
RC22531 (W0207-124) July 25, 2002

IBM Research Report

A Publish-Subscribe Architecture and Methodology for
Monitoring Distributed Systems

Karen Witting, James R. Challenger, Brian M. O'Connell
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 Page 1

A Publish-Subscribe Architecture and Methodology for
Monitoring Distributed Systems

Karen Witting
IBM T. J. Watson Research

Center
P. O. Box 704

Yorktown Heights, NY
10598

witting@us.ibm.com

Jim Challenger
IBM T. J. Watson Research

Center
P. O. Box 704

Yorktown Heights, NY
10598

challngr@us.ibm.com

Brian O’Connell
IBM Global Services Special

Events Web Solutions
P.O. Box 12195

3039 Cornwallis Road, RTP
NC 27709

boc@us.ibm.com

ABSTRACT
In order to support complex, rapidly changing, high-volume
websites many components contribute to keeping the
content current. Monitoring the workflow through all these
components is a challenging task. This paper describes a
system in which objects created by the various
heterogeneous, distributed components can be distributed to
any application choosing to present monitoring information.
Creation, distribution, and presentation of the objects are all
independent, leading to highly responsive and flexible
monitoring of the complex system.

Keywords
Publish-Subscribe, Monitoring, Distributed Systems,
Workflow Monitoring, Queue Monitoring, High Volume
Web Serving, Content Management

INTRODUCTION
Systems comprised of a large number of interacting
components require a monitoring system that is flexible and
adjusts for its ever-evolving needs. Modern, high volume
web sites and their supporting infrastructure are an example
of this kind of large system. Components comprising
systems such as this are often geographically dispersed. The
now-common “24x7” availability requirements for such
systems means that machines are dynamically added and
removed to adjust for changing load and hardware failures.
Any machine may have a range of components that must be
monitored, and the collection of components on any
particular machine may change over time. New types of
components may be needed, and previously used
components may be removed from the system. Any
particular component may provide different types of
monitoring data over time.
A flexible monitoring system must be able to collect
monitoring data from disperse machines and diverse
components and present different views of the same data as
well as differing levels of detail. Monitoring data is used
for a variety of purposes; detailed problem resolution,
general flow analysis, assessment of system requirements,
problem recreation, and for communication with
management and peers. Views are required in real time to

give confidence that the system is operating smoothly and
to highlight problems as they appear. Views are also
required for offline analysis. Since system structural
characteristics such as hardware, operating systems and
networking capabilities may need to be flexible over time,
the monitoring system must be able to accommodate these
kinds of changes.
In this paper we describe the system designed and
implemented to monitor the publishing and content
distribution systems for the Sydney 2000 Olympic Website
[1] [6]. The system has been extended since then for use in
monitoring the publishing infrastructure that delivers the
IBM sponsored Special Events websites [2, 3, 4, 5]. We
present the architecture of the monitoring system. We
describe how monitoring data is collected, the method of
distribution of the data, and the agents which receive and
process the data. Specific case studies from the Sydney
Olympics and the current Special Events sites are
presented. Finally we present future enhancements for the
continued support of IBM sponsored and hosted web sites.

RELATED WORK
Tivoli [7] software has been used to monitor availability
and functionality of hardware components, complex
software systems such as databases, and critical subsystems
such as web servers. One powerful feature of Tivoli is the
ability to trigger “repair” scripts to automatically correct
well-defined problems such as server or database failure
and log overflow. The problems detected by our system are
generally too subtle for such an approach, requiring human
judgment before action is taken. The ability to monitor
the system remotely from laptops was also essential, but at
the time Tivoli did not support remote access to the
displays. Tivoli does not provide the customized views of
subtle conditions that represent potential but not-yet
realized failures. While some customized views can be
built we required more complex hierarchical views of the
information flow that could not be implemented in Tivoli.
It was considered simpler to implement the views
independently of Tivoli, also providing a more portable
monitoring system, fully integrated with the publishing and
content distribution system it supports.

 Page 2

Spong[8] was examined and extended as eSpong(not
generally available) and is a key monitoring system used at
the web serving facilities described in this paper to monitor
conditions such as CPU load and server hits, Spong and
eSpong present HTTP-based views of system loads,
providing highly portable access to information in critical
systems in the serving path. As well, HTTP based
protocols provide a well-understood, secure solution to
access through necessary obstacles such as firewalls.
BigBrother[9] is another system and network monitor. It
lacks the hierarchical views we need for our system and
would require some effort to customize it to present the data
we produce effectively.
A number of systems have been built for monitoring of
parallel and grid applications such as those by Vetter et al
[10] and Miller et al [11], as well as for visualization of
performance of parallel applications (Shaffer et al[12]).
These systems are designed primarily for monitoring the
performance of parallel applications, as opposed to
monitoring workflow through multiple, heterogeneous
systems.

SYSTEM ARCHITECTURE
The serving infrastructure is comprised of several serving
complexes geographically distributed throughout the United
States. Content for the serving complexes moves from its
originator, through one or more steps, to its final
destination. The number and configuration of the steps
varies by event. At each step one or more components may
provide monitoring data. An application specific probe
gathers data from a component. Once gathered, this data is
published to the distribution system which delivers it to
subscribers. Figure 1 shows an abstract view of the
systems, where M1 is delivering content to M2 and M3.
On each machine producers gather and publish monitoring
data into the distribution system. Consumers subscribe to
selected monitoring data and format it for display.

display

display

Machine M1

Machine M2

Machine M3

Monitor Data
Distrbution

web content flow

publish

consumer

producer

subscribe

Figure 1: Monitoring System Architecture

GENERAL DESCRIPTION
The monitoring system consists of three independent
elements: producers of data, consumers of data, and a
distribution mechanism. Producers gather data, consumers
receive data. The distribution mechanism coordinates the
delivery of data from producers to the consumers. The data
is encapsulated into a monitor object. The monitor object is
designed to be independent of both the distribution
mechanism and the consumer.

Monitor Objects
Monitoring data is wrapped into an opaque object called a
monitor object. Monitor objects have properties associated
with them that allow selection criteria to be applied by
consumers. For our system we have three properties
associated with any object: event name, (such as
“www.wimbledon.org”) host name (such as
“server1.ibm.com”) and component name (such as
“Distributor” or “SaveFile”). This creates a selection space
for use by consuming applications. Also provided by every
monitor object are a component type, a creation timestamp
and a function that can be used to convert the contents of
the object into a key/value paired list. Beyond these base
requirements, the component may add any data to the object
that is relevant. The data in a monitor object is accessed by
interrogating a self-describing object using a language
specific mechanism. (Specifically, our implementation uses
the Java™ reflection mechanism.) Thus, the data contained
in the monitoring object can change independently of the
distribution system and independently of the consumers.

Producers
Producers of monitoring data create and publish monitor
objects at regular intervals and deliver them to the

 Page 3

distribution system. Each producer extracts monitoring data
that is specific to the component of the application that it is
monitoring. Producers can be an integral part of the
component. All producers use common facilities for
creating and publishing monitoring objects. The process of
publishing the monitoring data includes gathering the data,
creating an appropriate object, setting properties on the
object, and transforming the object to binary for
transmission over the network. (Our implementation uses
Java™ serialization to transform the object to binary.) The
binary data and its properties are then published to the
distribution system

Consumers
Consumers receive monitor data via subscription from the
distribution system. After connecting to the distribution
system, consumers specify selection criteria to control
which monitoring objects they will receive. A consumer
may choose to receive only data associated with a
particular event, from a particular host, from a specific
component, or any combination of the above. Consumers
can also choose to receive all monitoring data.

Distribution
Monitoring data is distributed using a publish/subscribe
model. Producers publish monitoring data and consumers
subscribe to receive selected data. (Our mechanism is an
implementation of Java™ Message Service (JMS)). From
the perspective of the distribution system, monitoring data
is simply opaque binary data. Producers and consumers
interact only with the distribution system and thus are
decoupled from each other. Producers can be added to the
system, removed from the system and can change the type
of object and data they are producing. Because consumers
select objects to receive based on the properties associated
with them, new producers in the system can be
automatically detected by appropriate consumers. For
instance, if a consumer is interested in all data associated
with a particular event and a new producer is added which
is generating data for that event, the consumer will
automatically receive the new data. Consumers can also
detect new types of objects, by using the language specific
interrogation mechanism to identify that the object type has
changed and that new data is available for display.
Consumers are added and removed from the system
whenever is appropriate.

QUEUES AND TASKS
The systems we monitor are composed of a series of
cascading task/queue structures which form a hierarchy.
Work flows through the system as tasks on queues. A task
is represented by an object with associated methods. Tasks
read and write data, do dependency analysis, web page
assembly, or deliver completion notifications. A queue
manages tasks which require execution. Each queue
manages a particular kind of task. Tasks are created when
external commands are received or as a result of executing
other tasks. Tasks wait for available threads from a thread

pool and execute. After the completion status of a task has
been processed the task object is discarded. Queues manage
waiting and executing tasks. See Figure 2 for a diagram
showing the relationship of queues and tasks.

 Q u eu e

Task O utp u t
D ata read o r w ritten

N ew task c rea ted

N ew tasks a re crea ted by
execu ting tasks o r v ia

com m ands received v ia the
ne tw ork

T ask

T asks w a iting fo r a
th read in w h ich to run

T asks
execu ting

Figure 2: Queues and Tasks

Every queue generates monitoring data. Queues report on
the number of tasks waiting and executing. For each
interval queues present how many tasks enter the queue,
complete successfully and fail. Each queue is a producer
and creates a monitoring object containing queue specific
data.
Queues form a workflow hierarchy, where the output of
tasks on one queue is the addition of tasks onto queues
below it in the hierarchy. Since each queue is a producer,
monitoring data is generated from each node in the tree.
Observing the monitoring data from each queue as a node
within a branch presents an overall view of the health of the
system. Figure 3 illustrates a tree of queues, where each
queue in the tree generates a monitoring object.

 Page 4

Machine
with
queue
tree

network
read

queue

Source Machine

Sink
Machine

file
write

queue

network
write

queue

network
write

queue

network
write

queue

Sink
Machine

Sink
MachineDisk

Figure 3: Queues on a machine

DATA PRESENTATION
Data presentation is constantly being revised and improved
as experience dictates new approaches and as requirements
change. The generation of data and the distribution of data
has changed very little since its original design, but the
mechanisms to present the data are under constant revision
and modification. General types have emerged from direct
experience.

Hierarchical Display of queues
System management staff requires assurance that work is
properly flowing through the system and that one problem
is not causing a ripple effect into other areas. The
hierarchical display presents a high-level overview of the
full system’s status by showing the status for each queue.
This view allows easy understanding of current workflow
characteristics without other information that may be a
distraction. This summary is also used to check for ripple
effects when a problem is detected in other parts of the
system. Figure 4 shows a workflow hierarchy where work is
not significantly delayed at any point.

Figure 4: Hierarchical Queue Display

Custom Display
An enhancement to the original system allows monitoring
objects to provide custom-built display mechanisms. This
mechanism moves the presentation logic to the monitoring
object and out of the consumer of the monitoring data.
Consumers have a choice of whether to use this provided
presentation logic. By providing a launch point for a
monitoring object’s custom-built presentation logic a
consumer is able to present unbounded options. Figure 5 is
an example of how a particular monitoring object chooses
to display its data.

Figure 5: Custom Display of Monitoring Data

Table Display
Detailed information about queues in the system is
displayed as a table, where each row in the table is a queue,
and each column displays one aspect of the workflow
through that queue. This detailed presentation allows more
complete understanding of the workflow.
Figure 6 presents a segment of a table view for a set of
queues. “queued” indicates the number of tasks waiting for
execution and is the same value that can be found on the
hierarchical view described earlier.

name queued active bytes objects
MainDistributor 15 20 16,956,142 501
Plex1Main 763 60 13,355,864 214
Plex2Main 225 25 15,600,900 438
Plex3Main 112 40 1,954,129 75
Plex4Main 21 40 445,932 68
Plex1Serve1 0 0 68,983 3
Plex1Serve2 3 10 3,947,485 160

Figure 6: Table view

HTTP Display
There are several situations where it is helpful to make
monitoring data available through an HTTP server. We
have created an HTTP interface which provides a subset of
monitoring data to HTTP clients. This allows any kind of
HTTP client to access and present monitoring data
collected within our system. In particular, data can be sent

 Page 5

through firewalls, to other forms of monitoring systems, and
to non-Java based programs.

Statistical Logging
Monitoring data can be stored for offline analysis. To
insure the accessibility of the data in the future it is
converted to its key/value format and stored as an ascii log.
Analysis tools read the log and do appropriate processing.
Detailed charts and statistical analysis are created from the
logged data which yields insights into the operation of the
system, Figure 7 is an example of the kind of analysis which
can be done.

Figure 2: Number of bytes processed per day

0
200
400
600
800

1,000
1,200
1,400
1,600
1,800
2,000

D
ay

 0
D

ay
 1

D
ay

 2
D

ay
 3

D
ay

 4
D

ay
 5

D
ay

 6
D

ay
 7

D
ay

 8
D

ay
 9

D
ay

 1
1

D
ay

 1
2

D
ay

 1
3

D
ay

 1
4

D
ay

 1
5

D
ay

 1
6

M
ill

io
ns

Read Bytes

Write Bytes

Figure 7: Number of bytes processed per day

EXPERIENCES
The original implementation and experience with the
system occurred as part of hosting the Sydney 2000
Olympic Website [1]. The general design and flow of the
system was re-used for monitoring the Events Infrastructure
[2][3][4][5].
These two experiences are similar in that they both are
primarily involved in distributing work through a complex,
disperse system using queues. The quantity and variability
of that work varied in the two systems. Monitoring of both
systems is primarily concerned with ensuring that work is
traveling through the system without significant delay.

Using the Hierarchical view
It is critical that the entire support staff be able to get a
high-level view of the state of the system at any given
moment. Refining the monitoring data into selected critical
values and presenting that in a graphical way provided this.
The hierarchical view is easy to comprehend so that
everyone from content developers to webmasters and
management, can quickly understand the health of the
system.
One common problem during an event is work getting
delayed within the system, forming high queue counts.

Normally the hierarchical view of the system indicates that
work is flowing efficiently through the system. This is
indicated with the nominal, normally zero, numbers for
each queue, which can be seen in Figure 8.

Figure 8: Error free view

When one of the numbers grows significantly, as seen in
Figure 9, this is cause for concern. This view indicates that
there are 56 tasks waiting. Technical webmasters
understand that this number indicates the number of files
that are waiting to be sent from sbdev1:/Plex1MainNode/ to
sbdev1:/ServingNode1.

Figure 9: Possible problem

This high count may, or may not, indicate a problem in the
system. Detailed views of the monitoring objects will
provide the data that is needed to understand the cause of
the delay. Here we present the different types of detailed
views used.

Sydney 2000 Olympics
The Sydney 2000 Olympic Website [1] was hosted on a
network of IBM RS/6000 SP2 complexes connected by a
dedicated private network for inter-complex
communication. All producers of monitoring data ran on
AIX machines while consumers of monitoring data ran on a
variety of platforms.
One important function of the monitoring systems was to
provide data which could be used to generate daily update
reports for management. Predicting the level of detail
needed for these reports in advance is impossible. Because
all the information was available through the system,
modifying our first attempts at proper detail level was
simply a matter of changing the analysis programs. The

 Page 6

collection and distribution of data was not effected by
changes in management’s requirements regarding daily
performance reporting.
Detailed understanding of the state of every queue in the
system is a critical and challenging task. The table view
allowed this to be accomplished with relative ease. It could
be configured to present only the most relevant queues, or
all queues.
During the event each queue tended to be in one of five
states: quiet, active, slow, busy or down. Distinguishing
these different states was necessary to determine when high
queue counts were a concern, and what steps might be
necessary to correct them.

Quiet Queues
Quiet queues have only a small quantity of work flowing
through them. Figure 10 shows two queues, both of which
have very few tasks waiting. The detailed information of
“bytes” and “objects” indicate how many bytes and objects
have been processed in the last minute. This rate of flow
indication is very useful in understanding the current state
of the queue. In this figure these numbers indicate that data
is being processed by this queue, but the quantity of work is
very small.

name queued active bytes objects
Plex1Serve1 0 0 68,983 3
Plex1Serve2 3 10 3,947,485 160

Figure 10: Quiet Queues

Active Queues
Active queues are receiving significant workload and are
not overloaded. Active queues show large numbers for the
bytes and objects per minute counts, and relatively low
numbers for queued counts. Figure 11 shows several
queues which are busy but not overloaded. They are each
processing around 16 Megabytes of data in a minute,
sending an average of 500 objects. We know, based on our
configuration, that these values are near the theoretical
maximums for the kinds of operations being performed by
these queues, so we can feel confident that everything is
working well. Although there are several large queued
numbers, the largest is only about twice the number of
objects which can be processed in a minute. This indicates
that the queue is at most two minutes behind, which is
acceptable in this case. At peak times a situation like this
bears observing further, to ensure that the backlog is
cleared out in a few minutes. It is always optimal to have
all work processed in the same minute that it arrives.

Name queued active Bytes objects
MainDistributor 15 20 16,956,142 501
Plex1Main 1,284 60 16,898,348 685
Plex2Main 225 25 15,600,900 438

Figure 11: Active Queues

Slow Queues
Slow queues are not working at their expected capacity.
Slowdowns generally indicate an undesirable system
condition, like a networking problem. In Figure 12 we see
that the system is busy, all queues are processing significant
work each interval. The Plex1Main queue is significantly
backed up. We observe that the rate of flow values for that
queue are low, in particular, that it is only able to process
244 objects a minute. We expect to see this queue
processing 500 or more objects in a minute. Unfortunately
it is running at roughly half its expected rate and if that is
not corrected we expect it will take well over an hour to
work through the backlog. To calculate the expected time it
takes to clear a backlog we divide the number of objects
waiting, in this case 18,038, by the number of objects
processed in a minute. In case the result is 74 minutes.
Even at 500 objects per minute this delay is only improved
to a half hour. This example is a severe case of the effect of
combinations of network problems and heavy workload.

Name queued active bytes objects
MainDistributor 71 21 9,751,762 514
Plex1Main 18,038 60 6,094,036 244
Plex2Main 0 0 12,756,023 641

Figure 12: Slow Queue

Busy Queues
A queue that is receiving more work than it has workload
capacity becomes backed up and busy. A busy queue is an
example of a potentially subtle situation that may indicate
failure of some component or simply indicate a spike in
workload. The ability for all queues to keep up with the
workload demand was a significant focus of the entire
support team. As long as a large quantity of work continues
to flow into the queue, the queue will not be able to
recover. When a queue is falling behind and unable to
process work in a timely manner, a great deal of focus and
detailed understanding of the situation is required. Most of
the time these situations are caused by a sudden heavy load
of work being added to the system, or a networking
problem. Once in the over loaded state a queue is
monitored very closely until it is once again in a satisfactory
state. During this time content developers and management
required regular updates. In Figure 13 Plex1Main is
processing work at a reasonable speed, but it is still almost
15 minutes behind its workload (8,375 waiting objects
divided by 604 objects per minute). Further analysis
indicates that no other queues are overloaded and the queue
sending work to Plex1Main, MainDistributor, is
experiencing a light load at the moment. Therefore, we
expect that this problem will not last longer than the 15
minutes it will take to clear the current backlog. This
queue will be closely watched until it has recovered.

 Page 7

name queued Active bytes objects
MainDistributor 0 0 2,052,747 60
Plex1Main 8,375 60 12,997,655 604
Plex2Main 0 0 2,069,651 61
Plex3Main 600 40 1,625,933 411
Plex4Main 2 40 3,547,756 457
Plex1Serve1 46 10 1,625,933 411
Plex1Serve2 29 10 17,865,748 527

Figure 13: Busy Queue

Down
Down queues are no longer able to process work. This is
often because a machine is down so it is important that this
fact be highlighted immediately. If work is flowing to that
machine it will get delayed, resulting in large queued
values. During quiet times a machine’s down status may
not result in high queued values immediately. We found
that it was very helpful to highlight the fact that a machine
was down. In Figure 14 Plex2Main is down because its
active count and per minute byte and object counts are all
zero. This means that no work is flowing through this
queue. The queued number alone would not necessarily
indicate that the queue is in trouble, but the detailed
information indicates that there is a significant problem that
must be corrected.

name queued active Bytes objects
MainDistributor 0 0 28 1
Plex1Main 0 0 28 1
Plex2Main 670 0 0 0

Figure 14: Down Queue

Events
The events infrastructure is hosted on a network of
Netfinity X86 machines connected by a virtual private
network. All producers of monitoring data run Linux while
consumers of monitoring data run on a variety of platforms.
The events infrastructure began using the monitoring
system in January 2002 for the Australian Open Tennis
tournament [2] and the system has been used for every
event since [3, 4, 5]. Some details regarding the form of the
monitoring object were improved, but the generation and
distribution of the objects remain functionally similar to the
original design. The events being monitored are high
profile and problems must be resolved immediately. This
kind of short duration, high intensity web event drove the
design of the original monitoring system.

Queue backup resolution
The nature of the detailed data available about the queues in
this system is different than the original table data.
Referring to Figure 9 on page 5 we see that the hierarchical

view shows a potential backup of 56 tasks on
Plex3MainNode. When this kind of queue backup occurs
the delayed tasks will be put into different states based on
current system characteristics. The number of tasks in each
state is presented in the detailed view for the queue.
Figure 15 illustrates the scenario where all the tasks are in
memory. This indicates the network connection between
the machines is functioning without error. The machine
may be overloaded with other activity and currently not
able to process the files in a timely manner or perhaps the
files are being processed at the normal rate but an unusually
large number were received. Distinguishing these two types
of problems requires understanding how many files were
sent in the last interval.

Figure 15: Backlog in Memory

In Figure 16 we see that the tasks are being saved on disk.
This indicates that there is a communication error. The
tasks are moved to disk so the backup resulting from the
communication error does not exhaust memory.

Figure 16: Backlog on Disk

Communication failure between two nodes can have many
root causes, but most often indicates either a networking
error or an entire machine failure. It is important to be able
to isolate these very different kinds of problems quickly.
Machine failures are detected when a machine fails to send
monitoring data in the expected interval. In Figure 17 a row
in the table is highlighted because the machine associated
with that data has not sent data in the expected time period.
This highlighting warns that the data for that machine is
stale. Since this is the only machine highlighted, this
indicates that the machine has failed and needs immediate

 Page 8

attention. With this knowledge we can determine that the
queue backup is being caused by the outage of machine
Plex3MainNode.
This automatic detection of machine failure could also be
used to automate actions such as rerouting traffic around
the machine, or recycling the machine. In our system we
have not yet implemented this level of problem detection
and resolution.

Figure 17: Machine Failure

When multiple machines fail to report data the most likely
cause problem such as a networking problem between the
machines and a common point of distribution.
Figure 18 depicts the situation where there is a
communication problem between the nodes. All data is
being reported through the monitoring system, but data is
not flowing between two particular machines. Investigation
into the communication network between these nodes is
required.

Figure 18: No Machine Failure

FUTURE ENHANCEMENTS
Improved error analysis mechanisms
A relational database is a powerful tool for detailed analysis
of monitoring data. A consumer could be developed which
would insert data into a database indexed by its timestamp.
An analysis program could then do detailed problem
analysis by running specially designed queries against the
data.

Improved error reporting
Although the producers in the system currently publish one
set of data each interval, there are many situations that
would benefit from a less structured publishing approach.
One such approach is to produce a specialized form of
monitoring data for error situations. When an error occurs
it is essential to get the information about that error into the
monitoring system as quickly as possible in order to avoid
unnecessary delay and reflect errors immediately.

SUMMARY
A system for monitoring complex queue-based systems
using publish/subscribe for data distribution has been
described. Workflow is controlled through a hierarchical
organization of queues. Presentation of the data provides
an immediate high-level hierarchical view of the queues and
the work flowing through those queues. When problems
are suspected, more detailed views are readily available.
Data describing the workload of each queue takes
advantage of language-specific features such as reflection to
provide self-describing structures as well as encapsulation
of data-specific views that do not have to be programmed
into either the producer or the consumer of the data.
Although our implementation is on a queue-based system,
the monitoring system itself contains no dependencies on
the structure of the underlying system and is readily
adaptable to any underlying structure or topology. This
system has proven to be extremely powerful and flexible.

ACKNOWLEDGMENTS
Several people have contributed to this work including
Sandy Cash, Paul Dantzig, Cameron Ferstat, Ed Geraghty,
Arun Iyengar, Herbie Pearthree, and Paul Reed.

REFERENCES
1. Sydney 2000 Olympic Website www.olympics.com

from September 15 through October 1, 2000. Site no
longer active.

2. Australian Open 2002 Website. www.ausopen.org from
January 14, 2002 through Januray 27, 2002. Site no
longer active.

3. Masters 2002 Website. www.masters.org
4. French Open 2002 Website. www.rolandgarros.org
5. Wimbledon 2002 Website. www.wimbledon.org
6. Jim Challenger, Arun Iyengar, Karen Witting, Cameron

Ferstat, and Paul Reed. A Publishing System for
Efficiently Creating Dynamic Web Content. In
Proceedings of IEEE INFOCOM 2000, March 2000.

7. Tivoli Software. http://www.tivoli.com/
8. Spong. http://sourceforge.net/projects/spong
9. BigBrother. http://bb4.com/
10. Jefferey S Vetter and Daniel A Reed, “Real Time

Performance Monitoring, Adaptive Control, and
Interactive Steering of Computational Grids,” The
International Journal of High Performance Computing

 Page 9

Applications, Winter 2000, Volume 14, No 4, pp 357-
366, April, 2002

11. Barton P. Miller, Mark D. Callaghan, Jonathan M.
Cargille, Jeffrey K. Hollingsworth, R. Bruce Irvin,
Karen L. Karavanic, Krishna Kunchithapadam and Tia
Newhall, “The Paradyn Parallel Performance
Measurement Tools,” IEEE Computer, Volume 28 No
11, pp 37-46, November 1995

12. Eric Shaffer, Shannon Whitmore, Benjamin Schaeffer,
and Daniel A Reed.”Virtue: Immersive Performance
Visualization of Parallel and Distributed Applications”,
IEEE Computer, December 1999

	ABSTRACT
	Keywords

	INTRODUCTION
	RELATED WORK
	SYSTEM ARCHITECTURE
	GENERAL DESCRIPTION
	Monitor Objects
	Producers
	Consumers
	Distribution

	QUEUES AND TASKS
	DATA PRESENTATION
	Hierarchical Display of queues
	Custom Display
	Table Display
	HTTP Display
	Statistical Logging

	EXPERIENCES
	Using the Hierarchical view
	Sydney 2000 Olympics
	Quiet Queues
	Active Queues
	Slow Queues
	Busy Queues
	Down

	Events
	Queue backup resolution

	FUTURE ENHANCEMENTS
	Improved error analysis mechanisms
	Improved error reporting

	SUMMARY
	ACKNOWLEDGMENTS
	REFERENCES

