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FRACTIONAL PACKING OF T-JOINS

FRANCISCO BARAHONA

Abstract. Given a graph with nonnegative capacities on its edges, it is well known
that the weight of a minimum T -cut is equal to the value of a maximum packing
of T -joins. Padberg-Rao’s algorithm finds a minimum weight T -cut but it does not
produce a T -join packing, we present a polynomial combinatorial algorithm for finding
an optimal T -join packing.

1. Introduction

We present a polynomial combinatorial algorithm for packing T -joins in a capacitated
graph. Given a graph G = (V, E) and S ⊆ V , the set of all edges with exactly one
endnode in S is called a cut and denoted by δ(S). We say that S defines the cut δ(S).
Given a set T ⊆ V of even cardinality, we say that a cut δ(S) is a T -cut if |S ∩T | is odd.
A set of edges J is called a T -join if in the subgraph G′ = (V, J) the nodes in T have
odd degree and the nodes in V \ T have even degree. T -joins appear in the solution of
the Chinese postman problem by Edmonds & Johnson [5]. Here the nodes in T are the
nodes of odd degree and a T -join is a set of edges that have to be duplicated to obtain
an Eulerian graph.

Edmonds & Johnson [5] proved that if A is a matrix whose rows are the incidence
vectors of T -cuts, then for any nonnegative objective function the linear program below
has an optimal integer solution that is the incidence vector of a T -join.

minwx(1)
Ax ≥ 1(2)
x ≥ 0.(3)

Edmonds & Johnson gave a combinatorial polynomial algorithm to solve the linear
program above and its dual

max y1(4)
yA ≤ w(5)
y ≥ 0.(6)

This gives a packing of T -cuts. Seymour [15] proved that if the coefficients of w are
integer, and their sum over every cycle is an even number, then (4)-(6) has an optimal
integer solution. The algorithm of Edmonds & Johnson can be modified to produce this
integer dual optimal solution, see [2].
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It follows from the theory of Blocking Polyhedra [6] that if B is a matrix whose rows
are all incidence vectors of T -joins then for any nonnegative objective function c the
linear program below has also an optimal integer solution that is the incidence vector of
a T -cut.

min cx(7)
Bx ≥ 1(8)
x ≥ 0.(9)

The dual problem is

max y1(10)
yB ≤ c(11)
y ≥ 0.(12)

A solution of (10)-(12) is a maximum packing of T -joins. So from linear programming
duality we have that the value of a maximum packing of T -joins is equal to the value of
a minimum T -cut. Padberg & Rao [13] gave a polynomial combinatorial algorithm that
finds a minimum T -cut. However this algorithm does not give a maximum packing of
T -joins, and this has remained unsolved. Due to the equivalence between separation and
optimization, one could solve this in polynomial time with the ellipsoid method, see [10].
The purpose of this paper is to give a polynomial combinatorial algorithm for finding a
maximum (fractional) packing. To the best of our knowledge the only case that is well
solved is when |T | = 2, this the well known maximum flow problem. Our algorithm
has many similarities with an algorithm for packing arborescences given by Gabow and
Manu [8].

There are several conjectures and questions related to the case when the linear program
(10)-(12) has an integer solution. We discuss them below.

A graph is called r-regular if all its vertices have degree r. A graph is called an r-graph
if it is r-regular and every V -cut has cardinality greater than or equal to r. A perfect
matching is a set of non-adjacent edges that includes every vertex of the graph. Fulkerson
made the following conjecture.

Conjecture 1. Every 3-graph has six perfect matchings that include each edge at most
twice.

Notice that for a 3-graph, when T = V every vertex defines a minimum T -cut. Also
every T -join with positive weight in a maximum packing should intersect a minimum
T -cut in exactly one edge, so the T -join should be a perfect matching. Thus in our
terminology the conjecture above is equivalent to say that for a 3-graph when T = V
and c is a vector of all twos, then (10)-(12) has an optimal solution that is integer.

Seymour [14] generalized Fulkerson’s conjecture as below.

Conjecture 2. Every r-graph has 2r perfect matchings that include each edge at most
twice.

Seymour [14] also made the following two conjectures and proved that they are implied
by Conjecture 2. A family of T -joins is called k-disjoint if every edge is included in at
most k of them.
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Conjecture 3. If every vertex has an even degree then the size of a maximum 2-disjoint
family of T -joins equals the double of the size of a minimum T -cut.

Conjecture 4. The size of a 4-disjoint family of T -joins equals four times the size of a
minimum T -cut.

Cohen & Lucchesi [3] made the conjecture below and proved that it is equivalent to
Conjecture 2.

Conjecture 5. If all T -cuts have the same parity then the size of a maximum 2-disjoint
family of T -joins equals the double of the size of a minimum T -cut.

They also proved the following.

Theorem 6. If |T | ≤ 8 and every T -cut has the same parity then the size of a maximum
disjoint family of T -joins equals the size of a minimum T -cut.

Conforti & Johnson [4] made the following conjecture. They proved their conjecture
for graphs without a 4-wheel minor.

Conjecture 7. If T is the set of nodes of odd degree, and the graph is not contractible
to the Petersen graph, then the size of a maximum disjoint family of T -joins equals the
size of a minimum T -cut.

Holyer [11] proved that deciding whether a 3-regular simple graph has 3 disjoint perfect
matchings is NP-complete. So finding an optimal integer solution of (10)-(12) is NP-hard.
Tait [16] proved that the Four Color Theorem is equivalent to the statement that every
2-connected planar 3-regular graph has 3 disjoint perfect matchings. This is equivalent
to say that for every 2-connected planar 3-regular graph, when T = V and c is the vector
of all ones, the linear program (10)-(12) has an optimal solution that is integer.

Now we give some extra notation and definitions. Let n = |V | and m = |E|. We
assume that every edge e has a non-negative capacity c(e). If c(e) is zero then the edge
e is removed from the graph. For S ⊆ V we use θ(S) to denote the cut function

θ(S) =
∑

{c(e) : e ∈ δ(S)}.
Given A,B ⊆ V , we say that they cross if the sets A \ B, B \ A, and A ∩ B are non-
empty. A family of sets such that no two of them cross is called laminar. A laminar
family of subsets of V can have at most 2n − 1 nonempty sets. It is well known that θ
is a submodular function, i. e., for any two sets A,B ⊆ V that cross

θ(A ∪B) + θ(A ∩B) = θ(A) + θ(B) + 2β(A, B),

where β(A,B) is the sum of the capacities of the edges with one endnode in A \ B and
the other in B \A. We use λ(G) to denote the value of a minimum T -cut in G, i. e.,

λ(G) = min{θ(S) : S ⊂ V, |S ∩ T | is odd}.
For U ⊆ E we use µ(U) to denote the capacity of U defined as

µ(U) = min{c(e) : e ∈ U}.
If J is a T -join and δ(S) is a cut, then |J ∩ δ(S)| is odd if and only if δ(S) is a T -cut. If
U ⊆ E and 0 ≤ α ≤ µ(U), we denote by G − αU the graph obtained by replacing the
capacity c(e) of every edge e ∈ U , by c(e)− α. A minimum cut separating nodes s and
t is called a minimum st-cut. The nodes in the set T are called T -nodes.
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This paper is organized as follows. In Section 2 we give a short description of Padberg-
Rao’s algorithm for finding a minimum T -cut. In Section 3 we present an initial descrip-
tion of the algorithm for packing T -joins. Sections 4 and 5 are devoted to more technical
aspects required to complete the description of our algorithm. Section 6 contains a final
analysis of our algorithm.

2. Padberg-Rao’s algorithm

For the sake of completeness we give a short description of Padberg-Rao’s algorithm
for finding a minimum T -cut. It is based on the following lemma.

Lemma 1. Let S define a minimum cut separating at least two nodes in T . If |S ∩ T |
is odd then S defines a minimum T -cut. Otherwise, there is a set S′ ⊆ S or S′ ⊆ V \ S
that defines a minimum T -cut.

Proof. Assume that |S ∩ T | is even and consider a set A that defines a minimum T -cut.
Suppose that A and S cross.

Case 1: |A ∩ S ∩ T | is odd. Then |(A ∪ S) ∩ T | is even. We have

θ(A ∩ S) + θ(A ∪ S) ≤ θ(A) + θ(S).

Therefore θ(A∩S) = θ(A) and θ(A∪S) = θ(S). Thus A∩S defines a minimum T -cut.

Case 2: |A∩ S ∩ T | is even. Let S̄ = V \ S. Then |A∩ S̄ ∩ T | is odd and |(A∪ S̄)∩ T |
is even. We have

θ(A ∩ S̄) + θ(A ∪ S̄) ≤ θ(A) + θ(S̄).

Therefore θ(A ∩ S̄) = θ(A) and θ(A ∪ S̄) = θ(S̄). Thus A ∩ S̄ defines a minimum
T -cut. ¤

This lemma suggests a very simple algorithm, namely if S defines a minimum cut
separating at least two nodes in T , then either S defines a minimum T -cut or one should
continue working recursively with the graph G1 obtained by contracting S and with the
graph G2 obtained by contracting V \ S.

Padberg & Rao also pointed out that one should first compute a Gomory-Hu (GH)
tree [9], and then carry out the algorithm above on the GH-tree. This is because any
minimum st-cut in the graph is given by a minimum st-cut in the GH-tree. Because of
the tree structure, the algorithm becomes extremely simple: among all edges in the tree
that are a T -cut, we should pick one of minimum capacity.

Thus the complexity of this procedure is the complexity of computing a GH-tree, i.
e., computing (n− 1) minimum st-cuts.

3. The Algorithm

We start this section with an initial description of the algorithm. Clearly the capacity
of any T -cut is an upper bound for the value of a T -join packing, and a minimum T -cut
gives the value of an optimal packing. For the bound to be tight, any T -join with a
positive weight in an optimal packing must intersect any minimum T -cut in exactly one
edge, the algorithm works based on this property.

Using λ(G) as the target value, the problem is solved recursively in a greedy way as
follows. For a T -join U , let αU be the largest value of α such that λ(G−αU) = λ(G)−α
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and 0 ≤ α ≤ µ(U). Then the weight αU is assigned to U . If λ(G−αUU) > 0 one should
continue working recursively with G−αUU . In the remainder of this paper we show that
a refinement of this algorithm runs in polynomial time. We need first a simple lemma.

Lemma 1. If U is a T -join and αU = 0 then there is a minimum T -cut δ(S) such that
|δ(S) ∩ U | > 1.

Proof. First notice that λ(G − αU) ≤ λ(G) − α, for 0 ≤ α ≤ µ(U). This is because in
G− αU the capacity of every T -cut δ(S) is θ(S)− kα, where k = |δ(S) ∩ U |.

So if |δ(S)∩U | = 1 for every minimum T -cut δ(S) then there is a small value of α > 0,
such that λ(G− αU) = λ(G)− α and α ≤ µ(U). ¤

From the lemma above we can see that one should concentrate on T -joins that intersect
every minimum T -cut in exactly one edge. When we impose this condition for a minimum
T -cut δ(S), we say that it is tight, we also say that S is a tight set. The two lemmas
below show that we only need to impose this for a laminar family of tight sets.

Lemma 2. Assume that A and B define minimum T -cuts, they cross, and |A ∩B ∩ T |
is odd. Then the tightness of A ∩B and A ∪B imply the tightness of A and B.

Proof. We have that
θ(A ∩B) + θ(A ∪B) ≤ θ(A) + θ(B).

Since A and B define minimum T -cuts, then A ∩ B and A ∪ B also define minimum
T -cuts. Therefore this inequality must hold as equation. This implies that there is no
edge between A\B and B \A. Moreover for a T -join U and any cut δ(S) the cardinality
of δ(S)∩U is odd if S defines a T -cut and even otherwise. Then by a counting argument
it is easy to see that any T -join that has exactly one edge entering A ∩ B and exactly
one edge entering A ∪ B must have exactly one edge entering A and exactly one edge
entering B. Figure 1 displays all possible configurations. ¤
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Figure 1. The labels e (even) and o (odd) refer to the parity of
|(A \B) ∩ T |, |A ∩B ∩ T | and |(B \A) ∩ T |.

Lemma 3. Assume that A and B define minimum T -cuts, they cross, and |A ∩B ∩ T |
is even. Then the tightness of A \B and A \B imply the tightness of A and B.

Proof. Apply Lemma 2 to A and B̄ = V \B. ¤

So when we keep a family of tight sets, we can apply the last two lemmas to convert
it into a laminar family. Denote by Φ this family, it can contain at most 2n − 1 tight
sets. We are going to find a T -join that intersects every T -cut given by Φ in exactly one
edge. Let U be this T -join. There are two possible cases:
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1. If αU = µ(U) then the number of edges in G − αUU is at least one less than the
number of edges in G.

2. If αU < µ(U) then in G − αUU there is a minimum T -cut δ(S), S /∈ Φ, such that
|U ∩ δ(S)| > 1. In this case we should add S to Φ and uncross it using Lemmas 2 and 3
as in the procedure below.

Uncross Φ

While there are two sets A and B in Φ that cross
do

if |A ∩B ∩ T | is odd set Φ ← (Φ \ {A,B}) ∪ {A ∩B, A ∪B},
otherwise set Φ ← (Φ \ {A,B}) ∪ {A \B, B \A}

end

It is easy to see that at each uncrossing step the number of crossing pairs decreases
by one.

Now we can give a formal description of the algorithm.

Pack T -joins

Step 0. Set Φ ← ∅.
Step 1. Find a T -join U such that |U ∩ δ(S)| = 1, for all S ∈ Φ.
Step 2. Compute αU as the maximum of α such that
λ(G− αU) = λ(G)− α, and 0 ≤ α ≤ µ(U).
Step 3. If αU < µ(U), a new tight T -cut δ(S) has been found. Set Φ ← Φ ∪ {S}
and uncross Φ.
Step 4. Set G ← G− αUU . If λ(G) = 0 stop, otherwise go to Step 1.

Since at each iteration either the cardinality of Φ increases or one edge is deleted, the
total number of iterations is at most 2n− 1 + m. It remains to describe how to perform
Steps 1 and 2. This is the subject of the next two sections.

4. Finding a T -join in Step 1

Given the family Φ of tight sets we need to find a T -join U such that |U ∩ δ(S)| = 1,
for all S ∈ Φ. This will be done recursively.

The first time we start with S = V and define GS as the subgraph induced by S,
with every maximal set of Φ that is properly contained in S contracted, labeled as a
T -node and marked as tight. Let TS be the set of T -nodes in GS . We define an auxiliary
graph whose node set is TS , this is a complete graph. For any two nodes in TS we find
a path in GS between them of minimum cardinality. Tight nodes can be the beginning
or the end of a path, but not an intermediate node. This is to ensure that the resulting
T -join intersects exactly once every tight T -cut. The cardinality of this path becomes
the weight of the corresponding edge in the auxiliary graph. We find a minimum weight
perfect matching in the auxiliary graph. This is to ensure that the resulting T -join is
minimal. In GS we take the union of all paths whose corresponding edges are in the
matching. This gives a T -join US in GS . Every tight node has exactly one edge of US

incident to it.

Then we have to deal with each set W that has been contracted. In the T -join above,
there is exactly one edge e = {i, j}, with j ∈ W . This time GS is the subgraph induced



FRACTIONAL PACKING OF T-JOINS 7

by W plus the edge e, and the node i labeled as a T -node. Again every every maximal
set of Φ that is properly contained in S is contracted and we proceed as above.

The complexity of finding a minimum weight perfect matching in a complete graph
with t nodes is O(t3), see [7, 12]. Also the complexity of finding all shortest paths in GS

is O(t3). Therefore the complexity of Step 1 is O(n3).

5. Finding αU in Step 2

Given a T -join U we are going to compute the maximum value of α such that

λ(G− αU) = λ(G)− α, and 0 ≤ α ≤ µ(U).

Let us define f(α) = λ(G−αU). The function f is the minimum of a set of affine linear
functions, so it is concave and piecewise linear. We have to find its first breakpoint. For
this we start with a tentative value αU = µ(U). We compute f(αU ), if f(αU ) = λ(G)−αU

we are done, otherwise let δ(S) be a minimum T -cut in G − αUU . Let k = |U ∩ δ(S)|.
Let ᾱ be the solution of λ(G) − α = θ(S) − kα. We set αU ← ᾱ and continue. See
Figure 2.
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A formal description of this algorithm is below.

Find αU

Step 0. Set αU ← µ(U).
Step 1. Find a minimum T -cut δ(S) in G − αUU . If λ(G − αUU) = λ(G) − αU

stop. Otherwise continue.
Step 2. Compute ᾱ as the solution of of λ(G) − α = θ(S) − kα. Where k =
|U ∩ δ(S)|.
Step 3. Set αU ← ᾱ and go to Step 1.

The complexity of this algorithm is given below.

Lemma 1. If αU = µ(U) this algorithm requires O(n) minimum st-cut computations,
otherwise it requires O(n2) minimum st-cut computations.
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Proof. If αU = µ(U) only one iteration is performed. Otherwise at each iteration the
value of k = |U ∩ δ(S)| decreases. Since |U | ≤ n− 1, the above algorithm takes at most
n− 1 iterations. At each iteration one has to find a minimum T -cut with Padberg-Rao’s
algorithm, this requires n−1 minimum st-cut computations, then the result follows. ¤

6. Final Analysis

Clearly the running time of the algorithm in Section 3 is dominated by the running
time of Steps 1 and 2. Also notice that at most 2n−1+m iterations are performed. Thus
the total running time of Step 1 is O((n+m)n3). For Step 2 there are at most m iterations
where αU = µ(U) that require n−1 minimum st-cuts, and at most 2n−1 iterations that
require at most (n− 1)2 minimum st-cuts. The complexity of finding a minimum st-cut
is O(n3), see [1]. Thus the total running time of Step 2 is O((mn + n3)n3). Therefore
the complexity of this algorithm is O(n6).
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