
RC22543 (W0206-100) June 18, 2002
Computer Science

IBM Research Report

Improving Power-Effectiveness of Cache Structures through
Quenching

Ravi Nair
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Improving Power-Effectiveness of Cache Structures through
Quenching

Ravi Nair

IBM Thomas J. Watson Research Center
P. O. Box 218

Yorktown Heights, NY 10598

June 17, 2002

Abstract

The performance of most processors today is improved through appropriate use of caches, which
learn and predict various pieces of information. The effectiveness of a cache generally improves
as its size increases because larger caches are able to contain the frequently used information of a
larger number of applications. However, large caches consume a lot of power, and much of this
power is wasted when some region of an application is able to perform almost as well with a
considerably smaller cache. In this paper, we analyze the behavior of a typical cache and show
that applications have widely varying behavior, with phases in which the cache is heavily
utilized often interleaved with phases in which large parts of the cache remain idle. We use these
observations to propose a new type of cache called the quenched cache, which periodically
quenches the cache by turning it off completely. The effect of quenching is a cache that adapts its
power consumption based on actual activity, doing so without elaborate learning or feedback
mechanisms in hardware. The paper presents results of experiments to show the effectiveness of
quenched caches.

1. Introduction

Moore’s Law has contributed to the pervasive use of caches in modern-day microprocessors.
With shrinking lithography and transistor size, processor execution pipelines are getting faster.
As computers are being called upon to tackle ever-bigger problems, memories are getting larger
and their access times are not keeping up with the cycle time of processors. This has led to larger
caches, and inevitably to multiple levels of caches even on a single chip.

Ever since their introduction in the early 60’s, caches have served an increasingly useful role in
processors. While the most predominant use of a cache even today is in the memory hierarchy,
we are now seeing a more varied use of cache structures, as in branch prediction. The need to
supply fast processor execution pipelines with instructions has led to schemes to predict control
flow in application programs. As processor implementations become more sophisticated in their
ability to handle instruction-level parallelism, branch prediction schemes are becoming ever
more sophisticated. But central to most branch prediction schemes are two caches, the branch

 2

history table, which records a history of outcome of conditional branch instructions, and the
branch target table, which maintains a history of control flow target addresses. Today, with the
advent of trace caches and prefetch buffers, the cache has transcended its early role as simply a
player in the memory hierarchy. In the IBM Power4 microprocessor chip [1], for example,
various forms of caching structures account for more than 80% of transistors on the chip.

Unfortunately, caches also consume a significant fraction of the power in such chips. Power is
consumed not only when blocks in the cache are accessed by the processor core, but also in
simply maintaining the information contained in them. Set-associative caches often improve their
performance by selecting late from a set of blocks, all of which are accessed even though only
one is selected. Thus there appears to be much to be gained by fundamentally changing the way
caches are structured from a power consumption point of view.

In this paper, we analyze cache behavior with a view to developing an inherently power-efficient
cache architecture. Ideally, any new cache architecture should allow well-understood, present-
day configurations to be used without unreasonable overhead in the form of additional control
complexity in the microarchitecture, or in additional requirements from software. We hope the
quenched cache proposed in this paper satisfies this criterion.

The rest of this paper is organized as follows. We begin by illustrating the nature of typical
activity in a D-cache in section 2. Our observation of snapshots from various benchmark
programs motivates the proposal of the quenched cache described in section 3. In section 4 we
show results of experiments demonstrating the effectiveness of a quenched D-cache. In section 5
we show that the concepts behind the quenched cache can be applied to cache structures beyond
the D-cache. A discussion of related work in section 6 is followed by concluding remarks in
section 7.

2. Characterization of Cache Activity

Figure 1 shows the profile of the number of active D-cache blocks, i.e. those blocks touched for
read or write access, in a series of instruction windows of a processor running the gcc benchmark
from the SPECint suite. Each instruction window executes 100K instructions in Figures 1(a) and
1(b), and 1M instructions in Figure 1(c). Figure 1(a) shows the profile for an 8K cache consisting
of 128 blocks of 64 bytes each, while Figure 1(b) shows a similar profile for a cache 4 times the
size. In both cases we see that there are many windows in which the number of active blocks is
fewer than total available blocks. Moreover, the number of active blocks reduces as the cache
size is increased. Figure 1(c) shows that when the instruction window is increased to 1M
instructions, all blocks in the cache get touched in almost all the windows even for a 32K cache.
A comparison of the profiles in Figures 1(b) and (c) suggests that many more of the blocks that
remain active in the 1M window actually contain inactive information – information that is no
longer useful, information that may not be needed for a long time, or information that may be
useful but is likely to be replaced by other information due to cache size or associativity
restrictions.

 3

The profiles of activity for three other benchmarks in the SPECint suite are shown in Figure 2. It
may be observed that there are small regions of some programs, such as vortex and perl, where a
32K cache gets filled up completely even for a 100K instruction interval. Yet there are several
windows in all benchmarks when large portions of the cache go unutilized.

Figure 1: Profile of activity in a cache

gcc - 8K Cache, 100K Window

0
16
32
48
64
80
96

112
128

0 5000000 10000000 15000000 2000000

Instructions

Ac
tiv

e
Bl

oc
ks

gcc - 32K Cache, 100K Window

0
64

128
192
256
320
384
448
512

0 5000000 10000000 15000000 2000000

Instructions

Ac
tiv

e
Bl

oc
ks

gcc - 32K Cache, 1M Window

0
64

128
192
256
320
384
448
512

0 5000000 10000000 15000000 2000000

Instructions

Ac
tiv

e
Bl

oc
ks

In effect, for the applications shown, the active area of the cache is typically smaller than the
whole cache, and reduces further as the size of the cache increases. Yet, in typical caches, the
whole cache remains powered up all the time and consumes static power. The cache may also
consume more dynamic power (that consumed during reads and writes) if the larger cache has a
higher associativity compared to the smaller. While reduction of both types of power, static and
dynamic, is important, we restrict our attention in this paper to the reduction of static power.

 4

With leakage power becoming an increasing consumer of power in processors, reduction of static
power could result in significant power savings of future microprocessors.

Figure 2: Profile of activity for other benchmarks

(a) perl - 32K Cache, 100K Window

0
64

128
192
256
320
384
448
512

0 5000000 10000000 15000000 2000000

Instructions

Ac
tiv

e
Bl

oc
ks

(b) vortex - 32K Cache, 100K Window

0
64

128
192
256
320
384
448
512

0 5000000 10000000 15000000 200000
Instructions

Ac
tiv

e
Bl

oc
ks

(c) xlisp - 32K Cache, 100K Window

0
64

128
192
256
320
384
448
512

0 5000000 10000000 15000000 200000
Instructions

Ac
tiv

e
Bl

oc
ks

The fraction of active blocks in an interval is only an upper bound on the fraction of useful
energy consumed by the cache. Not all active blocks in an interval need to be turned on from the
beginning of the interval. We define the active ratio of an interval as the ratio of the sum of the
energy consumed by each active block after it is first touched to the maximum energy consumed
during the entire interval assuming all blocks active. As a first order approximation, we estimate
the energy consumed in an interval as the product of the time-averaged number of active blocks

 5

in the interval and the length of the interval. Figure 3 shows the average of the active ratios in a
32K cache over all 100K intervals for each of the benchmarks. While it would be preferable to
turn off each block as soon as it is known to be no longer useful, the data of Figure 3 suggest that
the low-hanging fruit in energy savings can be harvested simply by turning off all the blocks at
periodic intervals, and turning them back on when desired. The static energy consumed in such a
cache would be smaller than the maximum energy by a factor close to the average active ratio of
the application for the given interval. This observation is the motivation for the proposal of a
quenched cache described in the next section.

Benchmark Average Active
Ratio

compress 0.66
Gcc 0.50
Go 0.43
Ijpeg 0.36
Perl 0.46
vortex 0.58
Xlisp 0.49

Figure 3: Active ratio for 32K cache averaged
over 100K instruction windows

3. The Quenched Cache

The cache has indeed proven itself to be a useful container of frequently reused information.
However it does so by being conservative – information is kept in a cache block until the cache
needs the block to store other information for which it does not have other space. Thus less
useful, or even useless, information may continue their stay in the cache well past their period of
maximum use. Static energy is consumed in keeping such information around past their useful
life. This energy consumption can be minimized if power is supplied to a cache block only when
it contains useful information. The precise identification of “dead” values in a cache is a difficult
problem [2], however, and the hardware needed for the purpose could itself negate the possible
power gains.

The crest of the graphs in Figures 1 and 2 identify the maximum number of blocks that are
touched in each interval. At any given time in an interval only some of the blocks already
touched will be truly useful. An alternative to sophisticated schemes to identify dead values in a
cache would therefore be to simply turn off the entire cache and restart from scratch (cold start)
at periodic intervals. The dead values would be purged, but so would the set of useful
information. The effect of losing such information is an increase in the number of misses for the
application. Interestingly, the percent increase in miss-rate is highest when the number of active

 6

blocks is well below the total number of blocks – a period when there is enough computation
available to both hide the latency and to amortize the cost of the miss.

Figures 4(a) and (b) illustrate a conventional unquenched and quenched cache respectively. A
quenched cache is composed of groups of cache entries, each having its own power control. For
a cache containing s sets of entries, each with an associativity a, we define a ps x pa
quenched cache as one in which each power group has ps sets, each with associativity pa,
where ps < s, pa < a. Thus there are s/ps * a/pa power groups in the ps x pa
quenched cache.

In the figure, both caches have 32 blocks arranged in 8 sets with associativity 4. The quenched
cache has 4 power islands, each of which is arranged in a 2 x 2 format. Each power island can be
turned on independent of the others. Often the block status bits and the address tag of a cache
block are maintained in a separate array independent of the block contents. We propose that the
status bits are kept in an array that is always kept powered. A special bit in this set is used to
indicate whether or not the corresponding block is currently powered on. The only energy
consumed when a power island is turned off is that needed to maintain the block status bits.

It is not necessary to be able to turn off each power island independent of the others. We simply
turn off the entire cache after ensuring that all dirty cache blocks have written back their values
to the next level of the memory hierarchy.

 7

Block Contents

Block Tag
Block Status

8 sets

4-way associative

Block

2 x 2
Power
Group

Information in a cache block

(a) Conceptual organization of a
traditional cache

Figure 4: The Quenched Cache

(b) Conceptual organization of a
quenched cache

(Dark regions represent inactive groups)

In the special case of an s x 1 organization, each power group essentially forms a power
column. Such a cache will start essentially as a direct-mapped cache and increase its associativity
as needed until the entire cache is turned on or until the end of the quenching interval, whichever
occurs first.

In the next section we will show results of simulations of quenched caches of various sizes,
configurations, and quenching frequency.

4. Experimental Evaluation

To evaluate the performance characteristics of a quenched cache we used a simulator for the
PowerPC instruction set, implemented as an out-of-order microarchitecture in the Dynamic
Instruction Formatting (DIF) style [3]. In a DIF microarchitecture there are two pipelines, the
sequential pipe, a traditional in-order pipeline getting its instructions from a traditional I-cache,
and the parallel pipe, a wider-issue in-order pipeline getting its instructions from a specially
formatted DIF cache. When a code segment is first encountered, it is executed on the sequential
pipe and its dependencies are analyzed to arrive at an appropriate schedule. The scheduled code

 8

segment is saved in the DIF cache from where it is extracted and executed when the same entry
point is subsequently encountered. A full description of DIF appears in [3]. In this paper we
study mainly the D-cache behavior, and for this purpose, we believe that the results indicated are
representative of any out-of-order superscalar processor. The DIF microarchitecture however did
provide us the opportunity to demonstrate the effectiveness of quenching on another cache
structure, the DIF-cache which serves a somewhat different role compared to traditional I- and
D-caches.

I-cache size (bytes) 4K
I-cache miss penalty (cycles) 4
DIF-cache (groups) 512
Group Size (wide words) 6
Branch Units 2
Integer Units 2
Load Units 2
Store Units 1
Floating Point Units 2
DIF group size 36
D-cache hit latency (cycles) 2
D-cache miss penalty (cycles) 4
D-cache line size (bytes) 64
D-cache size (bytes) 4K 8K 16K 32K
D-cache sets 64 64 128 128
D-cache associativity 1 2 2 4

Figure 5: Parameters used in trace simulation

The parameters of the DIF implementation used for the study are shown in the table of Figure 5.
These parameters represent a design that is a conservative balance between the supported
instruction-level parallelism and clock frequency. We do not believe that the qualitative nature of
the results will change for a high frequency implementation. The latencies, especially those for I-
cache and D-cache misses will increase to 10 cycles or more in a high-frequency
implementation, but we will show that increased misses is not a major contributor to the
performance overhead of a quenched cache.

The input to the simulator was a set of instruction and memory reference traces obtained by
executing some of the applications from the SPECint suite. Each of the benchmarks was run to
completion on a data set chosen to ensure the generation of a reasonable sized trace (around 100
million instructions). The SPECint benchmarks, as a whole, may not be representative of
characteristics in real user situations; however, the results of individual programs in the SPEC
suite allow considered evaluation of the strengths and weaknesses of a design point.

Figure 6 shows the cumulative active ratio and relative miss rate of a quenched 32K cache
compared to an unquenched cache for two benchmarks, gcc and perl. The cumulative active
ratio at a given instruction is an indicator of the energy relative to an unquenched cache
expended by the quenched cache from the beginning up to that instruction. Only the first 20
million instructions are shown. We can see that the cumulative active ratio dips and rises until it

 9

smoothes out. By the end of the program, the cumulative active ratio asymptotically reaches 0.5
for gcc and 0.46 for perl as indicated in the table of Figure 3.

gcc - 100K quench

0
64

128
192
256
320
384
448
512

0 5000000 10000000 15000000 20000000
Instructions

A
ct

iv
e

B
lo

ck
s

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

M
is

se
s/

A
ct

iv
e

R
at

io

re
la

tiv
e

to
 U

nq
ue

nc
he

d

Active Blocks Relative Misses Cumulative Active Ratio

perl - 100K quench

0
64

128
192
256
320
384
448
512

0 5000000 10000000 15000000 20000000
Instructions

A
ct

iv
e

B
lo

ck
s

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

M
is

se
s/

A
ct

iv
e

R
at

io

re
la

tiv
e

to
 U

nq
ue

nc
he

d

Active Blocks Relative Misses Cumulative Active Ratio

Figure 6: Miss rate and activity in quenched cache relative to an
unquenched cache

The graphs also show the total number of misses at each point, expressed relative to the number
of misses in an unquenched cache. This plot shows roughly a 50% increase for a quenched case
for gcc, and a 40% increase for perl.

An interesting behavior is observed from these graphs – the relative number of misses appears to
increase during periods of low activity and decrease during periods of high activity. This is
directly in contrast to the behavior of the active ratio, suggesting that a greater fraction of useful
information is lost because of quenching during periods of low activity. In order to explore this
further, we created a scatter plot of the excess misses in a quenched cache against the inherent
(warm) misses in the unquenched cache. These plots for an 8K cache, shown in Figure 7, do
confirm that excess misses tend to be higher in regions where the unquenched cache had fewer

 10

misses. An explanation for this is that, during periods of low activity, the processor is busy
performing computation on a small working set, a large portion of which is useful and needs to
be brought back in after quenching. On the other hand, during periods of high activity, there is
more of a streaming data behavior with frequent replacement of cache lines – of all the blocks
brought in during this period, very few will need to be brought back in after quenching.

Figure 7: Excess misses due to quenching as a function of misses in
unquenched cache

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

0 1000 2000 3000 4000 5000 6000

Warm Misses

Ex
ce

ss
 M

is
s

Pe
rc

en
t

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

0 2000 4000 6000 8000 10000

Warm Misses

Ex
ce

ss
 M

is
s

Pe
rc

en
t

gcc perl

This is the first important property of quenching – quenching degrades performance minimally
where the performance is already bad and hence limits its overall impact on performance.

Variation with Cache Size
For a given application, as the cache size increases, one can expect relatively fewer blocks in the
cache to be utilized. Hence there is more to be gained from quenching as cache size increases.
This is evident from the data in Figure 8. When the cache size becomes small compared to the
application working set, both the unquenched and quenched caches have peak activity most of
the time and hence there is no power benefit to be gained from quenching.

 11

0%
20%
40%
60%
80%
100%
120%
140%
160%
180%
200%

In
cr

ea
se

 in
 m

is
s

ra
te

co
mpre

ss gc
c go ijp

eg pe
rl

vo
rte

x
xlis

p

4K

8K

16K

32K

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

A
ct

iv
e

R
at

io

co
mpre

ss gc
c go ijp

eg pe
rl

vo
rte

x
xlis

p

4K

8K

16K

32K

Figure 8: Active ratio and increased miss rates for caches of various sizes
 quenched at 100K interval

Note that as cache sizes get smaller, they are inherently consuming less power – the need to
conserve power at 4K is much less than the need to conserve power at 32K when the cache
inherently consumes 8 times the power.

This leads us to another important aspect of quenching – during periods of low activity, and
when the cache is relatively large compared to the working set of the application, quenching
conserves power without having to resort to sophisticated dynamic measures to resize and
reconfigure the cache.

Figure 8 also plots the increase in miss rate for the different applications. It is clear that there is a
dramatic increase in miss rate of a quenched cache compared to an unquenched cache as the size
of the cache increases. However, this is less alarming than it looks because the miss rates in an
unquenched cache are already quite low when the cache size is large, as seen in Figure 9.

0

0.2

0.4

0.6

0.8

1

1.2

R
el

at
iv

e
M

is
s

R
at

e

4K 8K 16K 32K

Cache Size (bytes)

gcc (U)
gcc (Q)
ijpeg (U)
ijpeg (Q)

Figure 9: Miss rates for unquenched (U) and quenched (Q)
caches relative to miss rate for unquenched 4K cache

 12

Figure 10 plots the performance effect due to increased miss rates in a quenched cache. We see
that the performance degradation due to increased miss rate is worst where the power savings are
the highest, namely for large caches, but that even in this case, the degradation is limited to
below 1.2% for the chosen set of design parameters.

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%
Pe

rc
en

t i
nc

re
as

e
in

 e
xe

cu
tio

n
tim

e

compress gcc go ijpeg perl vortex xlisp

4K

8K

16K

32K

Figure 10: Degradation in performance of quenched cache
due to miss rate increase

Overhead due to quenching

Increase in miss rate is only one of the causes for performance overhead due to quenching. There
are two other sources of performance overhead, the overhead incurred during the quenching
operation at the end of the quenching interval, and the overhead incurred while turning on each
cache block on demand.

The quenching operation involves two phases, one of writing the dirty lines back to the next
level, and the other of turning off the cache and waiting for transients to settle down. The time
taken to write dirty lines back depends on the number of lines to be written back and the ratio of
the cache linesize to the width of the bus used to write back.

The table in Figure 11 shows the average number of blocks that are turned on during a 100K
interval and the average number of dirty lines at the end of the 100K interval. It is observed that
the total number of dirty lines is often considerably less than the number of lines activated during
the 100K interval.

 13

Figure 11: Average number of blocks in a 32K (512 block)
cache which are (a) active (b) dirty at end of a 100K interval

0
64
128
192
256
320
384
448
512

B
lo

ck
s

compress gcc go ijpeg perl vortex xlisp

Active

Dirty

Each writeback of a dirty line takes a number of cycles that depends on the length of the cache
block and the width of the writeback bus. We assume here a 32 byte writeback bus, which
implies a pipelined throughput of 2 cycles per writeback for a 64 byte line. We will assume an
additional 100 cycle penalty for starting up the writeback process and for allowing the cache to
settle down after quenching.

When a miss occurs, the group containing the block must be turned if it is not already on.
Turning on a part of the cache causes an electrical disturbance that could take a few cycles to
settle down. Some of these cycles can be hidden under the miss latency – the island could be
turned on as soon as a miss is detected, rather than after the data arrives from the next level. The
actual additional overhead depends on the implementation; in the absence of real data, this paper
will assume an overhead of 10 cycles.

 14

Figure 12: Overhead of quenching in a 32K cache
(100K quench interval)

0.5

0.6

0.7

0.8

0.9

co
mpre

ss gcc go
ijp

eg perl
vo

rte
x

xli
sp

Cy
cl

es
 p

er
 in

st
ru

ct
io

n
Quench overhead
Turn-on overhead
Miss overhead
Unquenched cpi

The result of these assumptions is the performance stack shown in Figure 12. The total
performance overhead due to quenching is not too severe – typically less than 0.05 cpi. With
smaller bus sizes, this overhead will increase. But it is expected that other techniques will be
called upon to reduce this overhead when it becomes too high. For instance, it is possible to
initiate the writeback process several hundred cycles ahead of the end of the interval.1

Interestingly, the major component of the performance overhead due to quenching is the effort to
turn on the cache blocks. One way to reduce this overhead is to have more than one cache block
in each power island. For example, 4 cache blocks are turned on simultaneously in a 4 x 1 power
group. In practice, the resulting gain in performance must be evaluated against a possible loss in
power savings. Figure 13 shows that the number of islands turned on, and hence the turn-on
overhead, reduces quite dramatically as the size of the power island increases, because fewer
islands need to be turned on during the quenching interval. However, this is offset by increased
power consumption either because blocks are turned on earlier than they need be, or because
additional blocks that are not needed also get turned on when an island is turned on. The choice
of island size will probably depend on the area overhead due to partitioning the cache into power
islands, and on the settling delay – a 2x1 or 4x1 island size appears to offer a good compromise
between performance loss and power savings.

1 This possibility was brought to the attention of the author by Viji Srinivasan.

 15

Figure 13: Turn-on overhead and active ratio for different sizes of power islands

0

6 4

12 8

19 2

2 56

3 2 0

3 8 4

4 4 8

512

Is
la

nd
s

tu
rn

ed
 o

n
in

 1
00

K
 in

te
rv

al

compress go gcc ijpeg perl vortex xlisp

1x1
2x1
4x1
8x1
8x2

0
0 .1
0 .2
0 .3
0 .4
0 .5
0 .6
0 .7
0 .8
0 .9
1

A
ct

iv
e

R
at

io

compress go gcc ijpeg perl vortex xlisp

1x1
2x1
4x1
8x1
8x2

Frequency of quenching
There remains an important question – that of the frequency of quenching. As the length of the
quenching interval increases, more entries get activated, and dead entries remain on for a longer
period of time. The graph in Figure 14 for one of the benchmarks, ijpeg, shows how the active
ratio increases as the interval between quenches is increased. The graph also shows that savings
in energy in small caches are more difficult to obtain – the quenching interval must be reduced in
order to get such savings.

Figure 14: Variation of ijpeg miss rate and activity in a quenched cache as a
function of quenching interval

4K
8K 16

K 32
K

5K10
K20

K40
K

10
0Kin

f

0
1
2
3
4
5
6
7
8

M
is

s
R

at
e

R
el

at
iv

e
to

U

nq
ue

nc
he

d

Cache Size
Quench Interval4K

8K
16K 32K

5K

20K

100K

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
ct

iv
e

R
at

io

Cache Size

Quench
Interval

Countering the savings in energy with smaller quenching intervals is the increase in miss rate as
shown in second graph of Figure 14. Interestingly, it is possible to bring the active ratio down to
0.07 for a 32K cache using a quenching interval of 5000 instructions – the cost for this is a miss
rate that is 7.8 times the miss rate of an unquenched cache. Perhaps 5000 instructions is
unreasonable as a quenching interval – assuming 1 in 3 instructions is a load or a store, the

 16

number of cache references within a 5000 instruction interval (about 1600) is considerably
smaller than the number of 4-byte words in the cache (8000). A good tradeoff between power
savings and quenching overhead is obtained when the quenching interval is a small multiple of
the cache size in bytes. Thus a 50-80K quenching interval appears appropriate for a 32K cache,
as a 6-10K interval does for a 4K cache. This is simply an empirical rule-of-thumb – further
research could help pin down an appropriate quench rate as a function of cache size.

5. Extension to other type of caches

The concept of a quenched cache may be extended to any cache structure. Most cache structures
exploit temporal and spatial locality, with applications often having active regions that are just a
small fraction of the total cache. As demonstrated in the last section a quenched implementation
dynamically discovers the active areas of such a cache. I-caches enjoy a further advantage in that
the cache blocks do not have to be written back when quenched and hence incur lower
performance penalty. There are situations, though, when the overhead of purging a potentially
useful cache block is non-trivial. Examples of this include correlation-based branch predictors,
which typically take a longer number of instructions in learning historical behavior, and trace
caches or DIF caches which have to relearn how to schedule long traces of instructions.

In order to test the characteristics of one such cache, we simulated a quenched DIF cache. A DIF
cache is like a trace cache, except that it also learns a schedule for the instructions in the trace.
Thus there is the overhead of relearning the schedule whenever the contents of a useful DIF
block are purged. The results of simulation are shown in Figure 15.

0

0.2

0.4

0.6

0.8

1

1.2

co
mpre

ss gc
c go

ijp
eg pe

rl

vo
rte

x
xlis

p

Pe
rfo

rm
an

ce
 (c

pi
)

Po
w

er
 (A

ct
iv

e
Ra

tio
)

4K (U)

4K (Q)

72K (U)

72K (Q)

Active
Ratio (4K)
Active
Ratio (72K)

Figure 15: Performance and activity in a
quenched DIF-cache

The power savings due to quenching are obvious for the larger 72K cache. (One can also see
why a 72K cache would be useful to have in the first place – applications like gcc, perl, vortex,
and xlisp enjoy a tremendous performance boost with the large DIF cache.) In the case of

 17

compress, 93% of the energy is saved due to quenching because of its very small instruction
footprint.

The histogram also shows the performance overhead due to quenching of the DIF cache. (We did
not include the transient time in these plots). It is encouraging to note that the overhead of
relearning potentially useful information is minimal in all cases, presumably because the
relearning overhead is quickly amortised over a sufficient number of reuses. A more interesting
observation is that in the case of both compress and go, there is actually an improvement in
performance because of cache quenching. The reason for this is the following. Each scheduled
trace of instructions in a DIF block typically includes several predicted conditional branches.
When one of these conditional branches is mispredicted, the effective size of the group, and
hence the exploited instruction-level parallelism, is smaller. This learned group could keep
mispredicting, especially in applications whose instruction footprints are small, as in compress
and ijpeg, providing little opportunity for capacity miss replacement. When purged, however, the
incorrect trace starting at a given instruction is forgotten and the currently applicable longer trace
is learned.

We believe that the observations made here apply to other types of learning caches, including
branch prediction and value prediction structures. There are likely to be situations in some of
these structures where performance benefit through unlearning wrong information by quenching
offsets degradation due to loss of useful information.

6. Related work

Albonesi [4] proposed a cache design which changed the associativity of the cache according to
application demands. Yang et al [5] proposed a more dynamic scheme that monitored miss rate
in the cache in order to determine how to reorganize the cache. In an extension to the Albonesi
scheme, they proposed reorganization, not only by changing the associativity of the cache, but
also by changing the number of sets in the cache. In contrast to both these schemes, the quenched
cache does not attempt to reconfigure the cache. As far as the processor is concerned, the cache
is traditional in its design, with a fixed set size and fixed associativity. This eliminates all of the
complexity associated with configurable schemes, especially that of changing indexing and of
remapping blocks in a cache.

Various researchers, including Wood, Hill and Kessler [6] and Burger et al [7] have shown
that a large percentage of blocks existing in a cache at any given time are never reused. Kaxiras,
Hu and Martonosi have exploited this observation in their proposal [8], which has both on and
off power controls for each cache block. Their proposal includes a hardware scheme for each
cache block to determine when it should be turned off. The quenched cache differs from this in
that it does not require a local (per-block) heuristic hardware mechanism to determine when a
cache block should be turned off; rather it simply provides a global mechanism to turn off the
entire cache. The somewhat reduced power savings due this global approach is offset in the
quenched cache by the considerable simplicity of design – other than the provision of gated-Vdd
[9] power islands, there is practically no difference in the design of a quenched cache from the
design of conventional caches.

 18

Flautner et al [10] have proposed a drowsy cache, which reduces static power consumption by
putting cache blocks in a low-power state where they retain their information but cannot be
accessed. The authors propose putting the entire cache in the drowsy mode at periodic intervals.
In contrast to drowsy cache, a cache block in a quenched cache consumes no energy in the off
state. In periods of very low activity, which are common in many computers, the quenched cache
saves a lot more power than a drowsy cache. The quenched cache implementation is also
simpler, not having to deal with an additional Vdd line to each cache block, and not having to be
concerned about the added risk of losing information in the low-Vdd state. Our work addresses
the performance issues involved with writing back and turning off the cache, and shows why
they are not of particular concern. The quenched cache therefore trades off minimal performance
overhead with considerably greater power savings, simplicity, and robustness.

7. Conclusion

Modern microprocessors employ large caches of various types that consume a large fraction of
the energy on a chip. Caches help improve performance of processors, but they tend to be
underutilized and hence inefficient in their power consumption. It is well known that most blocks
in traditional caches often contain information that is not needed immediately. This paper
confirms this through profiles of activity in typical D-caches running a variety of applications.

The cache activity profiles point to significant improvement in power-performance of caches,
simply by purging all information in the cache periodically. This quenching action does incur
the overhead of relearning some of the purged information. However, only a small fraction of the
cache typically needs to be relearned, and the cost of relearning is offset by the energy saved
from turning off unneeded cache blocks.

The quenched cache differs from a traditional cache only in that the blocks are grouped into
power islands, each of which is independently turned on when the first miss to one of its blocks
occurs. The size of the power island determines the area overhead and potential energy savings –
a power island with 1 or 2 blocks is ideal from the energy savings point of view, but incurs more
area overhead compared with a power island consisting of many more blocks.

The degree of power savings is also dependent on the length of interval between quenches. When
the quenching interval is small the power savings is greater because inactive blocks remain
turned on for a shorter period of time. However, short quenching intervals are associated with
greater relearning and turn-on/turn-off overhead. The paper quantifies this overhead and
empirically determines that a balance between the increased overhead and energy savings in a D-
cache is obtained with a quenching interval (in instructions) that is roughly 2 to 3 times the cache
size (in bytes).

Trace simulations indicate that the performance overhead of quenching is minimal for SPEC-
type applications using sizes of caches that are common today. In reality, larger caches are
becoming the norm – they are needed to boost performance on the occasional but important
workload that needs them. Quenching results in greater energy savings on the more frequent
applications that do not need large caches, and it does so without complicated schemes either to

 19

detect application requirements or to reconfigure the cache. Moreover, the energy savings in a
quenched cache automatically increases as cache activity reduces. It is important to note that,
because of its similarity in implementation to a traditional cache, the performance and power
characteristics of a quenched cache should be identical to those of the traditional cache when
quenching is inhibited.

The paper demonstrates the usefulness of quenching in cache structures beyond the traditional I-
and D-caches. Its effectiveness was shown for a special structure called the DIF cache that
contributes to improved performance in wide-issue processors by caching scheduled traces of
instructions. As with D-caches, large DIF caches help in improving performance of some
programs with large instruction footprints, and quenching helps keep the power consumption
minimal in the many other situations where the footprint is small.

One interesting aspect of quenching is its potential to actually improve performance in certain
situations. A cache is a store of learned information, used as a hint of the future behavior of a
program. Occasionally, the cache collects wrong information or information that is outdated, and
the result is a performance-reducing hiccup every time it is encountered. Schemes to unlearn
such information are seldom perfect or complete. The paper illustrates situations where
unlearning simply by quenching actually improves performance. Quenching acts as a renewal
mechanism, and as in nature, this renewal provides a new opportunity to learn correctly.

This paper did not address circuit design aspects – it is hoped that the results here will provide an
impetus for the development of circuit techniques that lead to implementations of quenched
caches having minimal area overhead in comparison to traditional caches. With the incorporation
of ever-larger number of components on a chip, increasing importance is being given to the
design of power-efficient microprocessors. Different types of cache structures dominate the area
of modern microprocessor chips – redesigning all these caches as quenched caches can help
tremendously in improving the power-efficiency of these chips.

Acknowledgement
The author wishes to thank Viji Srinivasan and Dan Prener for useful discussions and comments
on the manuscript.

References
[1] J. M. Tendler, J. S. Dodson, J. S. Fields, Jr., H. Le, and B. Sinharoy, “POWER4 system
Microarchitecture,” IBM Journal of Research and Development, vol. 46, no. 1, pp. 5-26, 2002.

[2] A. N. Lai, C. Fide, and B. Falsafi, “Dead-Block Prediction and Dead-Block Correclating
Prefetchers,” Proceedings of the 28th International Symposium on Computer Architecture, 2001.

[3] R. Nair and M. Hopkins, “Exploiting Instruction Level Parallelism in Processors by Caching
Scheduled Groups,” Proceedings of the 24th International Symposium on Computer Architecture,
pp. 13-25, June 1997.

 20

[4] D. H. Albonesi, “Selective Cache Ways: On-Demand Cache Resource allocation,”
Proceedings of the 32nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO 32), pp. 248-259, Nov. 1999.

[5] S.-H. Yang, M. D. Powell, B. Falsafi, and T. N. Vijaykumar, “Exploiting Choice in Resizable
Cache Design to Optimize Deep-Submicron Processor Energy-Delay,” Proceedings of the 8th
International Symposium on High Performance Computer Architecture (HPCA 8), 2002.

[6] D. A. Wood, M. D. Hill, and R. E. Kessler, “A Model for Estimating Trace Sample Miss
Ratios,” ACM SIGMETRICS, pp. 79-89, June 1991.

[7] D. Burger, J. Goodman, and A. Kagi, “The Declining Effectiveness of Dynamic Caching for
General-Purpose Microprocessors,” Tech. Report TR-1216, University of Wisconsin, Madison,
Computer Sciences Department.

[8] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache Decay: Exploiting Generational Behavior to
Reduce Cache Leakage power,” Proceedings of the 28th International Symposium on Computer
Architecture, pp. 240-251, 2001.

[9] M. D. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar, “Gated Vdd: A Circuit
Technique to Reduce Leakage in Cache Memories,” Proceedings of the 2000 International
Symposium on Low-Power Electronics and Design (ISPLED), pp. 90-95, July 2000.

[10] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge, “Drowsy Caches: Simple
Techniques for Reducing Leakage Power,” Proceedings of the 29th International Symposium on
Computer Architecture, 2002.

