dynamic Enterprise Component-
based Architectures to Support Business Services”, Proceedings of Technology of Object-oriented
Languages and Systems 39, 2001.

[6] P. Tarr, H. Ossher, W. Harrison and S.M. Sutton, Jr. “N Degrees of Separation: Multi-
Dimensional Separation of Concerns.” In Proc. ICSE 21, May 1999.

17

[7] H. Ossher and P. Tarr. “Multi-Dimensional Separation of Concerns and the Hyperspace
Approach.” In Proc. Symp. Software Architectures and Component Technology: The State of the
Art in Software Development. Kluwer, 2001.

[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. “An Overview of
AspectJ.” In Proc. ECOOP 2001, June 2001.

[9] M.C. Chu-Carroll and S. Sprenkle. “Coven: brewing better collaboration through software
configuration management.” Proc. 8th International Symposium on Foundations of Software
Engineering, 2000.

[10] http://www.w3.org/TR/SOAP

[11] http://www.w3.org/TR/wsdl

[12] http://www.uddi.org/about.html

[13]Web Services Invocation Framework, http://www- 06.ibm.com/developerworks/library/ws-
wsif.html

18

