IBM Research Report

Fractional packing of T-joins

Francisco Barahona
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

FRACTIONAL PACKING OF T-JOINS

FRANCISCO BARAHONA

Abstract

Given a graph with nonnegative capacities on its edges, it is well known that the weight of a minimum T-cut is equal to the value of a maximum packing of T-joins. Padberg-Rao's algorithm finds a minimum weight T-cut but it does not produce a T-join packing, we present a polynomial combinatorial algorithm for finding an optimal T-join packing.

1. Introduction

We present a polynomial combinatorial algorithm for packing T-joins in a capacitated graph. Given a graph $G=(V, E)$ and $S \subseteq V$, the set of all edges with exactly one endnode in S is called a cut and denoted by $\delta(S)$. We say that S defines the cut $\delta(S)$. Given a set $T \subseteq V$ of even cardinality, we say that a cut $\delta(S)$ is a T-cut if $|S \cap T|$ is odd. A set of edges J is called a T-join if in the subgraph $G^{\prime}=(V, J)$ the nodes in T have odd degree and the nodes in $V \backslash T$ have even degree. T-joins appear in the solution of the Chinese postman problem by Edmonds \& Johnson [5]. Here the nodes in T are the nodes of odd degree and a T-join is a set of edges that have to be duplicated to obtain an Eulerian graph.

Edmonds \& Johnson [5] proved that if A is a matrix whose rows are the incidence vectors of T-cuts, then for any nonnegative objective function the linear program below has an optimal integer solution that is the incidence vector of a T-join.

$$
\begin{equation*}
\min w x \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& A x \geq 1 \tag{2}\\
& x \geq 0 \tag{3}
\end{align*}
$$

Edmonds \& Johnson gave a combinatorial polynomial algorithm to solve the linear program above and its dual

$$
\begin{align*}
& \max y 1 \tag{4}\\
& y A \leq w \tag{5}\\
& y \geq 0 \tag{6}
\end{align*}
$$

This gives a packing of T-cuts. Seymour [15] proved that if the coefficients of w are integer, and their sum over every cycle is an even number, then (4)-(6) has an optimal integer solution. The algorithm of Edmonds \& Johnson can be modified to produce this integer dual optimal solution, see [2].

Date: June 14, 2002.

It follows from the theory of Blocking Polyhedra [6] that if B is a matrix whose rows are all incidence vectors of T-joins then for any nonnegative objective function c the linear program below has also an optimal integer solution that is the incidence vector of a T-cut.

$$
\begin{align*}
& \min c x \tag{7}\\
& B x \geq 1 \tag{8}\\
& x \geq 0 . \tag{9}
\end{align*}
$$

The dual problem is

$$
\begin{align*}
& \max y 1 \tag{10}\\
& y B \leq c \tag{11}\\
& y \geq 0 \tag{12}
\end{align*}
$$

A solution of (10)-(12) is a maximum packing of T-joins. So from linear programming duality we have that the value of a maximum packing of T-joins is equal to the value of a minimum T-cut. Padberg \& Rao [13] gave a polynomial combinatorial algorithm that finds a minimum T-cut. However this algorithm does not give a maximum packing of T-joins, and this has remained unsolved. Due to the equivalence between separation and optimization, one could solve this in polynomial time with the ellipsoid method, see [10]. The purpose of this paper is to give a polynomial combinatorial algorithm for finding a maximum (fractional) packing. To the best of our knowledge the only case that is well solved is when $|T|=2$, this the well known maximum flow problem. Our algorithm has many similarities with an algorithm for packing arborescences given by Gabow and Manu [8].

There are several conjectures and questions related to the case when the linear program (10)-(12) has an integer solution. We discuss them below.

A graph is called r-regular if all its vertices have degree r. A graph is called an r-graph if it is r-regular and every V-cut has cardinality greater than or equal to r. A perfect matching is a set of non-adjacent edges that includes every vertex of the graph. Fulkerson made the following conjecture.
Conjecture 1. Every 3-graph has six perfect matchings that include each edge at most twice.

Notice that for a 3 -graph, when $T=V$ every vertex defines a minimum T-cut. Also every T-join with positive weight in a maximum packing should intersect a minimum T-cut in exactly one edge, so the T-join should be a perfect matching. Thus in our terminology the conjecture above is equivalent to say that for a 3 -graph when $T=V$ and c is a vector of all twos, then (10)-(12) has an optimal solution that is integer.

Seymour [14] generalized Fulkerson's conjecture as below.
Conjecture 2. Every r-graph has $2 r$ perfect matchings that include each edge at most twice.

Seymour [14] also made the following two conjectures and proved that they are implied by Conjecture 2. A family of T-joins is called k-disjoint if every edge is included in at most k of them.

Conjecture 3. If every vertex has an even degree then the size of a maximum 2-disjoint family of T-joins equals the double of the size of a minimum T-cut.

Conjecture 4. The size of a 4-disjoint family of T-joins equals four times the size of a minimum T-cut.

Cohen \& Lucchesi [3] made the conjecture below and proved that it is equivalent to Conjecture 2.

Conjecture 5. If all T-cuts have the same parity then the size of a maximum 2-disjoint family of T-joins equals the double of the size of a minimum T-cut.

They also proved the following.
Theorem 6. If $|T| \leq 8$ and every T-cut has the same parity then the size of a maximum disjoint family of T-joins equals the size of a minimum T-cut.

Conforti \& Johnson [4] made the following conjecture. They proved their conjecture for graphs without a 4 -wheel minor.

Conjecture 7. If T is the set of nodes of odd degree, and the graph is not contractible to the Petersen graph, then the size of a maximum disjoint family of T-joins equals the size of a minimum T-cut.

Holyer [11] proved that deciding whether a 3-regular simple graph has 3 disjoint perfect matchings is NP-complete. So finding an optimal integer solution of (10)-(12) is NP-hard. Tait [16] proved that the Four Color Theorem is equivalent to the statement that every 2 -connected planar 3 -regular graph has 3 disjoint perfect matchings. This is equivalent to say that for every 2 -connected planar 3-regular graph, when $T=V$ and c is the vector of all ones, the linear program (10)-(12) has an optimal solution that is integer.

Now we give some extra notation and definitions. Let $n=|V|$ and $m=|E|$. We assume that every edge e has a non-negative capacity $c(e)$. If $c(e)$ is zero then the edge e is removed from the graph. For $S \subseteq V$ we use $\theta(S)$ to denote the cut function

$$
\theta(S)=\sum\{c(e): e \in \delta(S)\} .
$$

Given $A, B \subseteq V$, we say that they cross if the sets $A \backslash B, B \backslash A$, and $A \cap B$ are nonempty. A family of sets such that no two of them cross is called laminar. A laminar family of subsets of V can have at most $2 n-1$ nonempty sets. It is well known that θ is a submodular function, i. e., for any two sets $A, B \subseteq V$ that cross

$$
\theta(A \cup B)+\theta(A \cap B)=\theta(A)+\theta(B)+2 \beta(A, B)
$$

where $\beta(A, B)$ is the sum of the capacities of the edges with one endnode in $A \backslash B$ and the other in $B \backslash A$. We use $\lambda(G)$ to denote the value of a minimum T-cut in G, i. e.,

$$
\lambda(G)=\min \{\theta(S): S \subset V,|S \cap T| \text { is odd }\} .
$$

For $U \subseteq E$ we use $\mu(U)$ to denote the capacity of U defined as

$$
\mu(U)=\min \{c(e): e \in U\} .
$$

If J is a T-join and $\delta(S)$ is a cut, then $|J \cap \delta(S)|$ is odd if and only if $\delta(S)$ is a T-cut. If $U \subseteq E$ and $0 \leq \alpha \leq \mu(U)$, we denote by $G-\alpha U$ the graph obtained by replacing the capacity $c(e)$ of every edge $e \in U$, by $c(e)-\alpha$. A minimum cut separating nodes s and t is called a minimum st-cut. The nodes in the set T are called T-nodes.

This paper is organized as follows. In Section 2 we give a short description of PadbergRao's algorithm for finding a minimum T-cut. In Section 3 we present an initial description of the algorithm for packing T-joins. Sections 4 and 5 are devoted to more technical aspects required to complete the description of our algorithm. Section 6 contains a final analysis of our algorithm.

2. Padberg-Rao's algorithm

For the sake of completeness we give a short description of Padberg-Rao's algorithm for finding a minimum T-cut. It is based on the following lemma.

Lemma 1. Let S define a minimum cut separating at least two nodes in T. If $|S \cap T|$ is odd then S defines a minimum T-cut. Otherwise, there is a set $S^{\prime} \subseteq S$ or $S^{\prime} \subseteq V \backslash S$ that defines a minimum T-cut.

Proof. Assume that $|S \cap T|$ is even and consider a set A that defines a minimum T-cut. Suppose that A and S cross.

Case 1: $|A \cap S \cap T|$ is odd. Then $|(A \cup S) \cap T|$ is even. We have

$$
\theta(A \cap S)+\theta(A \cup S) \leq \theta(A)+\theta(S)
$$

Therefore $\theta(A \cap S)=\theta(A)$ and $\theta(A \cup S)=\theta(S)$. Thus $A \cap S$ defines a minimum T-cut.
Case 2: $|A \cap S \cap T|$ is even. Let $\bar{S}=V \backslash S$. Then $|A \cap \bar{S} \cap T|$ is odd and $|(A \cup \bar{S}) \cap T|$ is even. We have

$$
\theta(A \cap \bar{S})+\theta(A \cup \bar{S}) \leq \theta(A)+\theta(\bar{S})
$$

Therefore $\theta(A \cap \bar{S})=\theta(A)$ and $\theta(A \cup \bar{S})=\theta(\bar{S})$. Thus $A \cap \bar{S}$ defines a minimum T-cut.

This lemma suggests a very simple algorithm, namely if S defines a minimum cut separating at least two nodes in T, then either S defines a minimum T-cut or one should continue working recursively with the graph G_{1} obtained by contracting S and with the graph G_{2} obtained by contracting $V \backslash S$.

Padberg \& Rao also pointed out that one should first compute a Gomory-Hu (GH) tree [9], and then carry out the algorithm above on the GH-tree. This is because any minimum st-cut in the graph is given by a minimum st-cut in the GH-tree. Because of the tree structure, the algorithm becomes extremely simple: among all edges in the tree that are a T-cut, we should pick one of minimum capacity.

Thus the complexity of this procedure is the complexity of computing a GH-tree, i. e., computing $(n-1)$ minimum st-cuts.

3. The Algorithm

We start this section with an initial description of the algorithm. Clearly the capacity of any T-cut is an upper bound for the value of a T-join packing, and a minimum T-cut gives the value of an optimal packing. For the bound to be tight, any T-join with a positive weight in an optimal packing must intersect any minimum T-cut in exactly one edge, the algorithm works based on this property.

Using $\lambda(G)$ as the target value, the problem is solved recursively in a greedy way as follows. For a T-join U, let α_{U} be the largest value of α such that $\lambda(G-\alpha U)=\lambda(G)-\alpha$
and $0 \leq \alpha \leq \mu(U)$. Then the weight α_{U} is assigned to U. If $\lambda\left(G-\alpha_{U} U\right)>0$ one should continue working recursively with $G-\alpha_{U} U$. In the remainder of this paper we show that a refinement of this algorithm runs in polynomial time. We need first a simple lemma.

Lemma 1. If U is a T-join and $\alpha_{U}=0$ then there is a minimum T-cut $\delta(S)$ such that $|\delta(S) \cap U|>1$.

Proof. First notice that $\lambda(G-\alpha U) \leq \lambda(G)-\alpha$, for $0 \leq \alpha \leq \mu(U)$. This is because in $G-\alpha U$ the capacity of every T-cut $\delta(S)$ is $\theta(S)-k \alpha$, where $k=|\delta(S) \cap U|$.

So if $|\delta(S) \cap U|=1$ for every minimum T-cut $\delta(S)$ then there is a small value of $\alpha>0$, such that $\lambda(G-\alpha U)=\lambda(G)-\alpha$ and $\alpha \leq \mu(U)$.

From the lemma above we can see that one should concentrate on T-joins that intersect every minimum T-cut in exactly one edge. When we impose this condition for a minimum T-cut $\delta(S)$, we say that it is tight, we also say that S is a tight set. The two lemmas below show that we only need to impose this for a laminar family of tight sets.

Lemma 2. Assume that A and B define minimum T-cuts, they cross, and $|A \cap B \cap T|$ is odd. Then the tightness of $A \cap B$ and $A \cup B$ imply the tightness of A and B.

Proof. We have that

$$
\theta(A \cap B)+\theta(A \cup B) \leq \theta(A)+\theta(B)
$$

Since A and B define minimum T-cuts, then $A \cap B$ and $A \cup B$ also define minimum T-cuts. Therefore this inequality must hold as equation. This implies that there is no edge between $A \backslash B$ and $B \backslash A$. Moreover for a T-join U and any cut $\delta(S)$ the cardinality of $\delta(S) \cap U$ is odd if S defines a T-cut and even otherwise. Then by a counting argument it is easy to see that any T-join that has exactly one edge entering $A \cap B$ and exactly one edge entering $A \cup B$ must have exactly one edge entering A and exactly one edge entering B. Figure 1 displays all possible configurations.

Figure 1. The labels e (even) and o (odd) refer to the parity of $|(A \backslash B) \cap T|,|A \cap B \cap T|$ and $|(B \backslash A) \cap T|$.

Lemma 3. Assume that A and B define minimum T-cuts, they cross, and $|A \cap B \cap T|$ is even. Then the tightness of $A \backslash B$ and $A \backslash B$ imply the tightness of A and B.

Proof. Apply Lemma 2 to A and $\bar{B}=V \backslash B$.
So when we keep a family of tight sets, we can apply the last two lemmas to convert it into a laminar family. Denote by Φ this family, it can contain at most $2 n-1$ tight sets. We are going to find a T-join that intersects every T-cut given by Φ in exactly one edge. Let U be this T-join. There are two possible cases:

1. If $\alpha_{U}=\mu(U)$ then the number of edges in $G-\alpha_{U} U$ is at least one less than the number of edges in G.
2. If $\alpha_{U}<\mu(U)$ then in $G-\alpha_{U} U$ there is a minimum T-cut $\delta(S), S \notin \Phi$, such that $|U \cap \delta(S)|>1$. In this case we should add S to Φ and uncross it using Lemmas 2 and 3 as in the procedure below.
```
Uncross \Phi
While there are two sets A and B in \Phi that cross
do
    if }|A\capB\capT| is odd set \Phi\leftarrow(\Phi\{A,B})\cup{A\capB,A\cupB}
    otherwise set }\Phi\leftarrow(\Phi\{A,B})\cup{A\B,B\A
end
```

It is easy to see that at each uncrossing step the number of crossing pairs decreases by one.

Now we can give a formal description of the algorithm.

Pack T-joins

Step 0. Set $\Phi \leftarrow \emptyset$.
Step 1. Find a T-join U such that $|U \cap \delta(S)|=1$, for all $S \in \Phi$.
Step 2. Compute α_{U} as the maximum of α such that
$\lambda(G-\alpha U)=\lambda(G)-\alpha$, and $0 \leq \alpha \leq \mu(U)$.
Step 3. If $\alpha_{U}<\mu(U)$, a new tight T-cut $\delta(S)$ has been found. Set $\Phi \leftarrow \Phi \cup\{S\}$ and uncross Φ.
Step 4. Set $G \leftarrow G-\alpha_{U} U$. If $\lambda(G)=0$ stop, otherwise go to Step 1 .
Since at each iteration either the cardinality of Φ increases or one edge is deleted, the total number of iterations is at most $2 n-1+m$. It remains to describe how to perform Steps 1 and 2. This is the subject of the next two sections.

4. Finding a T-join in Step 1

Given the family Φ of tight sets we need to find a T-join U such that $|U \cap \delta(S)|=1$, for all $S \in \Phi$. This will be done recursively.

The first time we start with $S=V$ and define G_{S} as the subgraph induced by S, with every maximal set of Φ that is properly contained in S contracted, labeled as a T-node and marked as tight. Let T_{S} be the set of T-nodes in G_{S}. We define an auxiliary graph whose node set is T_{S}, this is a complete graph. For any two nodes in T_{S} we find a path in G_{S} between them of minimum cardinality. Tight nodes can be the beginning or the end of a path, but not an intermediate node. This is to ensure that the resulting T-join intersects exactly once every tight T-cut. The cardinality of this path becomes the weight of the corresponding edge in the auxiliary graph. We find a minimum weight perfect matching in the auxiliary graph. This is to ensure that the resulting T-join is minimal. In G_{S} we take the union of all paths whose corresponding edges are in the matching. This gives a T-join U_{S} in G_{S}. Every tight node has exactly one edge of U_{S} incident to it.

Then we have to deal with each set W that has been contracted. In the T-join above, there is exactly one edge $e=\{i, j\}$, with $j \in W$. This time G_{S} is the subgraph induced
by W plus the edge e, and the node i labeled as a T-node. Again every every maximal set of Φ that is properly contained in S is contracted and we proceed as above.

The complexity of finding a minimum weight perfect matching in a complete graph with t nodes is $O\left(t^{3}\right)$, see [7,12]. Also the complexity of finding all shortest paths in G_{S} is $O\left(t^{3}\right)$. Therefore the complexity of Step 1 is $O\left(n^{3}\right)$.

5. Finding α_{U} In Step 2

Given a T-join U we are going to compute the maximum value of α such that

$$
\lambda(G-\alpha U)=\lambda(G)-\alpha, \quad \text { and } \quad 0 \leq \alpha \leq \mu(U)
$$

Let us define $f(\alpha)=\lambda(G-\alpha U)$. The function f is the minimum of a set of affine linear functions, so it is concave and piecewise linear. We have to find its first breakpoint. For this we start with a tentative value $\alpha_{U}=\mu(U)$. We compute $f\left(\alpha_{U}\right)$, if $f\left(\alpha_{U}\right)=\lambda(G)-\alpha_{U}$ we are done, otherwise let $\delta(S)$ be a minimum T-cut in $G-\alpha_{U} U$. Let $k=|U \cap \delta(S)|$. Let $\bar{\alpha}$ be the solution of $\lambda(G)-\alpha=\theta(S)-k \alpha$. We set $\alpha_{U} \leftarrow \bar{\alpha}$ and continue. See Figure 2.

Figure 2
A formal description of this algorithm is below.
Find α_{U}
Step 0. Set $\alpha_{U} \leftarrow \mu(U)$.
Step 1. Find a minimum T-cut $\delta(S)$ in $G-\alpha_{U} U$. If $\lambda\left(G-\alpha_{U} U\right)=\lambda(G)-\alpha_{U}$ stop. Otherwise continue.
Step 2. Compute $\bar{\alpha}$ as the solution of of $\lambda(G)-\alpha=\theta(S)-k \alpha$. Where $k=$ $|U \cap \delta(S)|$.
Step 3. Set $\alpha_{U} \leftarrow \bar{\alpha}$ and go to Step 1.
The complexity of this algorithm is given below.
Lemma 1. If $\alpha_{U}=\mu(U)$ this algorithm requires $O(n)$ minimum st-cut computations, otherwise it requires $O\left(n^{2}\right)$ minimum st-cut computations.

Proof. If $\alpha_{U}=\mu(U)$ only one iteration is performed. Otherwise at each iteration the value of $k=|U \cap \delta(S)|$ decreases. Since $|U| \leq n-1$, the above algorithm takes at most $n-1$ iterations. At each iteration one has to find a minimum T-cut with Padberg-Rao's algorithm, this requires $n-1$ minimum st-cut computations, then the result follows.

6. Final Analysis

Clearly the running time of the algorithm in Section 3 is dominated by the running time of Steps 1 and 2. Also notice that at most $2 n-1+m$ iterations are performed. Thus the total running time of Step 1 is $O\left((n+m) n^{3}\right)$. For Step 2 there are at most m iterations where $\alpha_{U}=\mu(U)$ that require $n-1$ minimum st-cuts, and at most $2 n-1$ iterations that require at most $(n-1)^{2}$ minimum st-cuts. The complexity of finding a minimum st-cut is $O\left(n^{3}\right)$, see [1]. Thus the total running time of Step 2 is $O\left(\left(m n+n^{3}\right) n^{3}\right)$. Therefore the complexity of this algorithm is $O\left(n^{6}\right)$.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows. Theory, algorithms, and applications, Prentice Hall, Englewood Cliffs, NJ, 1993.
[2] F. Barahona, Planar multicommodity flows, max cut, and the chinese postman problem, in DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 1, RI, 1990, Amer. Math. Soc., pp. 189-202.
[3] J. Cohen and C. Lucchesi, Minimax relations for T-join packing problems, in Fifth Israeli Symposium on Theory of Computing and Systems (ISTCS'97), 1997, pp. 38-44.
[4] M. Conforti and E. Johnson, Two min-max theorems for graphs not contractible to a 4-wheel, Technical report, IBM T. J. Watson Research Center, Yorktown Heights, NY, 1987.
[5] J. Edmonds and E. L. Johnson, Matching, euler tours and the chinese postman, Math. Programming, 5 (1973), pp. 88-124.
[6] D. R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Math. Programming, 1 (1971), pp. 168-194.
[7] H. N. Gabow, An efficient implementation of Edmonds' algorithm for maximum matching on graphs, J. Assoc. Comput. Mach., 23 (1976), pp. 221-234.
[8] H. N. Gabow and K. S. Manu, Packing algorithms for arborescences (and spanning trees) in capacitated graphs, Math. Programming Ser. B, 82 (1998), pp. 83-109.
[9] R. E. Gomory and T. C. Hu, Multi-terminal network flows, J. Soc. Indust. Appl. Math., 9 (1961), pp. 551-570.
[10] M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combinatorial optimization, Springer-Verlag, Berlin, 1993.
[11] I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput., 10 (1981), pp. 718-720.
[12] E. L. LaWler, Combinatorial optimization: networks and matroids, Holt, Rinehart and Winston, New York-Montreal, 1976.
[13] M. W. Padberg and M. R. Rao, Odd minimum cut-sets and b-matchings, Math. Oper. Res., 7 (1982), pp. 67-80.
[14] P. D. Seymour, On multicolourings of cubic graphs, and conjectures of Fulkerson and Tutte, Proc. London Math. Soc., 38 (1979), pp. 423-460.
[15] _, On odd cuts and plane multicommodity flows, Proc. London Math. Soc., 42 (1981), pp. 178192.
[16] P. G. Tait, On the colouring of maps, Proc. Roy. Soc. Edinburgh, 10 (1878), pp. 501-503.
(F. Barahona) IBM T. J. Watson research Center, Yorktown Heights, NY 10589, USA

E-mail address, F. Barahona: barahon@us.ibm.com

