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Abstract 

The performance of most processors today is improved through appropriate use of caches, which 
learn and predict various pieces of information. The effectiveness of a cache generally improves 
as its size increases because larger caches are able to contain the frequently used information of a 
larger number of applications. However, large caches consume a lot of power, and much of this 
power is wasted when some region of an application is able to perform almost as well with a 
considerably smaller cache. In this paper, we analyze the behavior of a typical cache and show 
that applications have widely varying behavior, with phases in which the cache is heavily 
utilized often interleaved with phases in which large parts of the cache remain idle. We use these 
observations to propose a new type of cache called the quenched cache, which periodically 
quenches the cache by turning it off completely. The effect of quenching is a cache that adapts its 
power consumption based on actual activity, doing so without elaborate learning or feedback 
mechanisms in hardware. The paper presents results of experiments to show the effectiveness of 
quenched caches.  
 

1. Introduction 

Moore’s Law has contributed to the pervasive use of caches in modern-day microprocessors. 
With shrinking lithography and transistor size, processor execution pipelines are getting faster. 
As computers are being called upon to tackle ever-bigger problems, memories are getting larger 
and their access times are not keeping up with the cycle time of processors. This has led to larger 
caches, and inevitably to multiple levels of caches even on a single chip.  
 
Ever since their introduction in the early 60’s, caches have served an increasingly useful role in 
processors. While the most predominant use of a cache even today is in the memory hierarchy, 
we are now seeing a more varied use of cache structures, as in branch prediction. The need to 
supply fast processor execution pipelines with instructions has led to schemes to predict control 
flow in application programs. As processor implementations become more sophisticated in their 
ability to handle instruction-level parallelism, branch prediction schemes are becoming ever 
more sophisticated. But central to most branch prediction schemes are two caches, the branch 
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history table, which records a history of outcome of conditional branch instructions, and the 
branch target table, which maintains a history of control flow target addresses. Today, with the 
advent of trace caches and prefetch buffers, the cache has transcended its early role as simply a 
player in the memory hierarchy. In the IBM Power4 microprocessor chip [1], for example, 
various forms of caching structures account for more than 80% of transistors on the chip. 
 
Unfortunately, caches also consume a significant fraction of the power in such chips. Power is 
consumed not only when blocks in the cache are accessed by the processor core, but also in 
simply maintaining the information contained in them. Set-associative caches often improve their 
performance by selecting late from a set of blocks, all of which are accessed even though only 
one is selected. Thus there appears to be much to be gained by fundamentally changing the way 
caches are structured from a power consumption point of view.  
 
In this paper, we analyze cache behavior with a view to developing an inherently power-efficient 
cache architecture. Ideally, any new cache architecture should allow well-understood, present-
day configurations to be used without unreasonable overhead in the form of additional control 
complexity in the microarchitecture, or in additional requirements from software. We hope the 
quenched cache proposed in this paper satisfies this criterion. 
 
The rest of this paper is organized as follows. We begin by illustrating the nature of typical 
activity in a D-cache in section 2. Our observation of snapshots from various benchmark 
programs motivates the proposal of the quenched cache described in section 3. In section 4 we 
show results of experiments demonstrating the effectiveness of a quenched D-cache. In section 5 
we show that the concepts behind the quenched cache can be applied to cache structures beyond 
the D-cache. A discussion of related work in section 6 is followed by concluding remarks in 
section 7.  
 

2. Characterization of Cache Activity 

Figure 1 shows the profile of the number of active D-cache blocks, i.e. those blocks touched for 
read or write access, in a series of instruction windows of a processor running the gcc benchmark 
from the SPECint suite. Each instruction window executes 100K instructions in Figures 1(a) and 
1(b), and 1M instructions in Figure 1(c). Figure 1(a) shows the profile for an 8K cache consisting 
of 128 blocks of 64 bytes each, while Figure 1(b) shows a similar profile for a cache 4 times the 
size. In both cases we see that there are many windows in which the number of active blocks is 
fewer than total available blocks. Moreover, the number of active blocks reduces as the cache 
size is increased. Figure 1(c) shows that when the instruction window is increased to 1M 
instructions, all blocks in the cache get touched in almost all the windows even for a 32K cache. 
A comparison of the profiles in Figures 1(b) and (c) suggests that many more of the blocks that 
remain active in the 1M window actually contain inactive information – information that is no 
longer useful, information that may not be needed for a long time, or information that may be 
useful but is likely to be replaced by other information due to cache size or associativity 
restrictions. 
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The profiles of activity for three other benchmarks in the SPECint suite are shown in Figure 2. It 
may be observed that there are small regions of some programs, such as vortex and perl, where a 
32K cache gets filled up completely even for a 100K instruction interval. Yet there are several 
windows in all benchmarks when large portions of the cache go unutilized. 
 

 

Figure 1: Profile of activity in a cache 
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In effect, for the applications shown, the active area of the cache is typically smaller than the 
whole cache, and reduces further as the size of the cache increases. Yet, in typical caches, the 
whole cache remains powered up all the time and consumes static power. The cache may also 
consume more dynamic power (that consumed during reads and writes) if the larger cache has a 
higher associativity compared to the smaller. While reduction of both types of power, static and 
dynamic, is important, we restrict our attention in this paper to the reduction of static power. 
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With leakage power becoming an increasing consumer of power in processors, reduction of static 
power could result in significant power savings of future microprocessors.  
 

 
 

 

Figure 2: Profile of activity for other benchmarks 
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(b) vortex - 32K Cache, 100K Window
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(c) xlisp - 32K Cache, 100K Window
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The fraction of active blocks in an interval is only an upper bound on the fraction of useful 
energy consumed by the cache. Not all active blocks in an interval need to be turned on from the 
beginning of the interval. We define the active ratio of an interval as the ratio of the sum of the 
energy consumed by each active block after it is first touched to the maximum energy consumed  
during the entire interval assuming all blocks active. As a first order approximation, we estimate 
the energy consumed in an interval as the product of the time-averaged number of active blocks 
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in the interval and the length of the interval. Figure 3 shows the average of the active ratios in a 
32K cache over all 100K intervals for each of the benchmarks. While it would be preferable to 
turn off each block as soon as it is known to be no longer useful, the data of Figure 3 suggest that 
the low-hanging fruit in energy savings can be harvested simply by turning off all the blocks at 
periodic intervals, and turning them back on when desired. The static energy consumed in such a 
cache would be smaller than the maximum energy by a factor close to the average active ratio of 
the application for the given interval. This observation is the motivation for the proposal of a 
quenched cache described in the next section. 
 
 
 

Benchmark Average Active 
Ratio  

compress 0.66 
Gcc 0.50 
Go 0.43 
Ijpeg 0.36 
Perl 0.46 
vortex 0.58 
Xlisp 0.49 
 

Figure 3:  Active ratio for 32K cache averaged 
over 100K instruction windows 

 

3. The Quenched Cache 

The cache has indeed proven itself to be a useful container of frequently reused information. 
However it does so by being conservative – information is kept in a cache block until the cache 
needs the block to store other information for which it does not have other space. Thus less 
useful, or even useless, information may continue their stay in the cache well past their period of 
maximum use. Static energy is consumed in keeping such information around past their useful 
life. This energy consumption can be minimized if power is supplied to a cache block only when 
it contains useful information. The precise identification of “dead” values in a cache is a difficult 
problem [2], however, and the hardware needed for the purpose could itself negate the possible 
power gains. 
  
The crest of the graphs in Figures 1 and 2 identify the maximum number of blocks that are 
touched in each interval. At any given time in an interval only some of the blocks already 
touched will be truly useful. An alternative to sophisticated schemes to identify dead values in a 
cache would therefore be to simply turn off the entire cache and restart from scratch (cold start) 
at periodic intervals. The dead values would be purged, but so would the set of useful 
information. The effect of losing such information is an increase in the number of misses for the 
application. Interestingly, the percent increase in miss-rate is highest when the number of active 
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blocks is well below the total number of blocks – a period when there is enough computation 
available to both hide the latency and to amortize the cost of the miss.  
 

Figures 4(a) and (b) illustrate a conventional unquenched and quenched cache respectively. A 
quenched cache is composed of groups of cache entries, each having its own power control. For 
a cache containing s sets of entries, each with an associativity a, we define a ps x pa 
quenched cache as one in which each power group has ps sets, each with associativity pa, 
where ps < s, pa < a. Thus there are s/ps * a/pa power groups in the ps x pa 
quenched cache. 
 
In the figure, both caches have 32 blocks arranged in 8 sets with associativity 4. The quenched 
cache has 4 power islands, each of which is arranged in a 2 x 2 format. Each power island can be 
turned on independent of the others. Often the block status bits and the address tag of a cache 
block are maintained in a separate array independent of the block contents. We propose that the 
status bits are kept in an array that is always kept powered. A special bit in this set is used to 
indicate whether or not the corresponding block is currently powered on. The only energy 
consumed when a power island is turned off is that needed to maintain the block status bits. 
 
It is not necessary to be able to turn off each power island independent of the others. We simply 
turn off the entire cache after ensuring that all dirty cache blocks have written back their values 
to the next level of the memory hierarchy. 
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Figure 4: The Quenched Cache 

(b) Conceptual organization of a 
quenched cache 

(Dark regions represent inactive groups) 

 
In the special case of an s x 1 organization, each power group essentially forms a power 
column. Such a cache will start essentially as a direct-mapped cache and increase its associativity 
as needed until the entire cache is turned on or until the end of the quenching interval, whichever 
occurs first. 
 
In the next section we will show results of simulations of quenched caches of various sizes, 
configurations, and quenching frequency. 
 

4. Experimental Evaluation 

To evaluate the performance characteristics of a quenched cache we used a simulator for the 
PowerPC instruction set, implemented as an out-of-order microarchitecture in the Dynamic 
Instruction Formatting (DIF) style [3]. In a DIF microarchitecture there are two pipelines, the 
sequential pipe, a traditional in-order pipeline getting its instructions from a traditional I-cache, 
and the parallel pipe, a wider-issue in-order pipeline getting its instructions from a specially 
formatted DIF cache. When a code segment is first encountered, it is executed on the sequential 
pipe and its dependencies are analyzed to arrive at an appropriate schedule. The scheduled code 
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segment is saved in the DIF cache from where it is extracted and executed when the same entry 
point is subsequently encountered. A full description of DIF appears in [3]. In this paper we 
study mainly the D-cache behavior, and for this purpose, we believe that the results indicated are 
representative of any out-of-order superscalar processor. The DIF microarchitecture however did 
provide us the opportunity to demonstrate the effectiveness of quenching on another cache 
structure, the DIF-cache which serves a somewhat different role compared to traditional I- and 
D-caches. 
  

 
I-cache size (bytes) 4K    
I-cache miss penalty (cycles) 4    
DIF-cache (groups) 512    
Group Size (wide words) 6    
Branch Units 2    
Integer Units 2    
Load Units 2    
Store Units 1    
Floating Point Units 2    
DIF group size 36    
D-cache hit latency (cycles) 2    
D-cache miss penalty (cycles) 4    
D-cache line size (bytes) 64    
D-cache size (bytes) 4K 8K 16K 32K 
D-cache sets 64 64 128 128 
D-cache associativity 1 2 2 4 

 
Figure 5: Parameters used in trace simulation

 
The parameters of the DIF implementation used for the study are shown in the table of Figure 5. 
These parameters represent a design that is a conservative balance between the supported 
instruction-level parallelism and clock frequency. We do not believe that the qualitative nature of 
the results will change for a high frequency implementation. The latencies, especially those for I-
cache and D-cache misses will increase to 10 cycles or more in a high-frequency 
implementation, but we will show that increased misses is not a major contributor to the 
performance overhead of a quenched cache. 
 
The input to the simulator was a set of instruction and memory reference traces obtained by 
executing some of the applications from the SPECint suite. Each of the benchmarks was run to 
completion on a data set chosen to ensure the generation of a reasonable sized trace (around 100 
million instructions). The SPECint benchmarks, as a whole, may not be representative of 
characteristics in real user situations; however, the results of individual programs in the SPEC 
suite allow considered evaluation of the strengths and weaknesses of a design point. 
 
Figure 6 shows the cumulative active ratio and relative miss rate of a quenched 32K cache 
compared to an unquenched cache for two benchmarks, gcc and perl.  The cumulative active 
ratio at a given instruction is an indicator of the energy relative to an unquenched cache 
expended by the quenched cache from the beginning up to that instruction. Only the first 20 
million instructions are shown. We can see that the cumulative active ratio dips and rises until it 
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smoothes out. By the end of the program, the cumulative active ratio asymptotically reaches 0.5 
for gcc and 0.46 for perl as indicated in the table of Figure 3. 
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perl - 100K quench
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Figure 6: Miss rate and activity in quenched cache relative to an 
unquenched cache 

 
 
The graphs also show the total number of misses at each point, expressed relative to the number 
of misses in an unquenched cache. This plot shows roughly a 50% increase for a quenched case 
for gcc, and a 40% increase for perl.  
 
An interesting behavior is observed from these graphs – the relative number of misses appears to 
increase during periods of low activity and decrease during periods of high activity. This is 
directly in contrast to the behavior of the active ratio, suggesting that a greater fraction of useful 
information is lost because of quenching during periods of low activity. In order to explore this 
further, we created a scatter plot of the excess misses in a quenched cache against the inherent 
(warm) misses in the unquenched cache. These plots for an 8K cache, shown in Figure 7, do 
confirm that excess misses tend to be higher in regions where the unquenched cache had fewer 
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misses. An explanation for this is that, during periods of low activity, the processor is busy 
performing computation on a small working set, a large portion of which is useful and needs to 
be brought back in after quenching. On the other hand, during periods of high activity, there is 
more of a streaming data behavior with frequent replacement of cache lines – of all the blocks 
brought in during this period, very few will need to be brought back in after quenching. 
 

Figure 7: Excess misses due to quenching as a function of misses in 
unquenched cache 
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This is the first important property of quenching – quenching degrades performance minimally 
where the performance is already bad and hence limits its overall impact on performance. 
 
Variation with Cache Size 
For a given application, as the cache size increases, one can expect relatively fewer blocks in the 
cache to be utilized. Hence there is more to be gained from quenching as cache size increases. 
This is evident from the data in Figure 8. When the cache size becomes small compared to the 
application working set, both the unquenched and quenched caches have peak activity most of 
the time and hence there is no power benefit to be gained from quenching.  
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Figure 8: Active ratio and increased miss rates for caches of various sizes
 quenched at 100K interval 

 
Note that as cache sizes get smaller, they are inherently consuming less power – the need to 
conserve power at 4K is much less than the need to conserve power at 32K when the cache 
inherently consumes 8 times the power.  
 
This leads us to another important aspect of quenching – during periods of low activity, and 
when the cache is relatively large compared to the working set of the application, quenching 
conserves power without having to resort to sophisticated dynamic measures to resize and 
reconfigure the cache. 
 
Figure 8 also plots the increase in miss rate for the different applications. It is clear that there is a 
dramatic increase in miss rate of a quenched cache compared to an unquenched cache as the size 
of the cache increases. However, this is less alarming than it looks because the miss rates in an 
unquenched cache are already quite low when the cache size is large, as seen in Figure 9.  
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Figure 10 plots the performance effect due to increased miss rates in a quenched cache. We see 
that the performance degradation due to increased miss rate is worst where the power savings are 
the highest, namely for large caches, but that even in this case, the degradation is limited to 
below 1.2% for the chosen set of design parameters.  
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Figure 10: Degradation in performance of quenched cache 
due to miss rate increase 

 
 
Overhead due to quenching 
 
Increase in miss rate is only one of the causes for performance overhead due to quenching. There 
are two other sources of performance overhead, the overhead incurred during the quenching 
operation at the end of the quenching interval, and the overhead incurred while turning on each 
cache block on demand. 
 
The quenching operation involves two phases, one of writing the dirty lines back to the next 
level, and the other of turning off the cache and waiting for transients to settle down. The time 
taken to write dirty lines back depends on the number of lines to be written back and the ratio of 
the cache linesize to the width of the bus used to write back.  
 
The table in Figure 11 shows the average number of blocks that are turned on during a 100K 
interval and the average number of dirty lines at the end of the 100K interval. It is observed that 
the total number of dirty lines is often considerably less than the number of lines activated during 
the 100K interval. 
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Figure 11: Average number of blocks in a 32K (512 block) 
cache which are (a) active (b) dirty at end of a 100K interval 
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Each writeback of a dirty line takes a number of cycles that depends on the length of the cache 
block and the width of the writeback bus. We assume here a 32 byte writeback bus, which 
implies a pipelined throughput of 2 cycles per writeback for a 64 byte line. We will assume an 
additional 100 cycle penalty for starting up the writeback process and for allowing the cache to 
settle down after quenching.  
 
When a miss occurs, the group containing the block must be turned if it is not already on. 
Turning on a part of the cache causes an electrical disturbance that could take a few cycles to 
settle down. Some of these cycles can be hidden under the miss latency – the island could be 
turned on as soon as a miss is detected, rather than after the data arrives from the next level. The 
actual additional overhead depends on the implementation; in the absence of real data, this paper 
will assume an overhead of 10 cycles. 
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Figure 12: Overhead of quenching in a 32K cache   
(100K quench interval) 
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The result of these assumptions is the performance stack shown in Figure 12. The total 
performance overhead due to quenching is not too severe – typically less than 0.05 cpi. With 
smaller bus sizes, this overhead will increase. But it is expected that other techniques will be 
called upon to reduce this overhead when it becomes too high. For instance, it is possible to 
initiate the writeback process several hundred cycles ahead of the end of the interval.1 
 
Interestingly, the major component of the performance overhead due to quenching is the effort to 
turn on the cache blocks. One way to reduce this overhead is to have more than one cache block 
in each power island. For example, 4 cache blocks are turned on simultaneously in a 4 x 1 power 
group. In practice, the resulting gain in performance must be evaluated against a possible loss in 
power savings. Figure 13 shows that the number of islands turned on, and hence the turn-on 
overhead, reduces quite dramatically as the size of the power island increases, because fewer 
islands need to be turned on during the quenching interval. However, this is offset by increased 
power consumption either because blocks are turned on earlier than they need be, or because 
additional blocks that are not needed also get turned on when an island is turned on. The choice 
of island size will probably depend on the area overhead due to partitioning the cache into power 
islands, and on the settling delay – a 2x1 or 4x1 island size appears to offer a good compromise 
between performance loss and power savings. 
 

                                                 
1 This possibility was brought to the attention of the author by Viji Srinivasan. 
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Figure 13: Turn-on overhead and active ratio for different sizes of power islands 
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Frequency of quenching 
There remains an important question – that of the frequency of quenching. As the length of the 
quenching interval increases, more entries get activated, and dead entries remain on for a longer 
period of time. The graph in Figure 14 for one of the benchmarks, ijpeg, shows how the active 
ratio increases as the interval between quenches is increased. The graph also shows that savings 
in energy in small caches are more difficult to obtain – the quenching interval must be reduced in 
order to get such savings.  
 
 

Figure 14: Variation of ijpeg miss rate and activity in a quenched cache as a 
function of quenching interval  
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Countering the savings in energy with smaller quenching intervals is the increase in miss rate as 
shown in second graph of Figure 14. Interestingly, it is possible to bring the active ratio down to 
0.07 for a 32K cache using a quenching interval of 5000 instructions – the cost for this is a miss 
rate that is 7.8 times the miss rate of an unquenched cache. Perhaps 5000 instructions is 
unreasonable as a quenching interval – assuming 1 in 3 instructions is a load or a store, the 
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number of cache references within a 5000 instruction interval (about 1600) is considerably 
smaller than the number of 4-byte words in the cache (8000). A good tradeoff between power 
savings and quenching overhead is obtained when the quenching interval is a small multiple of 
the cache size in bytes. Thus a 50-80K quenching interval appears appropriate for a 32K cache, 
as a 6-10K interval does for a 4K cache. This is simply an empirical rule-of-thumb – further 
research could help pin down an appropriate quench rate as a function of cache size. 
 

5. Extension to other type of caches 

The concept of a quenched cache may be extended to any cache structure.  Most cache structures 
exploit temporal and spatial locality, with applications often having active regions that are just a 
small fraction of the total cache. As demonstrated in the last section a quenched implementation 
dynamically discovers the active areas of such a cache. I-caches enjoy a further advantage in that 
the cache blocks do not have to be written back when quenched and hence incur lower 
performance penalty. There are situations, though, when the overhead of purging a potentially 
useful cache block is non-trivial. Examples of this include correlation-based branch predictors, 
which typically take a longer number of instructions in learning historical behavior, and trace 
caches or DIF caches which have to relearn how to schedule long traces of instructions. 
 
In order to test the characteristics of one such cache, we simulated a quenched DIF cache. A DIF 
cache is like a trace cache, except that it also learns a schedule for the instructions in the trace. 
Thus there is the overhead of relearning the schedule whenever the contents of a useful DIF 
block are purged. The results of simulation are shown in Figure 15.  
 

 

0

0.2

0.4

0.6

0.8

1

1.2

co
mpre

ss gc
c go

ijp
eg pe

rl

vo
rte

x
xlis

p

Pe
rfo

rm
an

ce
 (c

pi
)

Po
w

er
 (A

ct
iv

e 
Ra

tio
)

4K (U)

4K (Q)

72K (U)

72K (Q)

Active
Ratio (4K)
Active
Ratio (72K)

Figure 15: Performance and activity in a 
quenched DIF-cache  

 
The power savings due to quenching are obvious for the larger 72K cache. (One can also see 
why a 72K cache would be useful to have in the first place – applications like gcc, perl, vortex, 
and xlisp enjoy a tremendous performance boost with the large DIF cache.) In the case of 
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compress, 93% of the energy is saved due to quenching because of its very small instruction 
footprint.  
 
The histogram also shows the performance overhead due to quenching of the DIF cache. (We did 
not include the transient time in these plots). It is encouraging to note that the overhead of 
relearning potentially useful information is minimal in all cases, presumably because the 
relearning overhead is quickly amortised over a sufficient number of reuses. A more interesting  
observation is that in the case of both compress and go, there is actually an improvement in 
performance because of cache quenching. The reason for this is the following. Each scheduled 
trace of instructions in a DIF block typically includes several predicted conditional branches. 
When one of these conditional branches is mispredicted, the effective size of the group, and 
hence the exploited instruction-level parallelism, is smaller. This learned group could keep 
mispredicting, especially in applications whose instruction footprints are small, as in compress 
and ijpeg, providing little opportunity for capacity miss replacement. When purged, however, the 
incorrect trace starting at a given instruction is forgotten and the currently applicable longer trace 
is learned.  
 
We believe that the observations made here apply to other types of learning caches, including 
branch prediction and value prediction structures. There are likely to be situations in some of 
these structures where performance benefit through unlearning wrong information by quenching 
offsets degradation due to loss of useful information. 
 

6. Related work 

Albonesi [4] proposed a cache design which changed the associativity of the cache according to 
application demands. Yang et al [5] proposed a more dynamic scheme that monitored miss rate 
in the cache in order to determine how to reorganize the cache. In an extension to the Albonesi 
scheme, they proposed reorganization, not only by changing the associativity of the cache, but 
also by changing the number of sets in the cache. In contrast to both these schemes, the quenched 
cache does not attempt to reconfigure the cache. As far as the processor is concerned, the cache 
is traditional in its design, with a fixed set size and fixed associativity. This eliminates all of the 
complexity associated with configurable schemes, especially that of changing indexing and of 
remapping blocks in a cache.  
 
Various researchers, including Wood, Hill and Kessler [6] and Burger et al [7] have shown   
that a large percentage of blocks existing in a cache at any given time are never reused. Kaxiras, 
Hu and Martonosi have exploited this observation in their proposal [8], which has both on and 
off power controls for each cache block. Their proposal includes a hardware scheme for each 
cache block to determine when it should be turned off. The quenched cache differs from this in 
that it does not require a local (per-block) heuristic hardware mechanism to determine when a 
cache block should be turned off; rather it simply provides a global mechanism to turn off the 
entire cache. The somewhat reduced power savings due this global approach is offset in the 
quenched cache by the considerable simplicity of design – other than the provision of gated-Vdd 
[9] power islands, there is practically no difference in the design of a quenched cache from the 
design of conventional caches. 
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Flautner et al [10] have proposed a drowsy cache, which reduces static power consumption by 
putting cache blocks in a low-power state where they retain their information but cannot be 
accessed. The authors propose putting the entire cache in the drowsy mode at periodic intervals. 
In contrast to drowsy cache, a cache block in a quenched cache consumes no energy in the off 
state. In periods of very low activity, which are common in many computers, the quenched cache 
saves a lot more power than a drowsy cache. The quenched cache implementation is also 
simpler, not having to deal with an additional Vdd line to each cache block, and not having to be 
concerned about the added risk of losing information in the low-Vdd state. Our work addresses 
the performance issues involved with writing back and turning off the cache, and shows why 
they are not of particular concern. The quenched cache therefore trades off minimal performance 
overhead with considerably greater power savings, simplicity, and robustness. 

7. Conclusion 

Modern microprocessors employ large caches of various types that consume a large fraction of 
the energy on a chip. Caches help improve performance of processors, but they tend to be 
underutilized and hence inefficient in their power consumption. It is well known that most blocks 
in traditional caches often contain information that is not needed immediately. This paper 
confirms this through profiles of activity in typical D-caches running a variety of applications.  
 
The cache activity profiles point to significant improvement in power-performance of caches, 
simply by purging all information in the cache periodically.  This quenching action does incur 
the overhead of relearning some of the purged information. However, only a small fraction of the 
cache typically needs to be relearned, and the cost of relearning is offset by the energy saved 
from turning off unneeded cache blocks. 
 
The quenched cache differs from a traditional cache only in that the blocks are grouped into 
power islands, each of which is independently turned on when the first miss to one of its blocks 
occurs. The size of the power island determines the area overhead and potential energy savings – 
a power island with 1 or 2 blocks is ideal from the energy savings point of view, but incurs more 
area overhead compared with a power island consisting of many more blocks. 
 
The degree of power savings is also dependent on the length of interval between quenches. When 
the quenching interval is small the power savings is greater because inactive blocks remain 
turned on for a shorter period of time. However, short quenching intervals are associated with 
greater relearning and turn-on/turn-off overhead. The paper quantifies this overhead and 
empirically determines that a balance between the increased overhead and energy savings in a D-
cache is obtained with a quenching interval (in instructions) that is roughly 2 to 3 times the cache 
size (in bytes). 
 
Trace simulations indicate that the performance overhead of quenching is minimal for SPEC-
type applications using sizes of caches that are common today. In reality, larger caches are 
becoming the norm – they are needed to boost performance on the occasional but important 
workload that needs them. Quenching results in greater energy savings on the more frequent 
applications that do not need large caches, and it does so without complicated schemes either to 
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detect application requirements or to reconfigure the cache. Moreover, the energy savings in a 
quenched cache automatically increases as cache activity reduces. It is important to note that, 
because of its similarity in implementation to a traditional cache, the performance and power 
characteristics of a quenched cache should be identical to those of the traditional cache when 
quenching is inhibited. 
 
The paper demonstrates the usefulness of quenching in cache structures beyond the traditional I- 
and D-caches. Its effectiveness was shown for a special structure called the DIF cache that 
contributes to improved performance in wide-issue processors by caching scheduled traces of 
instructions. As with D-caches, large DIF caches help in improving performance of some 
programs with large instruction footprints, and quenching helps keep the power consumption 
minimal in the many other situations where the footprint is small. 
 
One interesting aspect of quenching is its potential to actually improve performance in certain 
situations. A cache is a store of learned information, used as a hint of the future behavior of a 
program. Occasionally, the cache collects wrong information or information that is outdated, and 
the result is a performance-reducing hiccup every time it is encountered. Schemes to unlearn 
such information are seldom perfect or complete. The paper illustrates situations where 
unlearning simply by quenching actually improves performance. Quenching acts as a renewal 
mechanism, and as in nature, this renewal provides a new opportunity to learn correctly. 
 
This paper did not address circuit design aspects – it is hoped that the results here will provide an 
impetus for the development of circuit techniques that lead to implementations of quenched 
caches having minimal area overhead in comparison to traditional caches. With the incorporation 
of ever-larger number of components on a chip, increasing importance is being given to the 
design of power-efficient microprocessors. Different types of cache structures dominate the area 
of modern microprocessor chips – redesigning all these caches as quenched caches can help 
tremendously in improving the power-efficiency of these chips.  
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