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Abstract

This paper presents a publishing system for eÆciently creating dynamic Web content. Com-

plex Web pages are constructed from simpler fragments. Fragments may recursively embed

other fragments. Relationships between Web pages and fragments are represented by object

dependence graphs. We present algorithms for eÆciently detecting and updating Web pages af-

fected after one or more fragments change. We also present algorithms for publishing sets of Web

pages consistently; di�erent algorithms are used depending upon the consistency requirements.

Our publishing system provides an easy method for Web site designers to specify and modify

inclusion relationships among Web pages and fragments. Users can update content on multiple

Web pages by modifying a template. The system then automatically updates all Web pages

a�ected by the change. Our system accommodates both content that must be proofread before

publication and is typically from humans as well as content that has to be published immediately

and is typically from automated feeds. We discuss some of our experiences with real deployments

of our system as well as its performance.

1 Introduction

Many Web sites need to provide dynamic content. Examples include sport sites [2], stock market

sites, and virtual stores or auction sites where information on available products is constantly

changing.
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There are several problems with providing dynamic data to clients eÆciently and consistently.

A key problem with dynamic data is that it can be expensive to create; a typical dynamic page

may require several orders of magnitude more CPU time to serve than a typical static page of

comparable size. The overhead for dynamic data is a major problem for Web sites which receive

substantial request volumes. Signi�cant hardware may be needed for such Web sites.

A key requirement for many Web sites providing dynamic data is to completely and consistently

update pages which have changed. In other words, if a change to underlying data a�ects multiple

pages, all such pages should be correctly updated. In addition, a bundle of several changed pages

may have to be made visible to clients at the same time. For example, publishing pages in bundles

instead of individuallymay prevent situations where a client views a �rst page, clicks on a hypertext

link to view a second page, and sees information on the second page which is older and not consistent

with the information on the �rst page.

Depending upon the way in which dynamic data are being served, achieving complete and

consistent updates can be diÆcult or ineÆcient. Many Web sites cache dynamic data in memory

or a �le system in order to reduce the overhead of recalculating Web pages every time they are

requested [10]. In these systems, it is often diÆcult to identify which cached pages are a�ected by

a change to underlying data which modi�es several dynamic Web pages. In making sure that all

obsolete data are invalidated, deleting some current data from cache may be unavoidable. Conse-

quently, cache miss rates after an update may be high, adversely a�ecting performance. In addition,

multiple cache invalidations from a single update must be made consistently.

This paper presents a system for eÆciently and consistently publishing dynamic Web content.

In order to reduce the overhead of generating dynamic pages from scratch, our system composes

dynamic pages from simpler entities known as fragments. Fragments typically represent parts of

Web pages which change together; when a change to underlying data occurs which a�ects several

Web pages, the fragments a�ected by the change can easily be identi�ed. It is possible for a

fragment to recursively embed another fragment.

Our system provides a user-friendly method for managing complex Web pages composed of

fragments. Users specify how Web pages are composed from fragments by creating templates in a

markup language. Templates are parsed to determine inclusion relationships among fragments and

Web pages. These inclusion relationships are represented by a graph known as an object dependence

graph (ODG). Graph traversal algorithms are applied to ODG's in order to determine how changes

should be propagated throughout the Web site after one or more fragments change.
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Our system allows multiple independent authors to provide content as well as multiple inde-

pendent proofreaders to approve some pages for publication and reject others. Publication may

proceed in multiple stages in which a set of pages must be approved in one stage before it is passed

to the next stage. Our system can also include a link checker which veri�es that a Web page has no

broken hypertext links at the time the page is published. It is also scalable to handle high request

rates.

The remainder of the paper is organized as follows. Section 2 describes the architecture of our

system in detail. Section 3 describes the performance of our system. Section 4 discusses some of

our experiences with deploying our system at real Web sites. Section 5 discusses related work.

Finally, Section 6 summarizes our main results and conclusions.

2 System Architecture

2.1 Constructing Web Pages from Fragments

2.1.1 Overview

A key feature of our system is that it composes complex Web pages from simpler fragments (Fig-

ure 8). A page is a complete entity which may be served to a client. We say that a fragment or

page is atomic if it doesn't include any other fragments and complex if it includes other fragments.

An object is either a page or a fragment.

Our approach is eÆcient because the overhead for composing an object from simpler fragments

is usually minor. By contrast, the overhead for constructing the object from scratch as an atomic

fragment is generally much higher. Using the fragment approach, it is possible to achieve signi�cant

performance improvements without caching dynamic pages and dealing with the diÆculties of

keeping caches consistent. For optimal performance, our system has the ability to cache dynamic

pages. Caching capabilities are integrated with fragment management.

The fragment-based approach for generating Web pages makes it easier to design Web sites

in addition to improving performance. It is easy to design a set of Web pages with a common

look and feel. It is also easy to embed common information into several Web pages. Sets of Web

pages containing similar information can be managed together. For example, it is easy to update

common information represented by a single fragment but embedded within multiple pages; in

order to update the common information everywhere, only the fragment needs to be changed.

By contrast, if the Web pages are stored statically in a �le system, identifying and updating all
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pages a�ected by a change can be diÆcult. Once all changed pages have been identi�ed, care must

be taken to update all changed pages in order to preserve consistency.

Dynamic Web pages which embed fragments are implicitly updated any time an embedded

fragment changes, so consistency is automatically achieved. Consistency becomes an issue with the

fragment-based approach when the pages are being published to a cache or �le system. Our system

provides several di�erent methods for consistently publishing Web pages in these situations; each

method provides a di�erent level of consistency.

Fragments also provide a mechanism by which remote caches can store some parts of dynamic

and personalized pages. The remote cache stores the static parts of a page. When a page is

requested, the cache requests the dynamic or personalized fragments of the page from the server.

Typically, this would only constitute a small fraction of the page. The cache then composes and

serves the composite page.

2.1.2 Object Dependence Graphs

When pages are constructed from fragments, it is important to construct a fragment f1 before any

object containing f1 is constructed. In order to construct objects in an eÆcient order, our system

represents relationships between fragments and Web pages by graphs known as object dependence

graphs (ODG's) (Figures 1 and 2).

Object dependence graphs may have several di�erent edge types. An inclusion edge indicates

that an object embeds a fragment. A link edge indicates that an object contains a hypertext link

to another object.

In the ODG in Figure 2, all but one of the edges are inclusion edges. For example, the edge

from f4 to P1 indicates that P1 contains f4; thus, when f4 changes, f4 should be updated before

P1 is updated. The graph resulting from only inclusion edges is a directed acyclic graph.

The edge from P3 to P2 is a link edge which indicates that P2 contains a hypertext link to P3:

A key reason for maintaining link edges is to prevent dangling or inconsistent hypertext links. In

this example, the link edge from P3 to P2 indicates that publishing P2 before P3 will result in a

broken hypertext link. Similarly, when both P2 and P3 change, publishing a current version of P2

before publishing a current version of P3 could present inconsistent information to clients who view

an updated version of P2; click on the hypertext link to an outdated version of P3; and then see

information which is obsolete relative to the referring page. Link edges can form cycles within an

ODG. This would occur, for example, if two pages both contain hypertext links to each other.
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Figure 1: A set of Web pages containing fragments.
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Figure 2: The object dependence graph (ODG) corresponding to Figure 1.
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There are two methods for creating and modifying ODG's. Using one approach, users specify

how Web pages are composed from fragments by creating templates in a markup language. Tem-

plates are parsed to determine inclusion relationships among fragments and Web pages. Using the

second approach, a program may directly manipulate edges and vertices of an ODG by using an

API.

Our system allows an arbitrary number of edge types to exist in ODG's. So far, we have only

found practical use for inclusion and link edges. We suspect that there may be other types of

important relationships which can be represented by other edge types.

When our system becomes aware of changes to a set S of one or more objects, it does a depth-

�rst graph traversal using topological sort [4] to determine all vertices reachable from S by following

inclusion edges. The topological sort orders vertices such that whenever there is an edge from a

vertex v to another vertex u, v appears before u in the topological sort. For example, a valid

topological sort of the graph in Figure 2 after P3, f4, and f2 change would be P3, f4, f2, f5, P2, f1,

f3, and P1. This topological sort ignores link edges.

Objects are updated in an order consistent with the topological sort. Our system updates

objects in parallel when possible. In the previous example, P3, f4, and f2 can be updated in

parallel. After f2 is updated, f1 and f5 may be updated in parallel. A number of other objects

may be constructed in parallel in a manner consistent with the inclusion edges of the ODG.

After a set of pages, U , has been updated (or generated for the �rst time), the pages in U are

published so that they can be viewed by clients. In some cases, the pages are published to �le

systems. In other cases, they are published to caches. Pages may be published either locally on the

system generating them or to a remote system. It is often a requirement for a set of multiple pages

to be published consistently. Consistency can be guaranteed by publishing all changed (or newly

generated) pages in a single atomic action. One potential drawback to this method of publication is

that the publication process may be relatively long. For example, pages may have to be proofread

before publication. If everything is published together in a single atomic action, there can be

considerable delay before any information is made available.

Therefore, incremental publication, wherein information is published in stages instead of to-

gether, is often desirable. The disadvantage to incremental publication is that consistency guaran-

tees are not as strong. Our system provides three di�erent methods for incremental publication,

each providing di�erent levels of consistency.

The �rst incremental publishing method guarantees that a freshly published page will not
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contain a hypertext link to either an obsolete or unpublished page. This consistency guarantee

applies to pages reached by following several hypertext links. More speci�cally, if P1 and P2 are

two pages in U; if a client views an updated version of P1 and follows one or more hypertext links

to view P2, then the client is guaranteed to see a version of P2 which is not obsolete with respect

to the version of P1 which the client viewed (a version of P2 is obsolete with respect to a version

of P1 if the version of P2 was outdated at the time the version of P1 became current, regardless of

whether P1 or P2 have any fragments in common).

For example, consider the Web pages in Figure 3. A client can access P3 by starting at P1;

following a hypertext link to P2 and then following a second hypertext to P3: Suppose that both

P1 and P3 change. The �rst incremental publishing method guarantees that the new version of P1

will not be published before the new version of P3; regardless of whether P2 has changed.

P3P1 P2

Figure 3: A set of Web pages connected by hypertext links.

This incremental publishing method is implemented by �rst determining the set R of all pages

which can be reached by following hypertext links from a page in U: R includes all pages of U ; it

may also include previously published pages which haven't changed. R is determined by traversing

link edges in reverse order starting from pages in U:

Let K be the subgraph of the ODG consisting of all nodes in R and link edges in the ODG

connecting nodes in R: K is topologically sorted, and its strongly connected components are de-

termined. A strongly connected component of a directed graph is a maximal subset of vertices S

such that every vertex in S has a directed path to every other vertex in S: A good algorithm for

�nding strongly connected components in directed graphs is contained in [4].

Vertices in U are then examined in an order consistent with the topological sort of K: Each

time a page in U is examined for which the updated version hasn't been published yet, the page is

published together with all other pages in U belonging to the same strongly connected component.

Each set of pages which are published together in an atomic action is known as a bundle.

The second incremental publishing method guarantees that any two pages in U which both

contain a common changed fragment are published in the same bundle. For example, consider
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the Web pages in Figure 4. Suppose that both f1 and f2 change. Since P1 and P3 both embed

f1; their updated versions must be published together. Since P2 and P3 both embed f2; their

updated versions must be published together. Thus, updated versions of all three Web pages must

be published together. Note that updated versions of P1 and P2 must be published together, even

though the two pages don't embed a common fragment.

P1 P2 P3f1 f2 f1 f2

Figure 4: A set of Web pages containing common fragments.

In order to implement this approach, the set of all changed fragments contained within each

changed object d1 is determined. We call this set the changed fragment set for d1 and denote it by

C(d1): All changed objects are constructed in topological sorting order. When a changed object d1

is constructed, C(d1) is calculated as the union of f2 and C(f2) for each fragment f2 such that a

dependence edge (f2; d1) exists in the ODG.

After all changed fragment sets have been determined, an undirected graph D is constructed

in which the vertices of D are pages in U . An edge exists between two pages P1 and P2 in U if

C(P1) and C(P2) have at least one fragment in common. D is examined to determine its connected

components (two vertices are part of the same connected component if and only if there is a path

between the vertices in the graph). All pages belonging to the same connected component are

published in the same bundle.

The third incremental publishing method satis�es the consistency guarantees of both the �rst

and second method. In other words,

1. A freshly published page will not contain a hypertext link to either an obsolete or unpublished

page. More speci�cally, if P1 and P2 are two pages in U; if a client views an updated version

of P1 and follows one or more hypertext links to view P2, then the client is guaranteed to

see a version of P2 which is not obsolete with respect to the version of P1 which the client

viewed.

2. Any two changed pages which both contain a common changed fragment are published to-

gether.

This method generally results in publishing fewer bundles but of larger sizes than the �rst two
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approaches.

For example, consider the Web pages in Figure 5. Suppose that both P1 and f1 change. Updated

versions of P2 and P3 must be published together because they both embed f1: Since P1 contains a

hypertext link to P3; the updated version of P1 cannot be published before the bundle containing

updated versions of P2 and P3:

Hypertext
Link

P1
P2

P3

f1 f1

Figure 5: Another set of related Web pages.

If, instead, the �rst incremental publishing method were used to publish the Web pages in

Figure 5, the updated version of P1 could not be published before the updated version of P3:

However, the updated version of P2 would not have to be published in the same bundle as the

updated version of P3: If the second incremental publishing method were used, updated versions

of both P2 and P3 would have to be published together in the same bundle. However, publication

of the updated version of P1 would be allowed to precede publication of the bundle containing

updated versions of P2 and P3:

The third incremental publishing method is implemented by constructing K as in the �rst

incremental publishing method and changed fragment sets as in the second incremental publishing

method. Additional edges are then added to K between pages in U . For all pages P1 and P2 in U

such that C(P1) and C(P2) have a fragment in common, directed edges from both P1 to P2 and P2

to P1 are then added. The same procedure is then applied to K to publish pages in bundles as in

the �rst method.

Incremental publishing methods can be designed for other consistency requirements as well. For

example, consider Figure 3. Suppose that both P1 and P3 change. It may be desirable to publish

updated versions of P1 and P3 in the same bundle. This would avoid the following situation which

could occur using the �rst incremental publishing method.

A client views an old version of P1: After following hypertext links, the client arrives at a new

version of P3: The browser's cache is then used to go to the old version of P1: The client reloads

P1 in order to obtain a version consistent with P3 but still sees the old version because the new
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version of P1 has not yet been published.

It is straightforward to implement an incremental publishing method which would publish P1

and P3 in the same bundle using techniques similar to the ones just described.

2.2 The Publishing System

2.2.1 Combined Content Pages

Many Web sites contain information that is fed from multiple sources. Some of the information,

such as the latest scores from a sporting event, is generated automatically by a computer. Other

information, such as news stories, is generated by humans. Both types of information are subject

to change. A page containing both human and computer-generated information is known as a

combined content page.

A key problem with serving combined content pages is the di�erent rates at which sources

produce content. Computer-generated content tends to be produced at a relatively high rate, often

as fast as the most sophisticated timing technology permits. Human-generated content is produced

at a much lower rate. Thus, it is diÆcult for humans to keep pace with automated feeds. By the

time an editor has �nished with a page, the actual results on the page may have changed. If the

editor takes time to update the page, the results may have changed yet again.

A requirement for many of the Web sites we have helped design is that computer-generated

content should not be delayed by humans. Computer-generated results, such as the latest results

from a sporting event, are often extremely important and should be published as soon as possible.

If computer-generated results are combined with human-edited content using conventional Web

publishing systems, publication of the computer-generated results can be delayed signi�cantly.

What is needed is a scheme to combine data feeds of di�ering speeds so that information arriving

at high rates is not unnecessarily delayed.

In order to provide combined content pages, our system divides fragments into two categories.

Immediate fragments are fragments which contain vital information which should be published

quickly with minimal proofreading. For the sports Web sites that our system is being used for, the

latest results in a sporting event would be published as an immediate fragment. Quality controlled

fragments are fragments which don't have to be published as quickly as immediate fragments but

have content which must be examined in order to determine whether the fragments are suitable to be

published. Background stories on athletes are typically published as quality controlled fragments
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at the sports sites which use our system. Combined content Web pages consist of a mixture of

immediate and quality controlled fragments.

When one or more immediate fragments change, the Web pages a�ected by the changes are

updated and published without proofreading. If both immediate and quality controlled fragments

change, the system �rst performs updates resulting from the immediate fragments and publishes

the updated Web pages immediately. It subsequently performs updates resulting from quality

controlled fragments and only publishes these updated Web pages after they have been proofread.

Multiple versions of a combined content page may be published using this approach. The �rst

version would be the page before any updates. The second version might contain updates to all

immediate fragments but not to any quality controlled fragments. The third version might contain

updates to all fragments.

It is possible for an update to an immediate fragment f1 to be published before an update to a

quality controlled fragment f2 even though f2 changed before f1: This might occur if the changes

to f2 are delayed in publication due to proofreading.

2.2.2 System Description

Web pages produced by our system typically consist of multiple fragments. Each fragment may

originate from a di�erent source and may be produced at a di�erent rate than other fragments.

Fragments may be nested, permitting the construction of complex and sophisticated pages. Com-

pleted pages are written to sinks, which may be �le systems, caches, or even other HTTP servers.

The Trigger Monitor is the software which takes objects from one or more sources, constructs

pages, and writes the constructed pages to one or more sinks (Figure 6). Relationships between

fragments are maintained in a persistent ODG which preserves state information in the event of a

system crash.

Whenever the Trigger Monitor is noti�ed of a modi�cation or addition of one or more objects,

it fetches new copies of the changed objects from the appropriate source. The ODG is updated

by parsing new and changed objects. The graph traversal algorithms described in Section 2.1.2

are then applied to determine all Web pages which need to be updated and an eÆcient order for

updating them. Finally, bundles of published pages are written to the sinks.

Since the Trigger Monitor is aware of all fragments and pages, synchronization is possible to

prevent corruption of the pages. The ODG is used as the synchronization object to keep the

fragment space consistent. Many \trigger handlers", each with their own sources and sinks, may
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Figure 6: Schematic of the Publish Process.
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be con�gured to use a common ODG. This design permits, for example, a slow-moving, carefully

edited human-generated set of pages and fragments to be integrated with a high-speed, automated,

database-driven content source. Because the ODG is aware of the entire fragment space and the

interrelationship of the objects within that space, synchronization points can be chosen to ensure

that multiple, di�erently-sourced, di�erently-paced content streams remain consistent.

Multiple Trigger Monitor instances may be chained, the sinks of earlier instances becoming the

sources for later ones. This allows publication to take place in multiple stages. We have typically

used the following stages in real deployments (Figure 7):

Development is the �rst step in the process. Fragments which appear on many Web pages (such

as generic headers and footers) as well as overall site design occur here. The output of

development may be structurally complete but lacking in content.

Staging takes as its input, or source, the output, or sink, of Development. Editors polish pages

and combine content from various sources. Finished pages are the result.

Quality Assurance takes as its source the sink of Staging. Pages are examined here for correct-

ness and appropriateness.

Automated Results are produced when a database trigger is generated as the result of an update.

The trigger causes programs to be executed that extract current results and compose relevant

updated pages and fragments. Unlike the previous stages, no human intervention occurs in

this stage.

Production is where pages are served from. Its source is the sink of QA, and its sinks are the

serving directories and caches.

Note how one stage can use the sink of another stage as its source. The automated feed updates

each source at the same time, but independently of the human-driven stages. This achieves the dual

goals of keeping the entire site consistent while publishing content immediately from automated

feeds. Stages can be added and deleted easily. Data sources can be added and deleted with little

or no disruption to the ow.

One of the key things our publishing system enables is separation of the creative process from

the mechanical process of building a Web site. Previously, the content, look, and feel of large sites

we were involved with had to be carefully planned well in advance of the creation of the �rst page.

Changes to the original plans were quite diÆcult to execute, even in the best of circumstances.
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Last-minute changes tended to be impossible, resulting in a choice between delayed or awed site

publication.

With our publishing system, the entire look and feel of a site can be changed and republished

within minutes. Aside from the cost savings, this has allowed tremendous creativity on the part of

designers. Entire site designs can be created, experimented with, changed, discarded, and replaced

several times a day during the construction of the site. This can take place in parallel with and

independently of the creation of site content.

A speci�c example of this was demonstrated just before a new site look for the 2000 Sydney

Olympic Games Web site was made public. One day before the site was to go live before the public,

it was decided that the search facility was not working suÆciently well and must be removed. This

change a�ected thousands of pages, and would previously have delayed publication of the site by

as much as several days. Using our system, the site authors simply removed the search button

from the appropriate fragment and republished the fragment. Ten minutes later, the change was

complete, every page had been rebuilt, and the site went live on schedule.

2.3 Examples

To demonstrate how a site might be built from fragments, we present an example from a Web site for

a French Open Tennis Tournament. A site architect views the player page for SteÆ Graf (shown in

Figure 8) as consisting of a standard header, sidebar, and footer, with biographical information and

recent results thrown in. The site architect composes HTML similar to the following, establishing

a general layout for the site:

<html>

<!-- %include(header.frg) -->

<table>

<tr>

<td><!-- %include(sidebr.frg) --></td>

<td><table>

<tr><!-- %fragment(graf_bio.frg) --></tr>

<tr><!-- %fragment(graf_score.frg) --></tr>

</td></table>

</tr>

</table>

<!-- %include(footer.frg) -->

</html>

where \footer.frg" consists of
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<!-- %fragment(factoid.frg) -->

<!-- %fragment(copyr.frg) -->

Prior to the beginning of play, the contents of \graf score.frg" will be empty, since no matches

have commenced. This means the part of the page outlined by the dashed box in Figure 8 will, at

�rst, be empty. The �rst publication of this fragment will result in the ODG seen to the right of

SteÆ Graf's player page in Figure 8. Again, the objects and edges within the dashed box will not

yet be within the ODG, since no match play has yet occurred.

final.frg

semif.frg

graf_score.frg

foot.frg

factoid.frg

copyr.frg

graf_bio.frg

header.frg

sidebar.frg

graf.html

graf_score.frg graf_bio.frg

sidebr.frg

footer.frgheader.frg

final.frg

semi.frg

copyr.frg

factoid.frg

ODG representation of this
page

Figure 8: Sample screen shot demonstrating the use of fragments.

Using fragments in this way permits many architects, editors, and even automated systems to

modify the page simultaneously. Our system ensures that all changes are properly included in the
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�nal page that is seen by the user. An architect updating the structure of the page does not need

to know anything about copyrights, trademarks, the size of the sponsor's logos, the look-and-feel

of the site, or any of the data that will be included on the page. Similarly, an editor wishing to

change the look-and-feel of a site does not need to understand the structure of any particular page.

Major site changes, like changing the look-and-feel of a site, are as simple as changing a single

page. For example, changing the sidebar to reect the end of a long event is as simple as updating

\sidebr.frg". To change the look-and-feel of a site, an editor only needs to change \header.frg"

and \footer.frg". For both these kinds of changes, the system will use the ODG from Figure 8 to

determine that SteÆ Graf's page must be rebuilt (along with many others). Once all pages have

been rebuilt, they will be republished. The user will see the changes on every page, although the

vast majority of underlying fragments will not have changed.

More static information, like player biographies, can be kept up-to-date in one place but used

on many pages. For example, \graf bio.frg" is used on our example page, but may also be used in

many other places. To include a new photo or update the information included in the biography,

the editors need only concern themselves with updating \graf bio.frg". The system ensures that

all pages which include \graf bio.frg" will automatically be rebuilt.

Since scoring information will change frequently once a tennis match is in progress, updating

that aspect of a page can be handled by an automated process. As a match begins, \graf score.frg"

is updated to include the match in progress. This means that once the �nal has begun, the

\graf score.frg" page will consist of HTML similar to

<!-- %fragment(final.frg) -->

<!-- %fragment(semi.frg) -->

When the updated \graf score.frg" is published, the system will detect that it now includes

\�nal.frg" and \semi.frg" and will update the ODG as shown in the dashed box within Figure 8.

Now, as the �nal match progresses, only \�nal.frg" needs to be updated and published through

our system. As part of the publication process, the system will detect that \�nal.frg" is included

in \graf score.frg", causing \graf score.frg" to be rebuilt using the updated score. Likewise, the

system will detect that SteÆ Graf's page must be rebuilt as well, and a new page will be built

including the updated scoring information. Eventually, when the match completes, the complete

page shown in the example is produced.

The score for the �nal match will be displayed on many pages other than SteÆ Graf's player

page. For instance, Martina Hingis's player page will also include these results, as will the score-

board page while the match is in progress. A page listing matchups between di�erent players
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will also contain the score. To update all of these pages, the automated system only updates one

fragment. This keeps the automated system independent of the site design.

A more complex example of a Web page with fragments is shown in Figure 9 which depicts the

Athletics Home Page from the 2000 Olympic Games Web Site on October 1, 2000. Both the header

and footer are in separate frames. This reduces the size of pages and the amount of information

which needs to be loaded when navigating between pages. It also allows clients to access the top

and bottom navigation elements at any time since when scrolling through pages, they do not move.

The page contains a total of 46 fragments, a typical number for the Web site. The header

contains 1 top-level fragment and 12 embedded fragments. The footer contains 1 top-level fragment

and 3 embedded fragments. Neither the header or footer were changed during the games. The

Athletics Home Page frame contains 9 top-level fragments and 20 embedded fragments. This page

was updated frequently, and fragments were an essential component in reducing the overhead for

updates.

3 System Performance

This section describes the performance of a Java implementation of our system running on an

IBM Intellistation containing a 333 Mhz Pentium II processor with 256 Mbytes of memory and the

Windows NT (version 4.0) operating system. The distribution of Web pages sizes is similar to the

one for the 1998 Olympic Games Web site [11] as well as more recent Web sites deploying our system;

the average Web page size is around 10 Kbytes. Fragment sizes are typically several hundred bytes

but usually less than 1 Kbyte. The distribution of fragment sizes is also representative of real Web

sites deploying our system.

Figure 10 shows the CPU time in milliseconds required for constructing and publishing bundles

of various sizes. Times are averaged over 100 runs. All 100 runs were submitted simultaneously,

so the times in the �gure reect the ability for the runs to be executed in parallel. The solid

curve depicts times when all objects which need to be constructed are explicitly triggered. The

dotted line depicts times when a single fragment which is included in multiple pages is triggered;

the pages which need to be built as a result of the change to the fragment are determined from the

ODG. Graph traversal algorithms applied to the ODG have relatively low overhead. By contrast,

each object which is triggered has to be read from disk and parsed; these operations consume

considerable CPU overhead. As the graph indicates, it is more desirable to trigger a few objects,
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which are included in multiple pages, than to trigger all objects which need to be constructed.
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Figure 10: The CPU time in milliseconds required to construct and publish bundles of various sizes.

Our implementation allows multiple complex objects to be constructed in parallel. As a result,

we are able to achieve near 100% CPU utilization, even when construction of an object was blocked

due to I/O, by concurrently constructing other objects.

The breakdown as to where CPU time is consumed is shown in Figure 11. CPU time is divided

into the following categories:

� Retrieve, parse: time to read all triggered objects from disk and parse them for determining

included fragments.

� ODG update: time for updating the ODG based on the information obtained from parsing

objects and for analyzing the ODG to determine all objects which need to be updated and

an eÆcient order for updating the objects.

� Assembly: time to update all objects.

� Save data: time to save all updated objects on disk.

� Send ack: time to send an acknowledgment message via HTTP that publication is complete.

In the bars marked 1 to 100, one fragment included in 100 others was triggered. The 100 pages

which needed to be constructed were determined from the ODG. In the bars marked 100 to 100,

the 100 pages which needed to be constructed were all triggered. The times shown in Figure 11

are the average times for a single page. The total average time for constructing and publishing
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Figure 11: The breakdown in CPU time required to construct and publish a typical complex Web

page.

a page in the 1 to 100 page is 25.86 milliseconds (represented by the aggregate of all bars); the

corresponding time for the 100 to 100 case is 44.51 milliseconds.

The retrieve and parse time is signi�cantly higher for the 100 to 100 case because the system is

reading and parsing 100 objects compared with 1 in the 1 to 100 case. Since the source for every

object that is triggered must be saved, the time it takes to save the data is somewhat longer when

100 objects are triggered than when only one object is triggered.

Figure 12 shows how the average construction and publication time varies with the number

of embedded fragments within a Web page. Figure 13 shows how the average construction and

publication time varies with the number of fragments which are triggered for a Web page containing

20 fragments. Both graphs are averaged over 100 runs.

4 Deployment Experiences

We now describe how our publishing system is typically deployed. Approximately three dozen

di�erent object types are produced by various data sources. These objects include entities such as

images, PDF �les, style sheets, movies, and HTML fragments. Objects are categorized into four

primary classes based on how they participate in page assembly, and two secondary classes based

on whether they are distributed as servable pages. Table 1 describes the four primary object types.

Binary objects such as images, sound clips, and movies are embedded in pages by virtue of

HTML tags and therefore do not a�ect the page assembly process. The publishing system passes
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Embeds Other Fragments Doesn't Embed Other Fragments

Embedded in other Fragment Intermediate Leaf

Not Embedded in other Fragment Top-Level Binary

Table 1: The four primary object types
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such objects directly from their source location (e.g. authors, web-cams) to the sink which dis-

tributes them to the origin server's serving directory.

The page assembly process produces two secondary classes of objects. A top-level object is

transformed into a �nal, servable HTML page after page assembly. This page is sent to the sink for

distribution to the servers. An intermediate object is transformed into a partially assembled object

by embedding those objects it refers to. The partials are written to a persistent cache for potential

reuse in subsequent page assemblies. Table 2 summarizes the two secondary object types.

Input to Assembly Generated by Assembly

Intermediate Partial

Top-Level Servable Html

Table 2: Secondary object types

Objects sent to the publishing system generally go through four steps:

1. Read object from source,

2. Update object dependence graph,

3. Assemble pages a�ected by the object, and

4. Save input object and assembled objects to a persistent cache and to sink for distribution.

Figure 14 shows the ow of data through the publishing system for each type of object. The

two repositories, \source", and \assembled" are disk-based caches. The source repository caches

new objects for potential re-use in subsequent publish operations. The assembled repository caches

partial objects for potential re-use. Finally, servable pages are written to sinks for distribution to

the servers.

The act of publishing a page consists of the authoring system sending a message to the publishing

system containing the names of the objects which have changed and which have been validated as

ready for distribution. The �rst step taken by the publishing system is to fetch each object from the

authoring system. If the object is a fragment of any sort, that is, a leaf, intermediate, or top-level

object, it is then saved into the source repository. Binary objects (which do not participate in

assembly) do not need to be cached.

The fragments are then analyzed for dependencies, and the ODG is updated to reect the new

state of the system. After ensuring that the dependencies in the ODG are consistent with the
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new objects received, the ODG update task issues a request which returns a list of objects needing

re-assembly.

Page assembly now occurs. The page assembler will pull needed objects from the cache. If a

partial object is being embedded in an object requiring re-assembly, then the page assembler will

pull the embedded object from the assembled repository (rather than the source repository). This

extra cache eliminates the need to re-assemble embedded partial objects, which might be costly.

Finally, the output of the assembly process is written to the appropriate place. If the output

of assembly is a partial object, it is written to the assembled repository for possible use in a future

assembly. If the output of assembly is a servable page, then it is written to the sinks for distribution

to the content servers. Triggered binary objects are also written to sinks.

There are three major disk-based caches used in the publishing process:

� The \source" repository. All page fragments are placed into this repository upon entering the

publishing system and retrieved during page assembly. The \publish" message plays the role

of a cache-invalidation message for the source repository.

� The \assembled" repository. During page assembly, intermediate fragments (Table 2) are

built into \partial" fragments. These \partial" fragments are saved for reuse during page

assembly. Objects in this cache are invalidated when ODG analysis determines that at least

one of the fragments making up the partial changes.

� The Object Dependence Graph (ODG). This is, in e�ect, a cache, because all of the informa-

tion in it also resides in the database containing fragments (which is, however, prohibitively

expensive to search).

All three of these caches can be rebuilt in the event of total failure by republishing all the

fragments in the authoring system's database. It is critical that these caches be persistent. The

time to rebuild all three caches after total failure can be several hours for a major Web site.

The caches are implemented as disk-backed hash tables [12]. The cache interfaces are imple-

mented as Java(2) \Map" interfaces, compatible with the Java(2) HashMap, making it trivial to

exchange a memory-based hash table with a disk-backed hash table. We exploit the disk-based

cache in several ways:

� Rapid startup after shutdown or failure. The time required to restart the entire publishing

system is about three orders magnitude faster with a primed cache than without one.
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� Space consumed by the publishing system can easily overow main memory. The disk-based

caches provide suÆcient storage for situations where main memory would be insuÆcient.

� Replication of the publishing system. It is often desirable to have several instances of the

publishing system installed for purposes such as development, test, recovery, etc. Because

each cache is implemented as a single �le, it is easy to replicate the state of the publishing

system for use elsewhere.

4.1 Statistics from a Major Deployment

We now present statistics we collected from a deployment of our publishing system at a major Web

site1. This deployment did not make use of link edges or incremental publication as described in

Section 2.1.2. Standard third party tools were used to check hypertext links for correctness. Pages

were extensively tested to make sure that they worked as designed.

The publication system used two stages. The �rst stage consisted of development, staging, and

quality assurance. The second stage consisted of production. Real-time results were fed directly

to the production server, and quality assurance for such pages was handled after the pages were

published. As the site grew in size over the course of the event, such changes were only done at

night.

Figures 15-16 characterize the object size distributions within two of the disk-based caches used

in the publishing system.

Figure 17 shows the distribution of the number of incoming edges for ODG nodes. This is a

lower bound on the number of fragments embedded in the object corresponding to the node. It is

a lower bound because a fragment embedded in the object may recursively embed other objects.

Figure 18 shows the distribution of the number of outgoing edges for ODG nodes. This is a lower

bound on the number of fragments which embed the object corresponding to the node. It is a

lower bound because a fragment which embeds the object may recursively be embedded by other

objects. Some fragments, such as header and footer fragments, are embedded in a large number

of Web pages. Finally, Figure 19 shows the distribution of maximum levels at which objects are

embedded. The embed depth of an object is the maximum length of any path following inclusion

edges originating from the object. In this system there is no limit on the embedding level. We see

that web page authors are nesting pages at most �ve levels deep.

1The 2000 Olympic Games Web site
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Figure 15: The distribution of object sizes in the source repository. Each bar represents the number

of objects contained in the size range whose upper limit is shown on the X-axis.

Object Sizes in Assembled Repository
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Figure 16: The distribution of object sizes in the assembled repository. Each bar represents the

number of objects contained in the size range whose upper limit is shown on the X-axis.
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Distribution of Incoming Edges In ODG
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Figure 17: The distribution of the number of incoming edges for nodes of the ODG.
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Figure 18: The distribution of the number of outgoing edges for nodes of the ODG.
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Object Nesting Depth in the ODG
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Figure 19: The distribution of the degree to which objects are embedded.

Figure 20 shows the number of updates which were processed each day. Each update typically

results in several objects being changed. Updates originated from one of the following:

� Scoring: Updated information from the scoring system which contained sports scores, start

lists, athlete information and event scheduling.

� News: Editorial changes to news stories.

� Static: Data updating the presentation of the site such as headers, trailers, templates, images,

logos and sound �les as well as other mostly static content created manually.

� Netcam: Graphics and images taken from live cameras.

� Reapers: Several small applications which would grab data from outside sources, like weather

and time, and pump it into appropriate Web pages.

The Olympic Games started on Day 1. Days -3 through 0 correspond to the four days before the

event started. The number of updates during this period was not as high as during the games

themselves.

Each update identi�ed one or more objects which had been changed by the originator. This is

the list of the input objects. ODG analysis identi�es dependent objects which also have changed
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Figure 20: Number of updates each day, broken down by originator. Multiple objects are typically

changed by each update.

because one of their underlying fragments had changed. The sum of the two lists, input objects

and dependent objects, is the actual list of changed objects resulting from the update. Figure 21

shows the number of objects input, and changed, for each day. Figure 22 breaks the list of objects

changed by type. Since only top-level and intermediate type objects have underlying fragments

which might have changed, all dependent objects are of one of those types. The chart shows the

count of each type of object, also indicating whether objects were input, or dependent.

Figure 23 shows how object changes were distributed across two typical days. Each hourly count

of object changes is broken down into the number of objects changed because they were modi�ed by

the originating source, and the number of objects that were changed because they were dependent

on an underlying object that was changed. The number of updated objects decreases late at night

and in the early morning hours. The exceptions are the peaks around 1:00 and 2:00 AM which

correspond to times at which updates were made to prepare the Web site for the next day.

Figure 24 shows how many updates were made to the ODG over the course of the event. It

indicates that the structure of the ODG was quite dynamic. This has implications for systems

which remotely cache fragments and perform remote assembly of the fragments. Since the ODG
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Figure 21: Total number of objects input and changed each day. The di�erence between the bars

for each day shows the number of dependent objects for that day.

Total number of objects updated per day, by object type
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Figure 22: Number of objects updated by type.
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Count of updated objects per hour for Day 5 and 6
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Figure 23: Distribution of object changes for each hour during two days.

is constantly changing, remote caches may have to frequently update the dependency information

they contain in order to remain consistent.

Figure 25 shows the elapsed time per batched update, averaged over all updates for each day.

Earlier in this section, we described how the publishing process consists of four steps. In the

bargraph, read corresponds to reading objects from source, odg update corresponds to updating

the object dependence graphs, assemble corresponds to assembling pages a�ected by the changed

objects, and write corresponds to writing the assembled objects to sink for distribution or to a

persistent cache. For the read and write phases, most of the time was spent waiting for I/O. For

the ODG phase, most of the time was spent waiting to acquire a lock. The assemble phase was the

only phase that was CPU intensive.

The growth of the disk caches is shown in Figure 26. Both the source and assembled repository

grow signi�cantly faster than the ODG. From the third day and all days afterwards, the source

repository consumed the most disk space.
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All ODG Updates
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Figure 24: Number of updates to the ODG by type.
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Figure 25: Average elapsed time consumed per batched update. Multiple objects were typically

updated in each batch.
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Growth of ODG files
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Figure 26: Growth of disk caches.

5 Related Work

Our paper has described techniques for eÆciently creating dynamic content. A number of other

researchers have examined the related problem of how to allow at least some parts of dynamic

Web content to be cached remotely. HPP [6] is an extension to HTML which allows Web resources

to be separated into static and dynamic parts. Static portions can be cached, while the dynamic

portions are obtained on each access. Delta encoding [16] is a method for updating cached objects

by transferring only the di�erence between a cached object and the current value. Mikhailov and

Wills [15] have developed a technique for managing Web objects in which objects at a site are

classi�ed based on their change characteristics. Servers analyze relationships between objects in

conjunction with object change characteristics and compile them into content control commands.

Caches and servers then use these commands to manage objects. Frequently changing pages are

constructed from individual components. The ESI proposal [7] is an attempt to develop a standard

protocol for caching fragments of Web pages remotely and assembling the pages at the cache in

response to a request. Datta and others have developed a proxy cache which stores fragments

remotely and assembles them in response to client requests [5]. Mohaptra and Chen [17] have also

proposed a system for constructing Web pages from fragments using graphs to represent inclusion

34



relationships between fragments. Their work was after our earlier work in this area [3]. They have

not developed a production quality publishing system deployed at highly accessed Web sites as we

have.

HTML contains an OBJECT tag which allows an arbitrary program object to be embedded

in an HTML page. While the OBJECT tag has the potential to achieve fragment composition at

the client, a major drawback is that major browsers don't support the tag properly. Therefore, we

couldn't rely on the OBJECT tag for our Web sites.

6 Summary and Conclusions

We have presented a publishing system for eÆciently creating dynamicWeb content. Our publishing

system constructs complex objects from fragments which may recursively embed other fragments.

Relationships between Web pages and fragments are represented by object dependence graphs. We

presented algorithms for eÆciently detecting and updating all a�ected Web pages after one or more

fragments change.

After a set of multiple Web pages change or are created for the �rst time, the Web pages must

be published to an audience. Publishing all changed Web pages in a single atomic action avoids

consistency problems but may cause delays in publication, particularly if the newly constructed

pages must be proofread before publication. Incremental publication can provide information faster

but may also result in inconsistencies across published Web pages. We presented three algorithms

for incremental publication designed to handle di�erent consistency requirements.

Our publishing system provides an easy method for Web site designers to specify and modify

inclusion relationships among Web pages and fragments. Users can update content on multiple Web

pages by modifying a template. The system then automatically updates all Web pages a�ected by

the change. It is easy to change the look and feel of an entire Web site as well as to consistently

update common information on many Web pages.

Our system accommodates both quality controlled fragments that must be proofread before

publication and are typically from humans as well as immediate fragments that have to be published

immediately and are typically from automated feeds. A Web page can combine both quality

controlled and immediate fragments and still be updated in a timely fashion. Our publishing system

has been implemented in Java. We discussed some of our experiences with real deployments of our

system as well as its performance.
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There are a number of extensions to this work. We are currently developing a tool to aid Web

designers in fragmenting pages at a Web site. This tool detects common information across di�erent

Web pages. We are also looking for opportunities to deploy incremental publication at real Web

sites in order to more fully evaluate our incremental publication algorithms. A third area we are

working on is deploying our publishing system in environments where fragments are being cached

remotely and Web pages are being assembled in remote caches.
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