
RC22532 (W0207-125) July 29, 2002
Computer Science

IBM Research Report

Building Sensors and Actuators for Adaptive Resource
Management in Linux Systems

C. Eric Wu
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Building Sensors and Actuators for Adaptive
Resource Management in Linux Systems

C. Eric Wu
IBM T.J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

Abstract
The foundation of adaptive resource management includes two basic elements: sensors
and actuators. Sensors are monitors that collect management data, and actuators are
control knobs that are available to change resource configuration, behavior, or allocation.
Along with adaptive algorithms, the foundation forms one or more control loops that
adapt to environment changes. In this paper we focus on building sensors and actuators
in enterprise Linux systems for adaptive resource management. We start by reviewing
the current status of industry open standards, including DMTF’s Common Information
Model (CIM) for system management and Application Response Measurement (ARM),
and build sensors for monitoring applications such as the Apache web server. The
resulting ARM infrastructure includes a standalone ARM library for application
instrumentation, an ARM Agent for collecting and distributing application statistics, a
CIMOM ARM Provider, and a web server plug-in that captures URL-based statistics for
web servers. For actuators we expose tunable system parameters by building a
management tool to provide a consistent and user-friendly GUI, and create new actuators
for per-process parameters and entries in configuration files.

1. Introduction
In today’s fast moving business, dealing with system management and robustness is
frequently an afterthought. This is acceptable when an organization tries to get its
footing by delivering a working system. However, effort should occur in parallel to
identify an architecture that enables growth. Good software practices and strong
understanding of distributed computing and management issues are essential, and there is
no substitute for architecture analysis and planning, as it is crucial for building and
managing enterprise information systems.

The development of raw computing power in recent years coupled with the proliferation
of computer devices has grown at exponential rates. This phenomenal growth along with
the advent of the internet have led to unprecedented levels of complexity and brought on
new challenges for how people manage and maintain computer systems. Demand is
already outpacing supply when it comes to managing information systems. This
increasing complexity is reaching a level beyond human ability to manage, and it adds
demands for skilled I/T professionals at the same time. As the total cost of ownership

 2

(TCO) is increasingly dominated by human costs, system management is a pivotal point
in enterprise operations. It becomes essential and inevitable to automate resource and
system management to reduce the TCO.

This is the background for “Autonomic Computing” [1], currently advocated by IBM and
other leading computer companies and research institutes. It is our belief that increasing
processor might, storage capacity and network connectivity must report to some kind of
systemic authority if we expect to take advantage of its potential.

In the area of system management, automatic and adaptive resource management is the
key for the success of autonomic computing. An adaptive system typically uses some
adaptive algorithm to control or reallocate its managed resources through monitoring.
Sensors are used to monitor current status and collect management information for
resources, and actuators are the control knobs that are available to control or reallocate
the managed resources. The control loop, depicted in Figure 1, illustrates sensors and
actuators as the foundation of an adaptive management system.

Figure 1. The control loop in adaptive resource management systems

In this paper, we describe our approaches to build sensors and actuators for adaptive
resource management in enterprise Linux systems. For sensors we focus on application
monitoring and develop our CIM (Common Information Model) based ARM
(Application Response Measurement) infrastructure. A CIM-based ARM provider is
developed along with an Apache server plug-in as an example to monitor web server
performance. For actuators we develop a management utility and its kernel module, to
provide a user-friendly tool for control knobs. The management utility is capable of
browsing and modifying various aspects of a Linux system, including kernel parameters,
per-process parameters, and user accounts. Although it is at least as important for
building a goal-oriented adaptive algorithm, we consider it part of our future project and
therefore is out of the scope of this paper.

2. Open Standards
The strength of open standards is the potential support from multiple vendors. The
railroad, automobile, and telecom industries really didn’t take off until the various players
agreed on underlying standards, such as what gauge railroad track to use. Was the
relatively young IT industry any different? The use of open standards facilitates the
management of widely heterogeneous systems and networks, and allows a company to

Adaptive Management Algorithm

Managed Resources

Sensors Actuators

 3

exploit the work of other companies and hence better concentrate on utilizing its
resources on exploiting that work. Thus, a good management solution is likely an
infrastructure based on standards and supported by multiple vendors – the only effective
way to manage systems and components in a heterogeneous environment. Open
standards may be the key to success in system management for heterogeneous enterprise
environments. Once open standards are developed, they become commodities and
everyone can probably get the reference implementation for free. The companies using
these open standards differentiate themselves by building outstanding resources.

2.1 Standards for Management

The Common Information Model (CIM) [2] promoted by DMTF is definitely evolving as
one such standard. The CIM initiative is an approach in the industry for enabling the
management of real world managed objects that applies the basic structuring and
conceptualization techniques of the object-oriented paradigm. The CIM standard is
composed of four pieces: a language specification for defining real world managed
objects, a management schema (core and extension schemas) that provides a common
conceptual framework, a set of protocol flows expressed in XML that encapsulate CIM
syntax and schema to provide access to real world managed objects, and a compliance
document to aid in interoperability between vendor implementations.

Figure 2. CIMOM and CIMOM client

The industry uses the term CIMOM (CIM Object Manager) to refer to implementations
that understand the CIM specification and use some portion of the schemas. These
implementations tend to provide their own interface for manipulating the model so the
implementations are not a standard. Figure 2 illustrates major components in CIMOM,
including the Provider and Persistence interface.

CIMOM
Core Object

Manager

HTTP/XML
Mapping

RMI

Provider
Interface

Persistence
Interface

CIMOM
Client

Providers
Persistence

Implementation

 4

Currently the major players in CIM are Microsoft with its Windows Management
Instrumentation (WMI) implementation, Sun Microsystems with its Java CIMOM
implementation integrated with its operating system and WBEM implementation as part
of a Java standard, Caldera with its C++ CIMOM, and The Open Group with its open
source C++ Pegasus implementation [3] and another Java-based open source CIMOM
that was originally developed by SNIA [4]. We use the SNIA CIMOM in this paper
since it is the first open source CIMOM. However, the content of this paper should be
general enough and apply equally well for other CIMOM implementations.

CIM/CIMOM provides a good base in the managed objects already modeled, such as for
inventory applications. It has the richness that is needed to define managed resources,
such as the ability to express relationships between resources. Either adding new classes
or sub-classing from existing classes can extend the CIM schema. The infrastructure
without managed resources won’t do us any good however, until resources are
instrumented through the Provider interface. As the first step towards adaptive resource
management, we illustrate our CIMOM ARM provider infrastructure that collects
application performance data in the next section.

2.2 Standards for Application Monitoring
The real challenge in system resource management is adaptive management that requires
end-to-end performance monitoring. For this, information from within the application
program is often needed. The Open Group has defined a couple standards for application
management: Application Response Measurement (ARM) [5, 6] and Application
Instrumentation and Control (AIC) [7].

The ARM standard describes a common method for integrating enterprise applications as
manageable entities. It allows users to extend their enterprise management tools directly
to applications creating a comprehensive end-to-end management capability that includes
measuring application availability, application performance, application usage, and end-
to-end transaction response time. To date ARM 3.0 specifies an interface for the Java
programming language. Applications use ARM by creating objects that implement the
interfaces in the org.opengroup.arm3.application package. The ARM C-binding has been
specified in ARM version 2.0 since November 1997 and adopted by The Open Group in
1998. The AIC standard also requires software being modified with its API calls.

The use of these standards (ARM and AIC) does not necessarily ensure a better
application management solution. In addition, instrumentation is usually not an easy task
without source code modification and recompilation. The value is likely determined by
the use of the standards, i.e. it is more likely based upon the level of analysis done to
determine how to apply these techniques, either through plug-ins, source code
modification, or dynamic instrumentation, to various applications.

3. Building Sensors for Applications
Unlike physical system resources that are finite, the number of possible application
architectures, configurations, and interfaces for applications is almost unlimited. The

 5

task of application management becomes more complex as many interdependent
applications are often required to fulfill a business function such as web banking and B-
to-B web applications. Historically, there is little involvement in application itself for
system management. Manageability is often a low development priority or an after
thought for software development, and it may have different requirements for different
running applications.

To use CIMOM for managed resources, we need CIMOM provider implementations.
The Apache web server is used as an example to illustrate the needed steps to build
sensors and gather performance data from applications. The first step in developing a
CIMOM ARM Provider for an application is to understand the application for possible
instrumentation. For Apache web server we develop a plug-in to capture the entry and
exit points of a web request with minimum overhead (roughly 1 micro-second per record)
and without modifying any server source code. Each point in time is recorded in a trace
file, along with related information such as the requested URL and the process ID/thread
ID of the web process. A Java-based visualization tool, RUME Gantt Chart, is developed
and used to visualize such trace files. Figure 3 shows 10 web processes handling web
requests along the timeline. There are 10 URLs in Figure 3, each of which got 100 hits.

Each timeline in Figure 3 represents an Apache server process. Rectangles along a
timeline indicate web requests for various URLs, including static HTML pages and CGI
requests, and the width of a rectangle represents the elapsed time for that request.
Different URLs are represented by different colors for easy visualization, and black areas
indicate periods when a server process is not serving any requests.

The server plug-in is then modified and linked with an ARM library to generate
performance data. Note that binary CGI programs and many legacy software applications
may not support dynamically loadable modules or plug-ins. In these cases an alternate
approach is to use dynamic instrumentation techniques such as those in the DPCL library
[8] or DynInst [9] to add the needed calls for application management.

As a standard, the ARM C-binding API is made up of a set of function calls, including
arm_init(), arm_start(), and arm_stop(). By developing an ARM library
and linking the server plug-in with this library, we are able to capture transaction
response times (i.e. elapsed times of individual URL requests) of the Apache web server.
The statistics is obtained live from the running Apache server, thus provides us the first
known ARM instrumentation with live system management data without modifying or
recompiling the Apache server itself.

 6

Figure 3. Gantt Chart visualization for 10 web server processes handling requests

An ARM agent is also implemented to collect the statistics from multiple applications
and accept requests for stored performance data. It collects application statistics and
accepts requests via a certain IPC socket. A CIMOM ARM Provider is developed for
CIMOM using its provider interface to retrieve performance data from the ARM agent.
Figure 4 shows the interaction between the ARM Provider, ARM Agent, and
Applications that are instrumented with ARM APIs.

The ARM agent handles multiple applications concurrently to minimize the impact on
system resources, and it can be run in another machine if the server machine is
overloaded. Note that there is nothing prevents its client from requesting performance
data directly, i.e. clients of the ARM agent can communicate directly with the ARM
agent. On the other hand, CIMOM and its Provider interface provide an open standard
for management data. The CIMOM ARM Provider is built as a client of the ARM agent
to retrieve application statistics for performance monitoring. Thus, CIMOM clients will
be able to acquire application statistics through the ARM provider.

 7

ARM Agent

Appl. 1 Appl. 2 Appl. 3

ARM Provider

CIMOM

Provider Interface

Figure 4. One ARM agent handles multiple instrumented applications

Figure 5 shows the properties of the CIMOM ARM Provider using the openCIMOM
browser of the SNIA CIMOM. It can be seen that the ARM_Statistics Provider is
derived from CIM_ARMStatisticalInformation, which is derived from
CIM_StatisticalInformation. The properties of the provider include the host name and
port number where the ARM agent is running, the name of the ARM agent, and the name
of the statistics which its client is currently interested in.

Figure 5. An ARM Provider for SNIA CIMOM

ARM Agent Client

CIMOM Client

 8

Figure 6 shows a set of property values and methods of the ARM Provider. URL
statistics could be individually collected and distributed by the ARM agent, or they could
be aggregated as a single entity with the name “HTTP Request”. As a result, system
management data could be aggregated or based on individual URLs. The latter could be
useful for projects such as the Heterogeneous Workload Management [10] or SLA-based
projects, which require URL-based performance statistics for management actions.
Figure 7 shows the result returned from the getLastStatistics() method of the ARM
Provider for the statistics “HTTP Request”.

Figure 6. Properties and methods for the ARM Provider

Figure 7. Execution result from the getLastStatistics() method of the ARM Provider

While the ARM API is specified and supported by The Open Group, the communication
protocol between the ARM Agent and its clients is totally up to the ARM agent designer.
The design of the ARM agent is critical to efficiently collect various statistics from
multiple instrumented applications. Typically a web server includes multiple
applications, such as the Apache web server, Application server, backend database, and
programs using the Common Gateway Interface (CGI) [11]. How to efficiently monitor

 9

these applications and provide system management tools with monitoring data is critical
for the success of the ARM Provider.

4. Expose Tunable Parameters and Build Actuators
Actuators are control knobs that can be used to change behaviors of system resources.
As important as an infrastructure for application management, operating system
parameters, especially tunable system parameters, are critical actuators for enterprise
Linux systems. Such tunable system parameters include maximum number of open files,
maximum size of shared memories, maximum map count, maximum number of threads,
etc. In addition to these system-wide parameters, per-process parameters such as the
maximum number of open files and maximum number of child processes are equally
important to individual processes. Many applications and system services also have
critical parameters in configuration files that provide specific control for various options.
For example, the Apache web server uses the httpd.conf configuration file for specifying
parameters such as the number of server processes at the starting point, the minimum and
maximum number of spare server processes, among many other things. It is our belief
that a good system management environment should provide control knobs and user-
friendly tools to cover these basic areas.

Figure 8. A user-friendly interface for tunable system parameters

 10

4.1 Tunable System Parameters

Tunable system parameters of recent Linux kernels (2.1 and later) can be found in the
/proc/sys directory, which is in a special, software-created file system that is used by the
kernel to modify kernel parameters as well as export information. For these tunable
system parameters we develop the kparam system management tool to provide a
consistent and user-friendly interface. The management tool works for all Linux systems
with the /proc/sys interface. Figure 8 shows its user-friendly GUI for tunable system
parameters running on a Linux system. A file icon with a pen indicates that the tunable
system parameter is modifiable, while a file icon without a pen indicates that the
parameter is merely readable. Double clicking on a file icon brings up a dialog, shown in
Figure 9, which allows the user with appropriate privilege to change the value of the
tunable system parameter.

.
Figure 9. A popup window for modifying system parameter “shmall”

Figure 9 shows the popup window for modifying the “shmall” system parameter, which
controls the maximum number of total pages for shared memory segments. The quoted
string shown in Figure 9 can be easily modified or replaced. All help strings and mini
menus are stored in a configuration file for the management tool. This simplifies the
addition of help strings for extra entries and also makes replacement easy. Double
clicking on a readable file icon brings up a similar popup window for confirmation.
Users without appropriate privilege will find a parameter is merely readable, while users
with root privilege will find most parameters modifiable. After a parameter is modified
in the popup window, the user clicks the OK button and brings up another popup window
to confirm or reject the modification, shown in Figure 10.

Figure 10. A popup window to confirm or reject changes

 11

The popup window to confirm or reject current modification gives the user a second
chance before committing the change. This is because changes for tunable system
parameters take effect immediately and must be handled carefully.

4.2 Per-Process Parameters

Per-process parameters in most Linux/Unix systems are captured in a per-process data
structure called “rlimit”. Typically these parameters such as the maximum number of
child processes and maximum number of open files for a process are accessed through a
pair of system calls, getrlimit() and setrlimit() while running inside the process. A kernel
module is developed and is loaded automatically by the management tool to modify per-
process parameters from outside the process. It creates a file entry pid_rlimit in the
/proc/sysman directory. All reads and writes to the file entry are reflected immediately in
the specified process. Given a process ID and new values for rlimit through the file
entry, the kernel module locks the task list (i.e. the process list) for read and finds the
process before unlocking the task list. It then checks the rlimit in the data structure of the
task and makes necessary modifications.

Figure 11 shows a popup window for modifying per-process parameters. In this figure
the process whose process ID is 1898 currently could have up to 1535 child processes, up
to 1024 open files, and up to 8 Mbytes stack size. These limits can be changed easily by
entering different numbers in this popup window, using exactly the same GUI as for
tunable system parameters.

Figure 11. A popup window for modifying per-process parameters

The /proc file system contains a directory for each process running on the Linux system.
Since the same GUI is used for processes, file entries in these process directories such as
environ for environment variables can be modified as well.

4.3 Application Configurations

Many applications use configuration files to specify various options. Entries in
configuration files may include control knobs and useful hints for an application or its
service. Changing an entry in a configuration file may change an application or its
service completely. Traditionally many Linux/Unix services are provided through
configuration files, such as /etc/passwd for user accounts, /etc/fstab for file systems,
httpd.conf for Apache, etc.

 12

There is no doubt that configuration files are part of the actuators for system management
[12, 13], and there have been various noble attempts to ease the problem of configuration
files. Some popular packages have GUI front-ends built for them, but each front-end
works differently. Other packages have a range of interfaces that can be used, from a raw
text file to a text-based front-end. Another approach is to custom build a consistent set of
front-ends for a number of software configurations, as is done with the KDE control
panels and the Linuxconf project.

It is relatively simple to use configuration files for applications and services alike,
however, there is no standard for other programs to find out what options a program or
service has and how to set those options (potential actuators for system manageability).
On the other hand, we have just seen in the last section how tunable system and per-
process parameters are managed with the simple yet powerful GUI. Thus, we extend the
kernel module to build actuators in /proc/config, a virtualized directory, as a consistent
interface for user accounts, Apache setup, among many others.

Figure 12. A number of icons representing fields for user “cwu” in /etc/passwd

The kernel module is firstly extended for user accounts to show its novelty and
simplicity. With a couple hundred lines it captures all fields in /etc/passwd into
subdirectories in /proc/config/acct, one for each user account. Figure 12 shows five icons
for the user “cwu” in /etc/passwd. Double clicking on an icon, say the “realname” icon,
will bring up a popup window for possible modification of that particular field. Figure 13

 13

shows the popup window displaying the real name in life for the user “cwu” in
/etc/passwd.

Figure 13. A popup window displaying the real name in life for user “cwu”

This example shows that applications could keep their configuration files while it is also
feasible to create a centralized place for local configuration information and a consistent
approach for extracting and modifying their various options. In this way, one would be
able to browse the hierarchy of configuration information using simple shell commands
or the browsers of his or her own choice. A reasonable next step is to develop a few
more examples, such as capturing Apache configuration elements in /proc/config/apache
as actuators for the foundation of adaptive resource management.

The management tool is built using Qt, a cross-platform C++ GUI application framework
and one of the most popular graphic libraries in Linux. KDE was also built using Qt.
The tool monitors file entries in three areas: kernel parameters in /proc/sys, processes in
/proc and /proc/sysman/pid_rlimit, and entries created in /proc/config by its kernel
module. All these parameters, including the per-process ones, are defined in file entries
that can be browsed and modified using simple shell commands such as “cat” or “echo”.
Thus, there is a clear separation between control knobs and means for modification. The
management tool is basically a graphical interface that browses over these file entries and
provides popup windows for modifying them, while the kernel module provides actuators
for per-process parameters and entries in configuration files.

5. Summary and Future Work
System resource management, including both management and manageability, is a broad
and important area for enterprise Linux. The ultimate goal of system management is
autonomic computing, in which management software collects management information
from managed resources and changes system resource allocation and services adaptively.
Manageability, including the ability to create sensors and actuators as examples given in
this paper, provides the needed elements and control for adaptive system management.

The goal of adaptive system management is to change application and/or system
configurations based on changing environments. In this paper we build sensors and
actuators, the foundation for adaptive resource management. We expose tunable system
parameters through a consistent and user-friendly GUI, and create actuators for per-
process parameters and entries in configuration files. For sensors we build the CIMOM
ARM infrastructure to monitor application performance. The CIMOM ARM
infrastructure, consisting of a standalone ARM library, an ARM provider, an ARM

 14

Agent, and a sample web server plug-in shows a promising approach for system
management in the area of application run-time. We believe that this is one of the most
critical areas in enterprise Linux for the years to come. As CIM/CIMOM becomes more
and more popular, we expect more computer vendors build CIMOM providers for
various resources.

Our future work includes creating actuators for Apache web server using its configuration
file, and adaptive algorithms that use these sensors and control knobs to form the control
loop for adaptive resource management.

References
1. Autonomic Computing: IBM’s Perspective on the State of Information

Technology, Paul Horn, http://researchweb.watson.ibm.com/autonomic/manifesto
2. Common Information Model: Implementing the Object Model for Enterprise

Management, W. Bumpus et. al., Wiley Computer Publishing, ISBN 0-471-
35342-6.

3. Pegasus Developers and Users Manual, The Open Group, May 2001, available at
http://www.opengroup.org.

4. SNIA CIM Object Manager: Architecture and Developers Guide, version 0.1,
available at http://www.snia.org.

5. Application Response Measurement 2.0 API Guide, Hewlett-Packard Co. and
Tivoli Systems, Inc., November 1997.

6. Application Response Measurement, Issue 3.0, Open Group Technical
Specification, March 2001.

7. Application Instrumentation and Control (AIC) API, Open Group Technical
Standard, November 1999.

8. Dynamic Probe Class Library Class Reference, IBM Publication SA22-7241, also
http://www.ptools.org/projects/dpcl.

9. DYNINST: An Application Program Interface for Runtime Code Generation,
http://www.dyninst.org.

10. Adaptive Algorithms for Managing a Distributed Data Processing Workload, J.
Aman, C Eilert, D. Emmes, P. Yocom, and D. Dillenberger, IBM System Journal,
Vol. 36, No. 2, 1997.

11. CGI: Common Gateway Interface, please see http://www.w3.org/CGI and
http://hoohoo.ncsa.uiuc.edu/cgi.

12. Systems Management Roadmap for Linux, Adrian Schuur, October 2001, at
http://w3.opensource.ibm.com/pub/ibmcimom/LinuxSystemsManagementRoadm
ap_101201.prz.

13. How to fix the Unix Configuration Nightmare, Matthew Arnison et. al., February
2002, at http://freshmeat.net/articles/view/400.

