
RC22502 (W0206-086) June 17, 2002
Mathematics

IBM Research Report

Fractional packing of T-joins

Francisco Barahona
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research Report
for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , 
P. O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



FRACTIONAL PACKING OF T-JOINS

FRANCISCO BARAHONA

Abstract. Given a graph with nonnegative capacities on its edges, it is well known
that the weight of a minimum T -cut is equal to the value of a maximum packing
of T -joins. Padberg-Rao’s algorithm finds a minimum weight T -cut but it does not
produce a T -join packing, we present a polynomial combinatorial algorithm for finding
an optimal T -join packing.

1. Introduction

We present a polynomial combinatorial algorithm for packing T -joins in a capacitated
graph. Given a graph G = (V, E) and S ⊆ V , the set of all edges with exactly one
endnode in S is called a cut and denoted by δ(S). We say that S defines the cut δ(S).
Given a set T ⊆ V of even cardinality, we say that a cut δ(S) is a T -cut if |S ∩T | is odd.
A set of edges J is called a T -join if in the subgraph G′ = (V, J) the nodes in T have
odd degree and the nodes in V \ T have even degree. T -joins appear in the solution of
the Chinese postman problem by Edmonds & Johnson [5]. Here the nodes in T are the
nodes of odd degree and a T -join is a set of edges that have to be duplicated to obtain
an Eulerian graph.

Edmonds & Johnson [5] proved that if A is a matrix whose rows are the incidence
vectors of T -cuts, then for any nonnegative objective function the linear program below
has an optimal integer solution that is the incidence vector of a T -join.

minwx(1)
Ax ≥ 1(2)
x ≥ 0.(3)

Edmonds & Johnson gave a combinatorial polynomial algorithm to solve the linear
program above and its dual

max y1(4)
yA ≤ w(5)
y ≥ 0.(6)

This gives a packing of T -cuts. Seymour [15] proved that if the coefficients of w are
integer, and their sum over every cycle is an even number, then (4)-(6) has an optimal
integer solution. The algorithm of Edmonds & Johnson can be modified to produce this
integer dual optimal solution, see [2].

Date: June 14, 2002.

1



2 F. BARAHONA

It follows from the theory of Blocking Polyhedra [6] that if B is a matrix whose rows
are all incidence vectors of T -joins then for any nonnegative objective function c the
linear program below has also an optimal integer solution that is the incidence vector of
a T -cut.

min cx(7)
Bx ≥ 1(8)
x ≥ 0.(9)

The dual problem is

max y1(10)
yB ≤ c(11)
y ≥ 0.(12)

A solution of (10)-(12) is a maximum packing of T -joins. So from linear programming
duality we have that the value of a maximum packing of T -joins is equal to the value of
a minimum T -cut. Padberg & Rao [13] gave a polynomial combinatorial algorithm that
finds a minimum T -cut. However this algorithm does not give a maximum packing of
T -joins, and this has remained unsolved. Due to the equivalence between separation and
optimization, one could solve this in polynomial time with the ellipsoid method, see [10].
The purpose of this paper is to give a polynomial combinatorial algorithm for finding a
maximum (fractional) packing. To the best of our knowledge the only case that is well
solved is when |T | = 2, this the well known maximum flow problem. Our algorithm
has many similarities with an algorithm for packing arborescences given by Gabow and
Manu [8].

There are several conjectures and questions related to the case when the linear program
(10)-(12) has an integer solution. We discuss them below.

A graph is called r-regular if all its vertices have degree r. A graph is called an r-graph
if it is r-regular and every V -cut has cardinality greater than or equal to r. A perfect
matching is a set of non-adjacent edges that includes every vertex of the graph. Fulkerson
made the following conjecture.

Conjecture 1. Every 3-graph has six perfect matchings that include each edge at most
twice.

Notice that for a 3-graph, when T = V every vertex defines a minimum T -cut. Also
every T -join with positive weight in a maximum packing should intersect a minimum
T -cut in exactly one edge, so the T -join should be a perfect matching. Thus in our
terminology the conjecture above is equivalent to say that for a 3-graph when T = V
and c is a vector of all twos, then (10)-(12) has an optimal solution that is integer.

Seymour [14] generalized Fulkerson’s conjecture as below.

Conjecture 2. Every r-graph has 2r perfect matchings that include each edge at most
twice.

Seymour [14] also made the following two conjectures and proved that they are implied
by Conjecture 2. A family of T -joins is called k-disjoint if every edge is included in at
most k of them.



FRACTIONAL PACKING OF T-JOINS 3

Conjecture 3. If every vertex has an even degree then the size of a maximum 2-disjoint
family of T -joins equals the double of the size of a minimum T -cut.

Conjecture 4. The size of a 4-disjoint family of T -joins equals four times the size of a
minimum T -cut.

Cohen & Lucchesi [3] made the conjecture below and proved that it is equivalent to
Conjecture 2.

Conjecture 5. If all T -cuts have the same parity then the size of a maximum 2-disjoint
family of T -joins equals the double of the size of a minimum T -cut.

They also proved the following.

Theorem 6. If |T | ≤ 8 and every T -cut has the same parity then the size of a maximum
disjoint family of T -joins equals the size of a minimum T -cut.

Conforti & Johnson [4] made the following conjecture. They proved their conjecture
for graphs without a 4-wheel minor.

Conjecture 7. If T is the set of nodes of odd degree, and the graph is not contractible
to the Petersen graph, then the size of a maximum disjoint family of T -joins equals the
size of a minimum T -cut.

Holyer [11] proved that deciding whether a 3-regular simple graph has 3 disjoint perfect
matchings is NP-complete. So finding an optimal integer solution of (10)-(12) is NP-hard.
Tait [16] proved that the Four Color Theorem is equivalent to the statement that every
2-connected planar 3-regular graph has 3 disjoint perfect matchings. This is equivalent
to say that for every 2-connected planar 3-regular graph, when T = V and c is the vector
of all ones, the linear program (10)-(12) has an optimal solution that is integer.

Now we give some extra notation and definitions. Let n = |V | and m = |E|. We
assume that every edge e has a non-negative capacity c(e). If c(e) is zero then the edge
e is removed from the graph. For S ⊆ V we use θ(S) to denote the cut function

θ(S) =
∑

{c(e) : e ∈ δ(S)}.
Given A,B ⊆ V , we say that they cross if the sets A \ B, B \ A, and A ∩ B are non-
empty. A family of sets such that no two of them cross is called laminar. A laminar
family of subsets of V can have at most 2n − 1 nonempty sets. It is well known that θ
is a submodular function, i. e., for any two sets A,B ⊆ V that cross

θ(A ∪B) + θ(A ∩B) = θ(A) + θ(B) + 2β(A, B),

where β(A,B) is the sum of the capacities of the edges with one endnode in A \ B and
the other in B \A. We use λ(G) to denote the value of a minimum T -cut in G, i. e.,

λ(G) = min{θ(S) : S ⊂ V, |S ∩ T | is odd}.
For U ⊆ E we use µ(U) to denote the capacity of U defined as

µ(U) = min{c(e) : e ∈ U}.
If J is a T -join and δ(S) is a cut, then |J ∩ δ(S)| is odd if and only if δ(S) is a T -cut. If
U ⊆ E and 0 ≤ α ≤ µ(U), we denote by G − αU the graph obtained by replacing the
capacity c(e) of every edge e ∈ U , by c(e)− α. A minimum cut separating nodes s and
t is called a minimum st-cut. The nodes in the set T are called T -nodes.



4 F. BARAHONA

This paper is organized as follows. In Section 2 we give a short description of Padberg-
Rao’s algorithm for finding a minimum T -cut. In Section 3 we present an initial descrip-
tion of the algorithm for packing T -joins. Sections 4 and 5 are devoted to more technical
aspects required to complete the description of our algorithm. Section 6 contains a final
analysis of our algorithm.

2. Padberg-Rao’s algorithm

For the sake of completeness we give a short description of Padberg-Rao’s algorithm
for finding a minimum T -cut. It is based on the following lemma.

Lemma 1. Let S define a minimum cut separating at least two nodes in T . If |S ∩ T |
is odd then S defines a minimum T -cut. Otherwise, there is a set S′ ⊆ S or S′ ⊆ V \ S
that defines a minimum T -cut.

Proof. Assume that |S ∩ T | is even and consider a set A that defines a minimum T -cut.
Suppose that A and S cross.

Case 1: |A ∩ S ∩ T | is odd. Then |(A ∪ S) ∩ T | is even. We have

θ(A ∩ S) + θ(A ∪ S) ≤ θ(A) + θ(S).

Therefore θ(A∩S) = θ(A) and θ(A∪S) = θ(S). Thus A∩S defines a minimum T -cut.

Case 2: |A∩ S ∩ T | is even. Let S̄ = V \ S. Then |A∩ S̄ ∩ T | is odd and |(A∪ S̄)∩ T |
is even. We have

θ(A ∩ S̄) + θ(A ∪ S̄) ≤ θ(A) + θ(S̄).

Therefore θ(A ∩ S̄) = θ(A) and θ(A ∪ S̄) = θ(S̄). Thus A ∩ S̄ defines a minimum
T -cut. ¤

This lemma suggests a very simple algorithm, namely if S defines a minimum cut
separating at least two nodes in T , then either S defines a minimum T -cut or one should
continue working recursively with the graph G1 obtained by contracting S and with the
graph G2 obtained by contracting V \ S.

Padberg & Rao also pointed out that one should first compute a Gomory-Hu (GH)
tree [9], and then carry out the algorithm above on the GH-tree. This is because any
minimum st-cut in the graph is given by a minimum st-cut in the GH-tree. Because of
the tree structure, the algorithm becomes extremely simple: among all edges in the tree
that are a T -cut, we should pick one of minimum capacity.

Thus the complexity of this procedure is the complexity of computing a GH-tree, i.
e., computing (n− 1) minimum st-cuts.

3. The Algorithm

We start this section with an initial description of the algorithm. Clearly the capacity
of any T -cut is an upper bound for the value of a T -join packing, and a minimum T -cut
gives the value of an optimal packing. For the bound to be tight, any T -join with a
positive weight in an optimal packing must intersect any minimum T -cut in exactly one
edge, the algorithm works based on this property.

Using λ(G) as the target value, the problem is solved recursively in a greedy way as
follows. For a T -join U , let αU be the largest value of α such that λ(G−αU) = λ(G)−α



FRACTIONAL PACKING OF T-JOINS 5

and 0 ≤ α ≤ µ(U). Then the weight αU is assigned to U . If λ(G−αUU) > 0 one should
continue working recursively with G−αUU . In the remainder of this paper we show that
a refinement of this algorithm runs in polynomial time. We need first a simple lemma.

Lemma 1. If U is a T -join and αU = 0 then there is a minimum T -cut δ(S) such that
|δ(S) ∩ U | > 1.

Proof. First notice that λ(G − αU) ≤ λ(G) − α, for 0 ≤ α ≤ µ(U). This is because in
G− αU the capacity of every T -cut δ(S) is θ(S)− kα, where k = |δ(S) ∩ U |.

So if |δ(S)∩U | = 1 for every minimum T -cut δ(S) then there is a small value of α > 0,
such that λ(G− αU) = λ(G)− α and α ≤ µ(U). ¤

From the lemma above we can see that one should concentrate on T -joins that intersect
every minimum T -cut in exactly one edge. When we impose this condition for a minimum
T -cut δ(S), we say that it is tight, we also say that S is a tight set. The two lemmas
below show that we only need to impose this for a laminar family of tight sets.

Lemma 2. Assume that A and B define minimum T -cuts, they cross, and |A ∩B ∩ T |
is odd. Then the tightness of A ∩B and A ∪B imply the tightness of A and B.

Proof. We have that
θ(A ∩B) + θ(A ∪B) ≤ θ(A) + θ(B).

Since A and B define minimum T -cuts, then A ∩ B and A ∪ B also define minimum
T -cuts. Therefore this inequality must hold as equation. This implies that there is no
edge between A\B and B \A. Moreover for a T -join U and any cut δ(S) the cardinality
of δ(S)∩U is odd if S defines a T -cut and even otherwise. Then by a counting argument
it is easy to see that any T -join that has exactly one edge entering A ∩ B and exactly
one edge entering A ∪ B must have exactly one edge entering A and exactly one edge
entering B. Figure 1 displays all possible configurations. ¤

........

........

........

........

........

........
........
........
........
.........
.........
.........
..........
...........

...................
..................................................................................................................................................................................................................................................................................................................

...........
..........
.........
.........
.........
........
........
........
........
........
........
........
........
........

........

.........
..........

.............
.................

........................
...........................................................................................................................................................................................................................................................................................................................................................................................................
.......................

................
.............
..........
.........
........o e

B B B

e

A A A

........

........

........

........

........

........
........
........
........
.........
.........
.........
..........
...........

...................
..................................................................................................................................................................................................................................................................................................................

...........
..........
.........
.........
.........
........
........
........
........
........
........
........
........
........

........

.........
..........

.............
.................

........................
...........................................................................................................................................................................................................................................................................................................................................................................................................
.......................

................
.............
..........
.........
........o e

e

........

........

........

........

........

........
........
........
........
.........
.........
.........
..........
...........

....................................................................................................................................................................................................................................................................................................................................

...........
..........
.........
.........
.........
........
........
........
........
........
........
........
........
........

........

.........
..........

.............
.................

........................
...........................................................................................................................................................................................................................................................................................................................................................................................................
.......................

................
.............
..........
.........
........o e

e

.......................................................................

.............................................................................................

.................................................................

.................

.................

.................

.........

......................
......................

......................
......................

......................
......

Figure 1. The labels e (even) and o (odd) refer to the parity of
|(A \B) ∩ T |, |A ∩B ∩ T | and |(B \A) ∩ T |.

Lemma 3. Assume that A and B define minimum T -cuts, they cross, and |A ∩B ∩ T |
is even. Then the tightness of A \B and A \B imply the tightness of A and B.

Proof. Apply Lemma 2 to A and B̄ = V \B. ¤

So when we keep a family of tight sets, we can apply the last two lemmas to convert
it into a laminar family. Denote by Φ this family, it can contain at most 2n − 1 tight
sets. We are going to find a T -join that intersects every T -cut given by Φ in exactly one
edge. Let U be this T -join. There are two possible cases:



6 F. BARAHONA

1. If αU = µ(U) then the number of edges in G − αUU is at least one less than the
number of edges in G.

2. If αU < µ(U) then in G − αUU there is a minimum T -cut δ(S), S /∈ Φ, such that
|U ∩ δ(S)| > 1. In this case we should add S to Φ and uncross it using Lemmas 2 and 3
as in the procedure below.

Uncross Φ

While there are two sets A and B in Φ that cross
do

if |A ∩B ∩ T | is odd set Φ ← (Φ \ {A,B}) ∪ {A ∩B, A ∪B},
otherwise set Φ ← (Φ \ {A,B}) ∪ {A \B, B \A}

end

It is easy to see that at each uncrossing step the number of crossing pairs decreases
by one.

Now we can give a formal description of the algorithm.

Pack T -joins

Step 0. Set Φ ← ∅.
Step 1. Find a T -join U such that |U ∩ δ(S)| = 1, for all S ∈ Φ.
Step 2. Compute αU as the maximum of α such that
λ(G− αU) = λ(G)− α, and 0 ≤ α ≤ µ(U).
Step 3. If αU < µ(U), a new tight T -cut δ(S) has been found. Set Φ ← Φ ∪ {S}
and uncross Φ.
Step 4. Set G ← G− αUU . If λ(G) = 0 stop, otherwise go to Step 1.

Since at each iteration either the cardinality of Φ increases or one edge is deleted, the
total number of iterations is at most 2n− 1 + m. It remains to describe how to perform
Steps 1 and 2. This is the subject of the next two sections.

4. Finding a T -join in Step 1

Given the family Φ of tight sets we need to find a T -join U such that |U ∩ δ(S)| = 1,
for all S ∈ Φ. This will be done recursively.

The first time we start with S = V and define GS as the subgraph induced by S,
with every maximal set of Φ that is properly contained in S contracted, labeled as a
T -node and marked as tight. Let TS be the set of T -nodes in GS . We define an auxiliary
graph whose node set is TS , this is a complete graph. For any two nodes in TS we find
a path in GS between them of minimum cardinality. Tight nodes can be the beginning
or the end of a path, but not an intermediate node. This is to ensure that the resulting
T -join intersects exactly once every tight T -cut. The cardinality of this path becomes
the weight of the corresponding edge in the auxiliary graph. We find a minimum weight
perfect matching in the auxiliary graph. This is to ensure that the resulting T -join is
minimal. In GS we take the union of all paths whose corresponding edges are in the
matching. This gives a T -join US in GS . Every tight node has exactly one edge of US

incident to it.

Then we have to deal with each set W that has been contracted. In the T -join above,
there is exactly one edge e = {i, j}, with j ∈ W . This time GS is the subgraph induced



FRACTIONAL PACKING OF T-JOINS 7

by W plus the edge e, and the node i labeled as a T -node. Again every every maximal
set of Φ that is properly contained in S is contracted and we proceed as above.

The complexity of finding a minimum weight perfect matching in a complete graph
with t nodes is O(t3), see [7, 12]. Also the complexity of finding all shortest paths in GS

is O(t3). Therefore the complexity of Step 1 is O(n3).

5. Finding αU in Step 2

Given a T -join U we are going to compute the maximum value of α such that

λ(G− αU) = λ(G)− α, and 0 ≤ α ≤ µ(U).

Let us define f(α) = λ(G−αU). The function f is the minimum of a set of affine linear
functions, so it is concave and piecewise linear. We have to find its first breakpoint. For
this we start with a tentative value αU = µ(U). We compute f(αU ), if f(αU ) = λ(G)−αU

we are done, otherwise let δ(S) be a minimum T -cut in G − αUU . Let k = |U ∩ δ(S)|.
Let ᾱ be the solution of λ(G) − α = θ(S) − kα. We set αU ← ᾱ and continue. See
Figure 2.

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................................................................................... .........................................

αUᾱ

λ(G)− α

α

f

Figure 2

A formal description of this algorithm is below.

Find αU

Step 0. Set αU ← µ(U).
Step 1. Find a minimum T -cut δ(S) in G − αUU . If λ(G − αUU) = λ(G) − αU

stop. Otherwise continue.
Step 2. Compute ᾱ as the solution of of λ(G) − α = θ(S) − kα. Where k =
|U ∩ δ(S)|.
Step 3. Set αU ← ᾱ and go to Step 1.

The complexity of this algorithm is given below.

Lemma 1. If αU = µ(U) this algorithm requires O(n) minimum st-cut computations,
otherwise it requires O(n2) minimum st-cut computations.



8 F. BARAHONA

Proof. If αU = µ(U) only one iteration is performed. Otherwise at each iteration the
value of k = |U ∩ δ(S)| decreases. Since |U | ≤ n− 1, the above algorithm takes at most
n− 1 iterations. At each iteration one has to find a minimum T -cut with Padberg-Rao’s
algorithm, this requires n−1 minimum st-cut computations, then the result follows. ¤

6. Final Analysis

Clearly the running time of the algorithm in Section 3 is dominated by the running
time of Steps 1 and 2. Also notice that at most 2n−1+m iterations are performed. Thus
the total running time of Step 1 is O((n+m)n3). For Step 2 there are at most m iterations
where αU = µ(U) that require n−1 minimum st-cuts, and at most 2n−1 iterations that
require at most (n− 1)2 minimum st-cuts. The complexity of finding a minimum st-cut
is O(n3), see [1]. Thus the total running time of Step 2 is O((mn + n3)n3). Therefore
the complexity of this algorithm is O(n6).

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows. Theory, algorithms, and appli-
cations, Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] F. Barahona, Planar multicommodity flows, max cut, and the chinese postman problem, in DI-
MACS Ser. Discrete Math. Theoret. Comput. Sci., 1, RI, 1990, Amer. Math. Soc., pp. 189–202.

[3] J. Cohen and C. Lucchesi, Minimax relations for T -join packing problems, in Fifth Israeli Sym-
posium on Theory of Computing and Systems (ISTCS’97), 1997, pp. 38–44.

[4] M. Conforti and E. Johnson, Two min-max theorems for graphs not contractible to a 4-wheel,
Technical report, IBM T. J. Watson Research Center, Yorktown Heights, NY, 1987.

[5] J. Edmonds and E. L. Johnson, Matching, euler tours and the chinese postman, Math. Program-
ming, 5 (1973), pp. 88–124.

[6] D. R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Math. Programming, 1 (1971),
pp. 168–194.

[7] H. N. Gabow, An efficient implementation of Edmonds’ algorithm for maximum matching on
graphs, J. Assoc. Comput. Mach., 23 (1976), pp. 221–234.

[8] H. N. Gabow and K. S. Manu, Packing algorithms for arborescences (and spanning trees) in
capacitated graphs, Math. Programming Ser. B, 82 (1998), pp. 83–109.

[9] R. E. Gomory and T. C. Hu, Multi-terminal network flows, J. Soc. Indust. Appl. Math., 9 (1961),
pp. 551–570.

[10] M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combinatorial optimiza-
tion, Springer-Verlag, Berlin, 1993.

[11] I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput., 10 (1981), pp. 718–720.
[12] E. L. Lawler, Combinatorial optimization: networks and matroids, Holt, Rinehart and Winston,

New York-Montreal, 1976.
[13] M. W. Padberg and M. R. Rao, Odd minimum cut-sets and b-matchings, Math. Oper. Res., 7

(1982), pp. 67–80.
[14] P. D. Seymour, On multicolourings of cubic graphs, and conjectures of Fulkerson and Tutte, Proc.

London Math. Soc., 38 (1979), pp. 423–460.
[15] , On odd cuts and plane multicommodity flows, Proc. London Math. Soc., 42 (1981), pp. 178–

192.
[16] P. G. Tait, On the colouring of maps, Proc. Roy. Soc. Edinburgh, 10 (1878), pp. 501–503.

(F. Barahona) IBM T. J. Watson research Center, Yorktown Heights, NY 10589, USA

E-mail address, F. Barahona: barahon@us.ibm.com


