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Maximum entropy, L-moments and order statistics

J. R. M. Hosking

IBM Research Division
P. O. Box 218
Yorktown Heights, NY 10598

Abstract. We find the distribution that has maximum entropy conditional on having
specified values of its first r L-moments. This condition is equivalent to specifying
the expected values of the order statistics of a sample of size r. We show that
the maximum-entropy distribution has a density-quantile function, the reciprocal of
the derivative of the quantile function, that is a polynomial of degree r; the quantile
function of the distribution can then be found by integration. This class of maximum-
entropy distributions includes the uniform, exponential and logistic, and two new
generalizations of the logistic distribution that may be useful for modeling data.
We also derive maximum-entropy distributions subject to constraints on expected
values of linear combinations of order statistics.



1. Introduction

The entropy of a continuous probability distribution on the real line with cumulative

distribution function F (x) and probability density function f(x) = dF (x)/dx is

H =
∫ ∞

−∞
{− log f(x)}f(x)dx . (1.1)

We restrict attention to distributions whose cumulative distribution functions F are

continuous and differentiable, with densities f that are nonzero within the range of

the distribution, i.e. f(x) > 0 when 0 <F (x) < 1. We denote this class of distributions

by D. A distribution of this type has a quantile function Q, the inverse of the cumula-

tive distribution function, defined by F (Q(u)) = u, 0 <u < 1; the quantile function is

continuous and differentiable on (0, 1), and Q′(u) = 1/f(Q(u)). The function f(Q(u))

is known as the density-quantile function (see, e.g., Parzen, 1979). By making the

substitution x = Q(u) in (1.1), the entropy can be written in terms of the quantile

function as

H =
∫ 1

0
log Q′(u)du . (1.2)

L-moments (Hosking, 1990) are measures of location, scale and shape of prob-

ability distributions. The rth L-moment of a random variable X with cumulative

distribution function F and quantile function Q is

λr = E[XP ∗
r−1{F (X)}] =

∫ 1

0
P ∗

r−1(u)Q(u)du , (1.3)

where P ∗
r ( . ) is the rth shifted Legendre polynomial,

P ∗
r (u) =

r∑
k=0

(−1)r−k

(
r

k

)(
r + k

k

)
uk .

In particular, λ1 is the mean, a location measure, and λ2 is a scale measure. The

dimensionless L-moment ratios τ3 = λ3/λ2 and τ4 = λ4/λ2 are measures of skewness

and kurtosis, respectively.

L-moments are related to expected values of order statistics. The order statistic

Xj:n, a random variable distributed as the jth smallest element of a random sample

drawn from the distribution of X, has expected value

E Xj:n =
n!

(j − 1)!(n− j)!

∫ 1

0
uj−1(1− u)n−jQ(u)du . (1.4)
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We have (Hosking, 1990)

λ1 = E(X1:1),

λ2 = 1
2
E(X2:2−X1:2),

λ3 = 1
3
E(X3:3− 2X2:3 + X1:3),

λ4 = 1
4
E(X4:4− 3X3:4 + 3X2:4−X1:4),

and in general

λr = r−1
r−1∑
j=0

(−1)j

(
r − 1

j

)
E(Xr−j : r) .

The main problem considered in this paper is the derivation of the distribution that

has maximum entropy conditional on having specified values of its first r L-moments.

This condition is equivalent to specifying the expected values of the order statistics

of a sample of size r. We will show that this maximum-entropy distribution has a

density-quantile function that is a polynomial Z(u) of degree r. We call this the

PDQ (for “polynomial density-quantile”) distribution. The quantile function of the

distribution can be found by integrating its derivative 1/Z(v).

Some special cases of the PDQ distribution are of interest. Two are well known:

on a finite interval, the maximum-entropy distribution is the uniform distribution;

on a semi-infinite interval, the maximum-entropy distribution with specified first

L-moment (or equivalently, specified mean) is the exponential distribution. We can

now add a third: on an infinite interval, the maximum-entropy distribution with spec-

ified first two L-moments is the logistic distribution (proved separately by Hosking,

2000). The “maximum entropy Lorenz curves” of Holm (1993) can be interpreted

as maximum-entropy probability distributions on a finite or semi-infinite interval,

with specified values of the first two L-moments (Holm’s conditions (8) and (9)).

We shall also describe some other special cases of the PDQ distribution, obtained

by deriving maximum-entropy distributions conditional on specifying L-moments of

orders {1, 2, 3} and {1, 2, 4}; these generate families of distributions that generalize

the logistic distribution and may be useful for modelling data.

In solving the main problem, we shall consider it in a slightly more general form.

The constraints (1.3) and (1.4) have the form

∫ 1

0
J(u)Q(u)du = g (1.5)
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where J is a polynomial. We therefore consider the derivation of the distribution

that has maximum entropy subject to constraints of the form (1.5). This will enable

us to constrain the values of (almost) arbitrary subsets of L-moments, or of (almost)

arbitrary sets of linear combinations of expected values of order statistics.

The structure of the paper is as follows. Section 2 derives the quantile function

that maximizes (1.2) subject to a set of constraints of the form (1.5). This general

solution is applied in Section 3 to constraints on L-moments and in Section 4 to

constraints on linear combinations of expected values of order statistics. Section 5

indicates some further applications of the PDQ distribution.

2. Derivation of the maximum-entropy distribution

We consider the problem of finding the function Q that maximizes the entropy (1.2)

subject to a set of constraints of the form (1.5). It is convenient to write constraints

such as (1.5) in the form ∫ 1

0
K(u)Q′(u)du = h . (2.1)

Let K(u) =
∫ 1
u J(v)dv; then integration by parts gives

∫ 1

0
J(u)Q(u)du =

[
−K(u)Q(u)

]1
0
+
∫ 1

0
K(u)Q′(u)du . (2.2)

If the lower endpoint of the distribution is finite, with Q(0) = L, the integrated term

is K(0)L. If the lower endpoint of the distribution is infinite, we shall require that

K(0) = 0, i.e. that
∫ 1
0 J(u)du = 0; since

∫ 1
0 J(u)Q(u)du is finite, this ensures that

K(u)Q(u)→ 0 as u→ 0, so the integrated term is zero. Thus a constraint of the

form (1.5) can be written as (2.1), where K(u) =
∫ 1
u J(v)dv and h = g−K(0)L or

h = g depending on whether the lower bound of the distribution is finite or infinite.

From constraints in the form (2.1) we can determine Q′(u), as follows.

Theorem 2.1. Consider the problem

Maximize
∫ 1

0
log{Q′(u)}du (2.3)

subject to
∫ 1

0
Ks(u)Q′(u)du = hs, s = 1, . . . , S, (2.4)

where the Ks are linearly independent polynomials, and the maximization is over

functions Q′(u) that are strictly positive on (0, 1).
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If there exist constants as, s = 1, . . . , S, that satisfy

∫ 1

0

Kr(u)du∑S
s=1 asKs(u)

= hr , r = 1, . . . , S, (2.5)

and
S∑

s=1

asKs(u) > 0 , 0 < u < 1, (2.6)

then the problem has the solution

Q′(u) = Q′
0(u) ≡ 1

/ S∑
s=1

asKs(u) . (2.7)

The solution is unique up to redefinition of Q′
0(u) on a set of u values that has measure

zero.

Proof. Let ã1, . . . , ãS be arbitrary constants that satisfy (2.6). We have

log x≤x− 1 for any x, with equality if and only if x = 1. Thus, for any u∈ (0, 1),

log
{( S∑

s=1

ãsKs(u)
)
Q′(u)

}
≤

S∑
s=1

ãsKs(u)Q′(u)− 1 , (2.8)

with equality if and only if

S∑
s=1

ãsKs(u)Q′(u) = 1 . (2.9)

Rewriting (2.8), we have

log Q′(u) ≤ − log
{ S∑

s=1

ãsKs(u)
}

+
S∑

s=1

ãs{Ks(u)Q′(u)− hs}+
S∑

s=1

ãshs − 1 . (2.10)

Integrating over 0 <u < 1, we have

∫ 1

0
log Q′(u)du−

S∑
s=1

ãs

(∫ 1

0
Ks(u)Q′(u)du−hs

)

≤−
∫ 1

0
log
{ S∑

s=1

ãsKs(u)
}
du +

S∑
s=1

ãshs− 1 . (2.11)
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Thus among functions Q′(u) that satisfy the constraints (2.4), we have

∫ 1

0
log Q′(u)du ≤ −

∫ 1

0
log
{ S∑

s=1

ãsKs(u)
}
du +

S∑
s=1

ãshs − 1 (2.12)

for any constants ã1, . . . , ãS that satisfy (2.6). We write this as

H[Q′] ≤ D(ã) (2.13)

for any ã∈A, where ã= (ã1, . . . , ãS) and A= {ã :
∑S

s=1 ãsKs(u) > 0 for all u∈ (0, 1)}.
Consider a particular a= (a1, . . . , aS) that satisfies (2.5), and define Q′

0(u) as

in (2.7). It is straightforward to show that Q′
0(u) satisfies the constraints (2.4) and

attains equality in (2.12), i.e. that H[Q′
0] = D(a). All other functions Q′(u) that

satisfy (2.4) have entropy that is bounded according to (2.12), and in particular they

satisfy

H[Q′] ≤ D(a) . (2.14)

Thus Q′
0 achieves the maximum possible value of H[Q′] for any Q′ that satisfies (2.4);

Q′
0 therefore solves the problem stated in the theorem.

Furthermore, equality in (2.11) is achieved essentially only if Q′(u) =

1/
∑

s ãsKs(u) for all u∈ (0, 1). Though Q′(u) may be different for particular values

of u, such differences must not alter the values of any of the integrals in (2.3) or (2.4),

and can therefore affect Q′(u) only on a set of u values that has measure zero. Sim-

ilarly, equality in (2.14) is attained only if Q′(u) = Q′
0(u) except on a set of measure

zero. Thus, apart from such changes, Q′
0 is the unique solution to the problem.

Theorem 2.1 essentially defines Q′(u), and shows that the density-quantile function

f(Q(u)) = 1/Q′(u) is a polynomial. One additional constraint is needed to determine

Q(u), and how this is done depends on the range of the distribution. Four cases must

be considered.

If the range of the distribution is constrained to be the finite interval [L, U ], this

constraint implies the two conditions Q(0) = L and Q(1) = U . We rewrite these as

Q(0) = L and
∫ 1
0 Q′(u)du = U −L. The latter constraint is of the form (2.1) and can

be added to the original set of constraints; the former constraint determines Q(u) to

be Q(u) = L +
∫ u
0 Q′(v)dv.

If the range of the distribution is the semi-infinite interval [L,∞), this provides

the constraint Q(0) = L, and determines Q(u) to be Q(u) = L +
∫ u
0 Q′(v)dv.
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If the range of the distribution is the entire real line, the range provides no

constraint on the location of the distribution. Neither does any constraint that

has
∫ 1
0 J(u)du = 0, because

∫ 1
0 J(u)Q(u)du is then invariant under the location shift

Q(u)→Q(u) + c. The entropy (1.2) is also invariant under a location shift. Thus

if every constraint satisfies
∫ 1
0 J(u)du = 0, the maximum-entropy distribution can be

determined only up to a location shift.

If instead exactly one constraint has
∫ 1
0 J(u)du 6= 0, the other constraints can be

used to determine Q′(u), using Theorem 2.1; the constraint
∫ 1
0 J(u)Q(u)du = g 6= 0

then serves to determine Q given Q′, provided that this Q′ is the derivative

of a quantile function Q for which
∫ 1
0 J(u)Q(u)du is finite. We cannot write

Q(u) = c +
∫ u
0 Q′(v)dv for any c, because the integral is infinite. Instead we write,

for any u∈ (0, 1),

g−Q(u)
∫ 1

0
J(t)dt =

∫ 1

0
J(t){Q(t)−Q(u)}dt

=
∫ 1

0
J(t)

∫ t

u
Q′(v)dv dt

=
∫ u

0

∫ u

t
−Q′(v)dv J(t)dt +

∫ 1

u

∫ t

u
Q′(v)dv J(t)dt

=−
∫ u

0

∫ v

0
J(t)dt Q′(v)dv +

∫ 1

u

∫ 1

v
J(t)dt Q′(v)dv

=−
∫ u

0
{K(0)−K(v)}Q′(v)dv +

∫ 1

u
K(v)Q′(v)dv ,

where, as before, K(u) =
∫ 1
u J(v)dv; thus

Q(u) =
1

K(0)

[
g +

∫ u

0
{K(0)−K(v)}Q′(v)dv −

∫ 1

u
K(v)Q′(v)dv

]
. (2.15)

If more than one constraint has
∫ 1
0 J(u)du 6= 0, the constraints can be redefined by

subtraction so that only one of them has
∫ 1
0 J(u)du 6= 0.

The solution Q(u) obtained by integrating Q′(u) is determined up to changing

the value of Q(u) on a set of measure zero; given that we are restricting attention to

continuous quantile functions, the solution is unique.

Putting the foregoing results together, we obtain a procedure for finding the

maximum-entropy distribution subject to a set of constraints of the form (1.5). It has

four variants, depending on the range of the distribution. We state the procedure in

the form of a theorem.
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Theorem 2.2. Consider the problem

Maximize
∫ 1

0
log{Q′(u)}du (2.16)

subject to
∫ 1

0
Jr(u)Q(u)du = gr, r = 1, . . . , R, (2.17)

where the Jr are linearly independent polynomials, and the maximization is over

quantile functions Q of distributions in the class D defined in Section 1. Suppose

further that one of the following sets of additional constraints is to be satisfied:

(Case 0) Q(0) = L and Q(1) = U ;

(Case 1) Q(0) = L, Q(1) unconstrained;

(Case 2a) no constraints on Q(0) or Q(1), with
∫ 1
0 Jr(u)du = 0 for all r;

(Case 2b) no constraints on Q(0) or Q(1), with
∫ 1
0 Jr(u)du 6= 0 for some r.

The problem is solved by the following procedures, provided that the equa-

tions (2.5) referred to below can be solved and, if applicable, that the integrals in

(2.19) or (2.23) below are finite. The solution is unique except that in Case 2a the

distribution is determined only up to a location shift.

Case 0:

1. Write the constraints in the form (2.4), by setting

Kr(u) =
∫ 1

u
Jr(v)dv, hr = gr −Kr(0)L, r = 1, . . . , R. (2.18)

2. Add the constraint
∫ 1
0 Q′(u)du = U −L, by defining KR+1(u) = 1, 0≤u≤ 1, and

hR+1 = U −L.

3. Set S = R + 1 and solve equations (2.5).

4. The maximum-entropy distribution has Q′ given by (2.7) and

Q(u) = L +
∫ u

0

dv∑S
s=1 asKs(v)

. (2.19)

Case 1:

1. Write the constraints in the form (2.4), via (2.18).

2. Set S = R and solve equations (2.5).

3. Provided that the integral in (2.19) exists, the maximum-entropy distribution has

Q′ given by (2.7) and Q given by (2.19).

7



Case 2a:

1. Write the constraints in the form (2.4), via (2.18).

2. Set S = R and solve equations (2.5).

3. The maximum-entropy distribution has Q′ given by (2.7). Q is determined only

up to an additive constant, by

Q(u) =
∫ u dv∑S

s=1 asKs(v)
. (2.20)

Case 2b:

1. Without loss of generality, suppose that
∫ 1
0 JR(u)du 6= 0.

2. For r = 1, . . . , R− 1, set J∗r (u) = Jr(u)−αrJR(u) and g∗r = gr−αrgR, where

αr =
∫ 1
0 Jr(u)du/

∫ 1
0 JR(u)du. The first R− 1 constraints are equivalent to the new

constraints ∫ 1

0
J∗r (u)Q(u)du = g∗r , r = 1, . . . , R− 1, (2.21)

for which we have
∫ 1
0 J∗r (u)du = 0 for all r.

3. Write the new constraints in the form (2.4), by setting

Kr(u) =
∫ 1

u
J∗r (v)dv, hr = g∗r , r = 1, . . . , R− 1. (2.22)

4. Set S = R− 1 and solve equations (2.5).

5. Provided that the integrals in (2.23) below exist, the maximum-entropy distribu-

tion has Q′ given by (2.7) and quantile function given by

Q(u) =
1

KR(0)

[
gR +

∫ u

0
{KR(0)−KR(v)}Q′(v)dv −

∫ 1

u
KR(v)Q′(v)dv

]
, (2.23)

where KR(u) =
∫ 1
u JR(u)du.

Remark 2.1. The restriction to class D is made for mathematical convenience:

it ensures that Q(u) is differentiable and enables us, when deriving (2.2), to write∫
K(u)Q′(u)du rather than merely

∫
K(u)dQ(u). Distributions outside this class may

have jumps in the quantile function, and, in consequence, constraints of the form (1.5)

may not be expressible in the form (2.1).

Remark 2.2. The significance of the condition in Cases 1 and 2b, “provided that

the integrals in (2.19) or (2.23) exist”, is illustrated in Examples 3.5 and 4.5 below.
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Remark 2.3. The proof of Theorem 2.1 can be related to standard concepts in the

theory of optimization. The left side of (2.11) is the Lagrangian for the optimization

problem stated in Theorem 2.1, with the ãs as the Lagrange multipliers; the right

side of (2.11), and of (2.12), is the criterion function of the dual problem.

The dual problem provides a practical means of solving equations (2.5). The dual

problem is to find the minimum of the function D(a) over a∈A. It is straightforward

to show (for details see Appendix, item 1) that the function D is convex and that

its local minimum (being a convex function, it can have only one) is the solution

of (2.5). Thus solving (2.5) reduces to finding the minimum of a convex function in

S-dimensional Euclidean space. This can be achieved by standard iterative numerical

methods, provided that a starting value a∈A can be found. A simple condition, often

satisfied in practice, that ensures the existence of such an a is that there should be

(at least) one constraint that has Kr(u) > 0 for all u∈ (0, 1) and hr > 0. In this case

one can take as a starting value the vector a that has ar = 1/hr and as = 0 for s 6= r.

Remark 2.4. Theorems 2.1 and 2.2 provide only sufficient conditions for a

solution to exist. This is generally adequate in practice, since the previous remark

provides a way of finding the solution when it exists. When no solution can be found,

there appear to be three possibilities. The constraints may be mutually inconsistent,

i.e., such that no distribution satisfies them all; distributions may exist that satisfy

the constraints and have arbitrarily high entropy (as in Example 3.6 below); or a

solution for Q′ may be found but cannot be translated into a solution for Q because

the integrals in (2.19) or (2.23) do not exist (as in Examples 3.5 and 4.5).

Remark 2.5. The problem stated in Theorem 2.2 can also be approached

by methods from the calculus of variations. The Euler-Lagrange equations (e.g.,

Troutman, 1983, Section 6.5) immediately show that the solution is of the form

d

du

(
1

Q′(u)
−
∑
r

κrJr(u)

)
= 0 ,

where the κr are Lagrange multipliers. This implies that 1/Q′(u), the density-quantile

function, is a polynomial. However, this approach establishes only that the solution

gives a stationary value of the entropy. To show that this stationary value is a

maximum is not straightforward in general, though the concavity of log Q′(u) as

a function of Q′(u) can be used in some cases. For example, Theorem (3.16) of

Troutman (1983, p. 74) covers Case 0, in which Q(u) is bounded. In the other cases,
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we would require an extension of Troutman’s results to the situation in which the

function Q has a continuous derivative not on the interval [0, 1] but merely on (0, 1).

3. Maximum entropy and L-moments

We now use Theorem 2.2 to find the distribution that has maximum entropy con-

ditional on having specified values of its first R L-moments. First we write the

constraints (1.3) in the form (2.1). Integration by parts gives

λ1−L =
∫ 1

0
(1−u)Q′(u)du when the lower bound L is finite, (3.1)

λ2 =
∫ 1

0
u(1−u)Q′(u)du , (3.2)

λ3 =
∫ 1

0
u(1−u)(2u− 1)Q′(u)du , (3.3)

λ4 =
∫ 1

0
u(1−u)(5u2− 5u + 1)Q′(u)du , (3.4)

and in general

λr =
∫ 1

0
Zr(u)Q′(u)du , r≥ 2, (3.5)

where Zr(u) =
∫ 1
u P ∗

r−1(v)dv is a polynomial of degree r.

Theorem 3.1. The distribution that has maximum entropy given specified values

of its L-moments λr, r = 1, . . . , R, is given by the following construction, provided that

the equations (3.7) below have a solution. Denote by Cases 0, 1, and 2 the instances

in which the range of the distribution is constrained to be the intervals [L, U ], [L,∞),

and (−∞,∞), respectively. Define

(in Case 0) Z0(u) = 1, k0 = U −L;

(in Cases 0 and 1) Z1(u) = 1−u, k1 = λ1−L;

(in all Cases) Zr(u) =
∫ 1

u
P ∗

r−1(v)dv , kr = λr, r≥ 2.

In Case m (m = 0, 1, or 2), the maximum-entropy distribution has quantile function

Q(u) with derivative given by

Q′(u) = 1
/ R∑

r=m

arZr(u) (3.6)
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where the ar satisfy the equations

∫ 1

0

Zr(u)du∑R
s=m asZs(u)

= kr , r = m, . . . , R, (3.7)

with
R∑

r=m

arZr(u) > 0 , 0 < u < 1. (3.8)

The quantile function itself is given, in Cases 0 and 1, by

Q(u) = L +
∫ u

0
Q′(v)dv (3.9)

or, in Case 2, by

Q(u) = λ1 +
∫ u

0
vQ′(v)dv−

∫ 1

u
(1− v)Q′(v)dv (3.10)

for any u∈ (0, 1).

Proof. The theorem is a restatement of Theorem 2.2, and follows immediately

from it. In Case 1, because λ1 is constrained, the integral in (3.9) is finite:

∫ u

0
Q′(v)dv≤ (1−u)−1

∫ u

0
(1− v)Q′(v)dv

≤ (1−u)−1
∫ 1

0
(1− v)Q′(v)dv

= (λ1−L)/(1−u) <∞ .

Similarly in Case 2, because λ2 is constrained the finiteness of the integrals in (3.10)

is assured.

Remark 3.1. Since Zr is a polynomial of degree r, it is clear from (3.6) that

the maximum-entropy distribution has a density-quantile function f(Q(u)) = 1/Q′(u)

that is a polynomial of degree R. We call such a distribution a PDQ (“polynomial

density-quantile”) distribution.

Including the coefficients of the polynomial f(Q(u)) and the constant of integra-

tion that arises when integrating Q′(u) to get Q(u), the quantile function of the PDQ

distribution has R + 2 free parameters. These parameters are determined by the R

constraints on the L-moments together with two further conditions that depend on

the range of the distribution. If the range of the distribution is a finite interval [L, U ],

then the quantile function must satisfy Q(0) = L and Q(1) = U . If the range of the
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distribution is a semi-infinite interval, without loss of generality the interval [L,∞),

then the quantile function must satisfy Q(0) = L and the density-quantile function

must satisfy f(Q(1)) = 0. If the range of the distribution can be the entire real line,

then the density-quantile function must satisfy f(Q(0)) = f(Q(1)) = 0.

Remark 3.2. If an endpoint of the distribution is infinite, the corresponding tail

of the probability density of the maximum-entropy distribution decays exponentially.

Consider the upper tail, for example. Because Q′(u) is the reciprocal of a polyno-

mial, its behaviour as u→ 1 is Q′(u)∼ c(1−u)−m with m an integer, m≥ 0 and c 6= 0

— in fact c > 0, since Q′(u) > 0 for all u∈ (0, 1). When the upper tail is infinite, then

so is the integral
∫ 1 Q′(u)du, so we must have m≥ 1. The integrals (3.1) (in Case 1)

or (3.2) (in Case 2) are finite, so we must have m≤ 1. Thus m = 1, i.e. as u→ 1

we have Q′(u)∼ c(1−u)−1 for some c, 0 <c <∞. Integrating the asymptotic equiv-

alence, we have Q(u)∼ b− c log(1−u) as u→ 1, which upon substituting u = F (x)

gives F (x)∼ 1− e−(x−b)/c as x→∞.

Remark 3.3. We can also write Zr(u), r≥ 2, as

Zr(u) =
∫ 1

u
P ∗

r−1(v)dv =
u(1− u)P ∗′

r−1(u)

r(r − 1)
. (3.11)

The last equality follows from integrating the differential equation satisfied by shifted

Legendre polynomials, which can be written as

r(r + 1)P ∗
r (u) +

d

du
{u(1− u)P ∗′

r (u)} = 0 (3.12)

(e.g., Sansone, 1959, p. 176, gives the corresponding result for “unshifted” Legendre

polynomials).

Remark 3.4. The polynomials Zr(u), r≥ 2, are orthogonal on the interval (0, 1)

with weight function {u(1−u)}−1. To see this, take the orthogonality relation of the

shifted Legendre polynomials, i.e.

∫ 1

0
P ∗

r (u)P ∗
s (u)du = 0 if r 6= s, (3.13)

and observe that for r, s≥ 1

∫ 1

0
P ∗

r (u)P ∗
s (u)du =

∫ 1

0

(∫ 1

u
P ∗

r (v)dv
)
P ∗′

s (u)du by parts
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=
∫ 1

0
Zr+1(u) . s(s + 1)

Zs+1(u)

u(1−u)
du by (3.11)

= s(s + 1)
∫ 1

0
{u(1−u)}−1Zr+1(u)Zs+1(u)du .

This gives another relation, in Case 2, between the coefficients ar in (3.7) and the

derivative of the quantile function of the maximum-entropy distribution:

∫ 1

0

Zr(u)du

u(1−u)Q′(u)
=
∫ 1

0
{u(1−u)}−1

R∑
s=2

asZs(u)Zr(u)du

=
R∑

s=2

as

∫ 1

0
{u(1−u)}−1Zr(u)Zs(u)du

= ar

∫ 1

0
{u(1−u)}−1{Zr(u)}2du .

The final integral can be evaluated explicitly; after a little algebra we obtain

ar = r(r − 1)(2r − 1)
∫ 1

0

Zr(u)du

u(1− u)Q′(u)
.

This orthogonality relation also ensures, in Case 2, that if the constants a2, . . . , aR

satisfy (3.8), then a2 > 0. For since Z2(u) = u(1−u), we have

0 <
∫ 1

0

R∑
r=2

arZr(u)du =
∫ 1

0
{u(1−u)}−1Z2(u)

R∑
r=2

arZr(u)du

=
R∑

r=2

ar

∫ 1

0
{u(1−u)}−1Z2(u)Zr(u)du

= a2

∫ 1

0
u(1−u)du by orthogonality;

the final integral is positive, whence a2 > 0.

Remark 3.5. A similar result to Theorem 3.1 holds when the L-moments that

are constrained are of degrees r1, r2, . . . , rR rather than 1, 2, . . . , R. We require in

Case 1 that λ1 be constrained and in Case 2 that λ2 be constrained; otherwise no

maximum-entropy distribution need exist, as in Examples 3.5 and 3.6 below.

We now give some examples of distributions that have maximum entropy sub-

ject to constraints on their L-moments. In each example we give the range of the

distribution and the L-moments whose values are constrained.
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Example 3.1. Range [L, U ]; no constraints on L-moments.

Though there are no constraints on L-moments, because the range of the distribu-

tion is finite we introduce the constraint
∫ 1
0 Q′(u)du = U −L. Equation (3.6) becomes

Q′(u) = 1/a0 and (3.7) is the single equation 1/a0 = U −L. Thus Q′(u) = U −L and

Q(u) = L + (U −L)u, so the maximum-entropy distribution is uniform on the interval

[L, U ]. This is of course a well known result.

Example 3.2. Range [L,∞); constrain λ1.

As in the previous example there is one constraint, which is now (3.1), and one

equation in the set (3.7). The solution is Q′(u) = (λ1−L)/(1−u), which can be inte-

grated to give Q(u) = L− (λ1−L) log(1−u); thus the maximum-entropy distribution

is an exponential distribution with lower bound L and mean λ1. This too is a well

known result.

Example 3.3. Range (−∞,∞); constrain λ1, λ2.

Again (3.7) consists of a single equation, based on the constraint (3.2). The

maximum-entropy solution is Q′(u) = λ2/{u(1−u)}, and from (3.10) we obtain

Q(u) = λ1 + λ2 log{u/(1−u)}. This is the quantile function of a logistic distribu-

tion: the maximum-entropy distribution is a logistic distribution whose location and

scale parameters are chosen to agree with the specified L-moments. This is a limiting

case of the results of Holm (1993).

In the corresponding problem when only λ2 is constrained, the solution is a logistic

distribution with undetermined location parameter. This result has also been proved

by Hosking (2000).

Example 3.4. Range [0,∞); constrain λ1, λ2.

The solution is, from (3.6),

Q′(u) =
1

a1(1− u) + a2u(1− u)
=

1

(1− u)(a1 + a2u)
, (3.14)

with, from (3.7),

λ1 =
∫ 1

0

du

(a1 + a2u)
=

1

a2

log
(

a1 + a2

a1

)
,

λ2 =
∫ 1

0

u du

(a1 + a2u)
=

1

a2

− a1

a2
2

log
(

a1 + a2

a1

)
.
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Writing β = a2/a1 we have

λ2/λ1 = 1/ log(1 + β)− 1/β ≡ g(β) , say. (3.15)

The function g(β), with g(0) defined to be 1
2

to maintain continuity at β = 0, is a

continuous monotonic function that decreases from 1 at β =−1 to 0 as β→∞. Thus

provided that 0 <λ2 <λ1 — precisely the conditions that λ1 and λ2 must satisfy to

be the first two L-moments of a nondegenerate distribution on [0,∞) (Hosking, 1990,

Theorem 2) — equation (3.15) has a unique solution with −1 <β <∞, from which

we obtain

a2 = log(1 + β)/λ1, a1 = log(1 + β)/(βλ1) . (3.16)

We can integrate (3.14) to get

Q(u) =
1

(a1 + a2)
log
(

1 + (a2/a1)u

1− u

)
. (3.17)

For a2 > 0, corresponding to λ2/λ1 > 1/2, this is the quantile function of a logistic

distribution truncated on the left.

This result has previously been obtained by Holm (1993, p. 388, the case

“r2→ 1+”; Holm’s r is our −a1/a2).

Example 3.5. Range [0,∞); constrain λ2.

This problem is excluded from the ambit of Theorem 3.1, because λ1 is not con-

strained. In attempting to use Theorem 2.2 we find that equations (2.5)–(2.7) have

the solution Q′(u) = λ2/{u(1−u)}, as in Example 3.3, but now the integral in (2.19)

does not exist. Thus no maximum-entropy distribution can be found by the methods

of Theorems 2.2 or 3.1.

To understand why no maximum-entropy distribution can be found, consider the

previous example, in which λ1 is also constrained. The maximum value of the entropy

is ∫ 1

0
log Q′(u)du =−

∫ 1

0
log(1−u)du−

∫ 1

0
log(a1 + a2u)du

= 2 +
a1

a2

log a1−
1

a2

(a1 + a2) log(a1 + a2)

= 2 + log λ2 + 2 log β− 1

β
(1 + β) log(1 + β)− log{β− log(1 + β)} ,
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where the last equality follows from expressing a1 and a2 in terms of β and λ2, using

(3.16) and (3.15). As λ1→∞ with λ2 fixed, i.e. as β→∞ with λ2 fixed, the entropy

increases monotonically and approaches the limit 2 + log λ2 (for details see Appendix,

item 2). However, this limit is not attained by any distribution with the specified

value of λ2 and a finite lower bound, so no maximum-entropy distribution exists

within this class of distributions.

Example 3.6. Range [L,∞); constrain λ3, λ4, . . . , λR.

The same argument as at the end of Remark 3.4 shows that there is no set of con-

stants ar such that
∑R

r=3 arZr(u) > 0 for all u∈ (0, 1). Thus (3.8) cannot be satisfied

and no maximum-entropy distribution can be obtained using Theorem 3.1.

The reason that no maximum-entropy distribution can be found is that there

exist distributions with lower bound L and the specified values of λ3, λ4, . . . , λR but

arbitrarily large entropy. For an explicit construction of such a distribution, consider

the function
∑R

r=3(2r− 1)λrP
∗
r−1(u). It is a polynomial, so its derivative on (0, 1) is

bounded below, by M say. Now choose

λ2 > |M |/6, λ1 = L +
R∑

r=2

(−1)r(2r − 1)λr , (3.18)

and define

Q1(u) = λ1 +
R∑

r=2

(2r − 1)λrP
∗
r−1(u) .

Note that, since P ∗
1 (u) = 2u− 1,

Q′
1(u) = 6λ2 +

R∑
r=3

(2r − 1)λrP
∗′
r−1(u) ≥ 6λ2 + M > 0 ;

thus the function Q1 is increasing on (0, 1), and is therefore the quantile function

of some probability distribution. Because the shifted Legendre polynomials satisfy

P ∗
r (0) = (−1)r, we have Q1(0) = L, so the distribution has lower bound L. By the

orthogonality relation (3.13) and the result

∫ 1

0
{P ∗

r (u)}2du = 1/(2r + 1) (3.19)

(Sansone, 1959, p. 245), we see that
∫ 1
0 P ∗

r−1(u)Q1(u)du = λr, i.e. the distribution with

quantile function Q1 has L-moments λr, r = 1, . . . , R. The entropy of the distribution
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is

∫ 1

0
log Q′

1(u)du =
∫ 1

0
log
(
6λ2 +

R∑
r=3

(2r− 1)λrP
∗′
r−1(u)

)
du

≥
∫ 1

0
log(6λ2 + M)du

= log(6λ2 + M)

and can be made arbitrarily large by letting λ2→∞.

When the range of the distribution is (−∞,∞) and λ2 is not constrained, we can

also find distributions that satisfy the constraints and have arbitrarily large entropy.

The construction is identical to that given above, except that λ1 may be specified in

the set of constraints rather than being defined as in (3.18).

Example 3.7. Range (−∞,∞); constrain λ1, λ2, λ3.

With the given constraints (3.2) and (3.3), the solution (3.6) is

Q′(u) =
1

u(1− u){a2 + a3(2u− 1)}
. (3.20)

This can be integrated (for details see Appendix, item 3): writing γ =−a3/a2, we

find that the quantile function has the form

Q(u) = ξ + α
{
log
(

u

1− u

)
+ γ log

({1− γ(2u− 1)}2

4u(1− u)

)}
, (3.21)

where ξ, α and γ are constants, related to the L-moments by

τ3 = λ3/λ2 =
1

γ
− 1

artanh γ
, (3.22)

α =
λ2(1− γτ3)

(1− γ2)
, (3.23)

ξ = λ1−α{(1 + γ) log(1 + γ)− (1− γ) log(1− γ)− γ log 4} . (3.24)

The L-moment ratio τ3 is the skewness measure based on L-moments; for nondegen-

erate distributions its valid values are −1 <τ3 < 1 and those of λ2 are λ2 > 0 (Hosking,

1990). The right side of (3.22) is a function of γ that increases monotonically from

−1 as γ→−1 to +1 as γ→+1. Thus for any valid τ3 we can find a unique value

of γ; furthermore this value satisfies −1 <γ < +1. Provided that λ2 > 0 we also obtain
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α > 0. Thus provided that the specified values of the L-moments are consistent with

some nondegenerate probability distribution, the maximum-entropy solution (3.21)

will have α > 0 and −1 <γ < +1; this ensures that Q′(u) > 0 for all u∈ (0, 1), i.e. that

the solution satisfies (3.8).

The quantile function (3.21) can also be thought of as defining a family of prob-

ability distributions with three parameters: ξ is a location parameter, α is a scale

parameter, and γ is a shape parameter taking values in (−1, +1). The family gener-

alizes the logistic distribution, which is the special case γ = 0, and contains both neg-

atively skew (γ < 0) and positively skew (γ > 0) distributions. It is, however, not the

same as the “generalized logistic” distribution used by Hosking (1996) and Hosking

and Wallis (1997). The distributions have infinite range in both directions, with expo-

nentially decreasing tails. The cumulative distribution function F (x) and probability

density function f(x) do not have explicit forms, but can be computed numerically:

for given x, F (x) is the solution of Q(F (x)) = x and f(x) = 1/Q′(F (x)). Because the

distributions have density-quantile functions that are polynomials of degree 3, we call

this the PDQ3 family.

We can use (3.4) to compute the fourth-order L-moment λ4 of the PDQ3 distribu-

tion, and the kurtosis measure τ4 = λ4/λ2. We find that τ4 = (5τ3/γ− 1)/4 (for details

see Appendix, item 4). The values of τ3 and τ4, as γ varies, can be plotted on an

L-moment ratio diagram. Figure 1 is such a plot, which compares the τ3–τ4 relations

for several different families of distributions. It shows that for a given value of τ3, the

PDQ3 distribution has the largest value of τ4 of any of these distributions.

The PDQ3 family is potentially useful for modelling data that may have been sam-

pled from skew distributions with exponentially decreasing tails. Sample L-moments

can be computed from the data (Hosking, 1990, 1996); using these sample L-moments

in place of the population L-moments in equations (3.22)–(3.24) provides estimates

of the parameters.

As an example of the PDQ3 distribution we consider the case λ1 = 0.5772,

λ2 = log 2 = 0.6931, λ3 = log(9/8) = 0.1178. These are the first three L-moments of a

Gumbel (extreme-value type I) distribution. The corresponding parameters of (3.21)

are γ = 0.4768, α = 0.8244, ξ = 0.3680. The entropies of the two distributions are

1.5772 (Gumbel) and 1.5898 (PDQ3). The two distributions are compared in Figure 2.

Both distributions have exponentially decreasing upper tails, and the quantiles of the

two distributions diverge only gradually in the upper tail. The lower tail of the PDQ

distribution is also exponential, but the lower tail of the Gumbel distribution is much
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lighter and the quantiles of the two distributions diverge sharply in the lower tail.

Example 3.8. Range (−∞,∞); constrain λ1, λ2, λ4.

With the given constraints (3.2) and (3.4), the solution (3.6) is

Q′(u) =
1

u(1− u){a2 + a4(5u2 − 5u + 1)}
. (3.25)

This can be explicitly integrated; after some algebra (for details see Appendix, item 5)

we find that the quantile function can be written in one of the forms

Q(u) = ξ + α
[
log
(

u

1−u

)
− 2δ artanh{δ(2u− 1)}

]
with 0 <δ < 1 (3.26)

or

Q(u) = ξ + α
[
log
(

u

1−u

)
+ 2δ arctan{δ(2u− 1)}

]
with −∞<δ < 0, (3.27)

where ξ, α and δ are constants. The value of δ is related to τ4 = λ4/λ2, the

L-moment kurtosis measure, which takes values in (−1
4
, +1) for continuous distri-

butions (Hosking, 1990). If τ4 = 1
6

we have δ = 0 and the quantile function (3.26)

reduces to that of the logistic distribution. Otherwise δ and τ4 are related by

τ4 =


−1

4
+

5

4δ

(
1

δ
− 1

artanh δ

)
if 1

6
≤ τ4 < 1,

−1

4
− 5

4δ

(
1

δ
− 1

arctan δ

)
if −1

4
<τ4 < 1

6
.

(3.28)

The right sides of these equations are monotonically increasing functions of δ, and for

given τ4 we can find a unique solution with 0 <δ < 1 when 1
6
<τ4 < 1 and −∞<δ < 0

when−1
4
<τ4 < 1

6
. Given δ, the other constants are related to the first two L-moments:

α =


λ2δ

(1− δ2) artanh δ
if δ > 0,

λ2δ

(1 + δ2) arctan δ
if δ < 0,

(3.29)

ξ = λ1. (3.30)

As in the previous example, the quantile functions (3.26)–(3.27) can also be

thought of as defining a family of PDQ probability distributions with three param-
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eters: ξ is a location parameter, α is a scale parameter, and δ is a shape parameter

taking values in (−∞, +1). The family generalizes the logistic distribution, which

is the special case δ = 0, and contains distributions both lighter-tailed (δ < 0) and

heavier-tailed (δ > 0) than the logistic. The distributions are symmetric about ξ and

have infinite range in both directions, with exponentially decreasing tails; they are

potentially useful for modelling data drawn from symmetric distributions with this

tail behaviour.

As an example of the distribution we consider the case λ1 = 0, λ2 = π−1/2 = 0.5642,

τ4 = 30π−1 arctan
√

2− 9 = 0.1226. These are the L-moments of a standard normal

distribution. The corresponding parameters of (3.27) are δ =−0.7029, α = 0.4332,

ξ = 0. The entropies of the two distributions are 1.4189 (Normal) and 1.4203 (PDQ).

The two distributions are compared in Figure 3. Their probability density functions

and quantile functions are very similar except in the extreme tails: for exceedance

probabilities between 0.011 and 0.989, corresponding to normal variate values between

−2.3 and +2.3, the quantiles of the two distributions differ by less than 0.03. However,

the PDQ distribution has heavier tails and its quantiles ultimately increase much

faster than those of the normal distribution.

4. Maximum entropy and order statistics

It is clear from (1.4) that constraints on expected values of order statistics, or of linear

combinations thereof, can be put in the form (2.17). Thus Theorem 2.2 can be applied

to the problem of finding the distribution that has maximum entropy conditional on

having specified values of linear combinations of expected values of its order statistics.

We now give some examples of maximum-entropy distributions that can be obtained

by this approach.

Example 4.1. Constraints E Xj:n = ξj, j = 1, . . . , n.

Both this problem and that in which the first n L-moments are specified give rise

to constraints (2.17) in which the Jr are a set of n linearly independent polynomials

of degree at most n. Either set of constraints can be transformed into the other, and

the two problems are equivalent. Thus the distribution that has maximum entropy

conditional on having specified values of its expected order statistics from a sample

of size n is a PDQ distribution in which the density-quantile function is a polynomial

of degree n.
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Example 4.2. Range (−∞,∞); constraint E(Xn:n−X1:n) = ξ.

Here we derive the distribution that has maximum entropy conditional on having

a specified value of the expected range of a sample of size n. The constraint can be

written, using (1.4), as

∫ 1

0
n{un−1 − (1− u)n−1}Q(u)du = ξ ,

or, integrating by parts, as

∫ 1

0
{1− un − (1− u)n}Q′(u)du = ξ .

Thus the maximum-entropy distribution has

Q′(u) = ξ/{1− un − (1− u)n} .

For n = 2 and n = 3 this is the logistic distribution. For general n the quantile function

does not have an analytic form, but it and the probability density can be evaluated

by numerical integration. The density is illustrated in Figure 4 in the case ξ = 1 for

several values of n. The density has exponentially decreasing tails and, as n increases,

an increasingly broad and almost flat peak.

Example 4.3. Range (−∞,∞); constraint E(X3:4−X2:4) = ξ.

The constraint can be written, using (1.4), as

∫ 1

0
12{u2(1− u)− u(1− u)2}Q(u)du = ξ , (4.1)

or, integrating by parts, as

∫ 1

0
6u2(1− u)2Q′(u)du = ξ .

Thus the maximum-entropy distribution has

Q′(u) = ξ/{6u2(1− u)2} , (4.2)

and, by integration,

Q(u) = 1
6
ξ
{
2 log

(
u

1− u

)
+

2u− 1

u(1− u)

}
+ c (4.3)
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where c is an undetermined constant. This distribution has a probability density f(x)

with tails like those of a Cauchy distribution: they decay as f(x)∼ 1/x2 as x→±∞.

The mean of the distribution does not exist.

Example 4.4. Range (−∞,∞); constraints E X2:4 = ξ2, E X3:4 = ξ3.

From (1.4) the constraints are

∫ 1

0
12u(1− u)2Q(u)du = ξ2 ,

∫ 1

0
12u2(1− u)Q(u)du = ξ3 .

In the notation of Theorem 2.2, both constraints have
∫ 1
0 Jr(0) 6= 0, so we rewrite

them as E(X3:4−X2:4) = ξ3− ξ2≡ ξ, E X3:4 = ξ3. The first constraint is now the same

as in Example 4.3, and from it we obtain the same solution, (4.2), for Q′(u). The

second constraint, together with (2.23), determines Q(u), which is found to have

the form (4.3) with c = 1
2
(ξ2 + ξ3) (for details see Appendix, item 6). Note that,

in the notation of Theorem 2.2, we have R = 2 and J2(u) = 12u2(1−u), whence

K2(0)−K2(v) = v3(4− 3v) and K2(v) = (1− v)2(1 + 2v + 3v2); these functions have

high enough powers of v and 1− v respectively to cancel the singularities in Q′(v) as

v→ 0 or v→ 1, so the integrals in (2.23) exist.

Example 4.5. Range (−∞,∞); constraints E(X3:4−X2:4) = ξ, E X = µ.

In contrast to the previous example, with the given constraints we can obtain the

solution (4.2) for Q′(u), but the integrals in (2.23) do not exist. The situation here

is similar to that of Example 3.5: there are distributions that satisfy the constraints

and have entropy arbitrarily close to that of the distribution (4.3), but this limit is

not attained by any distribution that satisfies the constraints.

An example of a set of distributions that contains members that approach

the limit is the set of distributions with Q′(u) = c/{uα(1−u)α}, where 0 <α < 2

and c = 1
6
ξΓ(6− 2α)/{Γ(3−α)}2. These distributions have finite mean and satisfy

E(X3:4−X2:4) = ξ, and have entropy log(ξ/6) + log Γ(6− 2α)− 2 log Γ(3−α) + 2α,

which increases towards the limit log(ξ/6) + 4 as α approaches 2 from below (for

details see Appendix, item 7). However, the limit case α = 2 does not correspond to

a distribution with finite mean.
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5. Further remarks

Two other applications of our results should be noted, and will be discussed further

in subsequent papers.

Given an observed set of n data points sampled from a continuous distribution,

we can derive the distribution whose expected order statistics from a sample of size n

are equal to the observed data values, and that has maximum entropy subject to

this constraint. As in Example 4.1 it is a PDQ distribution whose density-quantile

function is a polynomial of degree n. This is arguably the most natural continuous

distribution that could be used to describe the data. It is an alternative to the

“maximum entropy distribution” defined by Theil and others (e.g. Theil and Laitinen,

1980; Theil and Fiebig, 1984). It has potential applications to bootstrapping, where

greater efficiency can sometimes be obtained by using a continuous distribution rather

than the empirical distribution in bootstrap sampling (e.g., Silverman and Young,

1987; Hutson and Ernst, 2000).

Alternatively, an observed data set can be modelled by the continuous distribu-

tion whose first r L-moments are equal to the sample L-moments of the data for

some r≤n, and that has maximum entropy subject to this constraint. This yields

a nonparametric estimator of the distribution from which the sample was drawn.

Choice of r affects the smoothness of the estimated quantile function and can be

made adaptively as a function of the data.

Appendix

This Appendix contains mathematical details omitted from the main text.

1. Convexity of D (Remark 2.3)

We have, from (2.12),

D(a) = −
∫ 1

0
log
{ S∑

s=1

asKs(u)
}
du+

S∑
s=1

ashs − 1 . (A.1)

Thus
∂D

∂ar
= −

∫ 1

0

Kr(u)∑S
s=1 asKs(u)

du+ hr (A.2)

and
∂2D

∂ar∂as
=
∫ 1

0

Kr(u)Ks(u)(∑S
t=1 atKt(u)

)2 du . (A.3)
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For any x1, . . . , xr we have

S∑
r=1

S∑
s=1

xrxs
∂2D

∂ar∂as
=

S∑
r=1

S∑
s=1

∫ 1

0

xrxsKr(u)Ks(u)(∑S
t=1 atKt(u)

)2 du

=
∫ 1

0

(∑S
r=1 xrKr(u)

)2

(∑S
t=1 atKt(u)

)2 du

> 0 unless x1 = . . .=xr =0;

thus the second-derivative matrix of D is positive definite and so D is convex. At a local
minimum of D, the right side of (A.2) is zero, and therefore a=(a1, . . . , aS) satisfies (2.5).

2. Limiting behaviour of the entropy in Example 3.5

The entropy is given by

H(β, λ2) ≡ 2 + log λ2 + 2 log β − 1
β

(1 + β) log(1 + β)− log{β − log(1 + β)} . (A.4)

Differentiating, we obtain

∂H

∂β
=

1
β

+
1
β2

log(1+β)− β

(1 +β){β− log(1+β)}

=
β2− (1 +β){log(1+β)}2

β2(1 +β){β− log(1+β)}
. (A.5)

As β→∞, log(1 +β) = o(β1/2), so for β sufficiently large the right side of (A.5) is positive
and H(β, λ2) is an increasing function of β for fixed λ2. The limiting value of the entropy
is obtained by writing (A.4) as

H(β, λ2) = 2 + log λ2 + log
(

β

1 + β

)
− 1
β

log(1 + β)− log
{

1− 1
β

log(1 + β)
}

;

each of the last three terms tends to zero as β→∞, so the limiting value of the entropy is
2 + log λ2.

3. Derivation of PDQ3 distribution (Example 3.7)

With γ=−a3/a2, we write (3.20) as

Q′(u) =
1
a2
· 1
u(1−u){1− γ(2u− 1)}
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=
1

a2(1− γ)2
(

1− γ
u

+
1 + γ

1−u
− 4γ2

{1− γ(2u− 1)}

)
,

which can be integrated to give

Q(u) = ξ′ + α[(1− γ) log u− (1 + γ) log(1− u) + 2γ log{1− γ(2u− 1)}] , (A.6)

where ξ′ and α are constants. It is convenient to set ξ= ξ′ +αγ log 4 so that the location
parameter ξ is the median of the distribution. (A.6) can now be rewritten in the form (3.21),
which explicitly represents the quantile function as the logistic quantile function plus an
additional term that vanishes if γ=0.

The constants ξ, α and γ must be chosen so that the distribution has the specified values
λ1, λ2 and λ3 for its first three L-moments. Differentiating (A.6), we have

Q′(u) =
α(1− γ2)

u(1− u){1− γ(2u− 1)}
, (A.7)

so

λ2 =
∫ 1

0
u(1−u)Q′(u)du=α(1− γ2)

∫ 1

0

du

1− γ(2u− 1)

=α(1− γ2)
[−1

2γ
log{1− γ(2u− 1)}

]1
0

=α(1− γ2){− log(1− γ) + log(1+ γ)}/(2γ)

=α(1− γ2) artanh γ/γ (A.8)

and

λ3 =
∫ 1

0
u(1−u)(2u− 1)Q′(u)du

=
∫ 1

0
u(1−u) 1

γ
[1−{1− γ(2u− 1)}]Q′(u)du

=
1
γ

∫ 1

0
u(1−u)Q′(u)du− 1

γ

∫ 1

0
u(1−u){1− γ(2u− 1)}Q′(u)du

=
1
γ
λ2−

1
γ
α(1− γ2) . (A.9)

Dividing (A.9) by λ2 and using (A.8), we have

τ3 =
1
γ
− 1

artanh γ
, (A.10)

which is (3.22). Eliminating artanh γ from (A.8) and (A.10), we obtain the expression (3.23)
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for α. Finally, we can integrate (A.6), obtaining

λ1 =
∫ 1

0
Q(u)du

= ξ′ +α

∫ 1

0
[(1− γ) log u− (1 + γ) log(1−u)− 2γ log{1− γ(2u− 1)}] du

= ξ′ +α

[
−(1− γ) + (1 + γ) + 2γ

{
1 +

1 + γ

2γ
log(1+ γ)− 1− γ

2γ
log(1− γ)

}]
= ξ−αγ log 4 +α{(1 + γ) log(1 + γ)− (1− γ) log(1− γ)} ,

which yields (3.24).

4. τ4 for PDQ3 distribution (Example 3.7)

We have

0 =α(1− γτ3)
∫ 1

0
(2u− 1)du

=
∫ 1

0
(2u− 1) . u(1−u){1− γ(2u− 1)}Q′(u)du by (A.7)

=
∫ 1

0
u(1−u)

[
2u− 1− γ

{
1
5 + 4

5(5u2− 5u+1)
}]
Q′(u)du

=
∫ 1

0
u(1−u)(2u− 1)Q′(u)du− 1

5γ

∫ 1

0
u(1−u)Q′(u)du

− 4
5γ

∫ 1

0
u(1−u)(5u2− 5u+1)Q′(u)du

=λ3− 1
5γλ2− 4

5γλ4 by (3.2)–(3.4).

Dividing by λ2, we have
τ3 − 1

5γ −
4
5γτ4 = 0 ,

i.e. τ4 =(5τ3/γ− 1)/4.

5. Derivation of maximum-entropy distribution with specified λ1, λ2, λ4

(Example 3.8)

Let ω= a4/a2 and write (3.25) as

Q′(u) =
1
a2
· 1
u(1−u){1 +ω− 5ωu(1−u)}

(A.11)

=
1

a2(1 +ω)

{
1

u(1−u)
+

5ω
1 +ω− 5ωu(1−u)

}
, (A.12)
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Valid values of ω are those for which Q′(u)> 0 for all u∈ (0, 1); from (A.11) this condition
is equivalent to

T (u) ≡ 1 + ω − 5ωu(1− u) > 0 for all u∈ (0, 1). (A.13)

If ω≤ 0 the function T is concave and (A.13) is satisfied if and only if T (0) and T (1) are
both positive; since T (0)=T (1)= 1 +ω we must have ω≥−1. If ω≥ 0 the function T is
convex and (A.13) is satisfied if and only if the minimum value of T (u) on u∈ (0, 1) is
strictly positive; since the minimum is attained at u= 1

2 and T (1
2) = 1− 1

4ω, we must have
ω< 4. Thus the valid values of ω are −1≤ω< 4.

If −1≤ω≤ 0 we set δ=+
√
−5ω/(4−ω)∈ [0, 1], write (A.12) as

Q′(u) =
1

a2(1 + ω)

{
1

u(1− u)
− 1

1/(2δ)2 − (u− 1
2)2

}
,

and integrate it to give

Q(u) = ξ + α

[
log
(

u

1− u

)
− 2δ artanh{2δ(u− 1

2)}
]
; (A.14)

if 0<ω< 4 we set δ=−
√

5ω/(4−ω)∈ (−∞, 0), write (A.12) as

Q′(u) =
1

a2(1 + ω)

{
1

u(1− u)
+

1
1/(2δ)2 + (u− 1

2)2

}
,

and integrate it to give

Q(u) = ξ + α

[
log
(

u

1− u

)
+ 2δ arctan{2δ(u− 1

2)}
]
;

in each case ξ and α are constants. The choice of signs of the square roots in the definition
of δ is arbitrary; our choice will ensure that δ is a monotonically increasing function of τ4,
the L-kurtosis of the distribution.

The constants ξ, α and δ must be chosen so that the distribution has the specified
values λ1, λ2 and λ4 for its L-moments of orders 1, 2 and 4. We consider only the case
δ > 0; the corresponding results in the case δ < 0 can be obtain by a similar procedure.
Differentiating (A.14), we have

Q′(u) =α

{
1

u(1−u)
− 1

1/(2δ)2− (u− 1
2)2

}

=
α(1− δ2)

4δ2
· 1
u(1−u){1/(2δ)2− (u− 1

2)2}
,
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so

λ2 =
∫ 1

0
u(1−u)Q′(u)du=

α(1− δ2)
4δ2

∫ 1

0

du

1/(2δ)2− (u− 1
2)2

=
α(1− δ2)

4δ2
[
2δ artanh{2δ(u− 1

2)}
]1
0

=
α(1− δ2)

4δ2
2δ{artanh δ− artanh(−δ)}

=α(1− δ2) artanh δ/δ ,

whence α is given by the first equation of (3.29). Further, we have

λ4 =
∫ 1

0
u(1−u)(5u2− 5u+1)Q′(u)du=

α(1− δ2)
4δ2

∫ 1

0

−1
4 +5(u− 1

2)2

1/(2δ)2− (u− 1
2)2

du

=
α(1− δ2)

4δ2

∫ 1

0

(
−5 +

(5/δ2− 1)/4
1/(2δ)2− (u− 1

2)2

)
du

=
α(1− δ2)

4δ2

{
−5 + 1

4

(
5
δ2
− 1
)

4δ artanh δ
}

;

thus

τ4 =
λ4

λ2
=

1
4δ artanh δ

{
−5 +

(
5

δ2− 1

)}
=

−5
4δ artanh δ

+
5

4δ2
− 1

4
,

which is the first equation of (3.28). Integrating (A.14) gives

λ1 =
∫ 1

0
Q(u)du = ξ ,

since the factor multiplying α in (A.14) is integrable over (0, 1) and symmetric about u= 1
2 ;

this is (3.30).

6. Derivation of c in Example 4.4

To obtain Q(u) we evaluate (2.23). We have R=2, g2 = ξ3, K2(v) =
∫ 1
v 12u2(1−u)du=

(1− v)2(1 +2v+3v2), and Q′(u) = 1
6(ξ3− ξ2)/{u2(1−u)2}; thus

∫ u

0
{K2(0)−K2(v)}Q′(v)dv=

∫ u

0
(4v3− 3v4)

ξ3− ξ2
6v2(1− v)2

dv

= 1
6(ξ3− ξ2)

∫ u

0

4v− 3v2

(1− v)2
dv
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= 1
6(ξ3− ξ2)

∫ 1

1−u

1 +2t− 3t2

t2
dt (t=1− v)

= 1
6(ξ3− ξ2)

[
−1
t

+2 log t− 3t
]1
1−u

= 1
6(ξ3− ξ2)

(
−1− 3u− 2 log(1−u) +

1
1−u

)
and ∫ 1

u
K2(v)Q′(v)dv=

∫ 1

u
(1− v)2(1 +2v+3v2)

ξ3− ξ2
6v2(1− v)2

dv

= 1
6(ξ3− ξ2)

∫ 1

u

1 +2v+3v2

v2
dv

= 1
6(ξ3− ξ2)

[
−1
v

+2 log v+3v
]1
u

= 1
6(ξ3− ξ2)

(
2− 3u− 2 log(1−u) +

1
u

)
,

so (2.23) gives

Q(u) = ξ3 + 1
6(ξ3− ξ2)

(
−3 +2 log u− 2 log(1−u) +

1
1−u

− 1
u

)
= 1

2(ξ2 + ξ3) + 1
6(ξ3− ξ2)

{
2 log

(
u

1−u

)
+

2u− 1
u(1−u)

}
.

7. Limiting behaviour of the entropy in Example 4.5

Given Q′(u) = c/{uα(1−u)α}, to obtain E(X3:4−X2:4) = ξ, i.e. (4.1), we require that

ξ=E(X3:4−X2:4) =
∫ 1

0
6u2(1−u)2Q′(u)du

=6c
∫ 1

0
u2−α(1−u)2−αdu

=6c {Γ(3−α)}2/Γ(6− 2α) ,

whence c= 1
6ξΓ(6− 2α)/{Γ(3−α)}2. The entropy of the distribution is

H̄(α)≡
∫ 1

0
logQ′(u)du= log c−α

∫ 1

0
log u du−α

∫ 1

0
log(1−u) du

= log c+2α

= log(ξ/6) + log Γ(6− 2α)− 2 log Γ(3−α) + 2α .
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H̄(α) is a continuous function of α∈ (0, 2], and

d

dα
H̄(α) = −2ψ(6− 2α) + 2ψ(3− α) + 2

where ψ(x) = d
dx log Γ(x) is Euler’s psi function. Now for x> 1 we have

ψ(2x)−ψ(x) =
∞∑

k=0

(
1

x+ k
− 1

2x+ k

)
(Gradshteyn and Ryzhik, 1980, eq. 8.363.3)

=
∞∑

k=0

x

(x+ k)(2x+ k)

<
∞∑

k=0

x

(x+ k)(x+1 + k)

= 1 (Gradshteyn and Ryzhik, 1980, eq. 0.243.1),

so for α< 2 we have d
dαH̄(α)> 0. Thus as α→ 2, H̄(α) increases towards its limiting value

H̄(2) = log(ξ/6) +4.
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Figure 1. L-moment ratio diagram showing the relation between τ3 and τ4 for several
three-parameter families of distributions: PDQ3, generalized logistic, generalized extreme-
value (GEV), generalized Pareto, and Pearson type III (other than the PDQ3, these are
all as defined in Hosking, 1996, or Hosking and Wallis, 1997). Labelled points indicate
two-parameter distributions: exponential (E), Gumbel (G), logistic (L), normal (N) and
uniform (U).
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Figure 2. Probability density functions and a quantile-quantile plot for the Gumbel dis-
tribution and the maximum-entropy (PDQ3) distribution that has the same first three
L-moments.
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Figure 3. Probability density functions and a quantile-quantile plot for the standard
Normal distribution and the maximum-entropy (PDQ) distribution that has the same
L-moments λ1, λ2, λ4.
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Figure 4. Probability density functions of Example 4.2, the maximum-entropy distribution
subject to the constraint that the expected range of a sample of size n is 1.


