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Abstract

Our work is motivated by the goal of learning
probabilistic graphical models that are both ac-
curate and efficient for inference. In this paper,
we investigate the ”degree of approximability”
of joint probability distributions by introducing
the parameter k(9), called the effective treewidth.
This parameter captures the tradeoff between
the accuracy of approximation ¢, measured as
the information divergence from the true distri-
bution, and model’s inference complexity, which
is exponential in its treewidth k. We show that
both treewidth and information divergence ex-
hibit a threshold behavior. The relative location
of such thresholds is an inherent property of the
underlying distribution. Finally, we propose an
efficient sampling algorithm for estimating these
thresholds from data, thereby predicting the ef-
fective treewidth (the approximability) of the un-
derlying distribution. This provides a princi-
pled approach to model selection when learning
bounded-treewidth models.

1 Introduction

This paper is motivated by the goal of learning accu-
rate probabilistic graphical models that also yield effi-
cient inference, instead of learning models first without
consideration of their inference complexity, and then
coping with this complexity via approximate inference
methods. Since we usually have only a finite set of
samples from some unknown distribution, the best we
can do is to learn is an approximation of this distri-
bution. Thus it seems only natural to prefer approx-
imations that are more efficient for inference, as the
ability to perform inference is one of the main reasons
for building probabilistic models in the first place. In
[3], both theoretical and empirical arguments where
provided suggesting that learning algorithms should
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incorporate some measure of the inference complexity
as a part of their model selection criteria. It was shown
that models representing statistically close distribu-
tions may have quite different graph structures, in par-
ticular, a large difference in treewidth which leads to
an exponential difference in their inference complexity
(since traditional exact inference algorithms on graph-
ical models are exponential in the graph’s treewidth).
Thus, the following questions arise: If we tolerate a
certain inaccuracy in our model, what is the best in-
ference complexity we can hope to achieve? Or, what
is the best achievable approximation accuracy given a
constraint on the complexity of inference (e.g., a bound
on the treewidth)? Formally, we wish to solve the fol-
lowing variational problem:

min D(P||P) + X width(P),
P

where P is our target distribution, D(P||P) is the in-
formation divergence of the approximation P from this
target P, and width(P) denotes the treewidth of a
graphical model encoding P. Here X is a Lagrange
multiplier for the treewidth. While we are not provid-
ing an analytical solution to this problem here, we will
be able to determine achievable values of treewidth
given the constraint D(P||P') < §. We investigate
the ”degree of approximability” of probability distri-
butions using a new parameter, called the effective
treewidth, that captures the tradeoff between the ap-
proximation accuracy and inference complexity.

The notion of effective treewidth is formalized in a
way similar to the rate-distortion theory in lossy source
compression. We call a pair (k, §)-achievable for a dis-
tribution P, if there exists a distribution with informa-
tion divergence from P at most ¢ that is decomposable
on a graph with treewidth at most k. In this case P is
said to admit treewidth k(0). Alternatively, P is said
to be 0(k)-approzimable. The effective treewidth of P,
in respect to a given ¢, is defined to be the largest
k(6) such that the pair (k,J) is achievable, i.e. if all
distributions at distance at most § from P are not de-



composable on graphs with treewidth less than k().
This formulation gives the level of inevitable complex-
ity (i.e. treewidth) k, given the desired closeness (i.e.
sum of clique weights) 0.

We will also be interested in the ”average-case”
analogs of these definitions. Namely we will say that a
pair (k, ) is e-achievable for P if at least an e-fraction
of graphs with treewidth & certify that (&, d) is achiev-
able. The other notions are defined similarly. Thus we
not only care about the ezistence of an approximation
with given § and k, but also in the number of such
approximations.

Our formulations and results are largely motivated
by the threshold behavior found in monotone graph
properties (see, for example, [9, 10, 4]). Namely, the
probability that a random graph with a given edge
probability satisfies such property jumps from zero to
one around some critical value of edge probability, and
this transition from the property being very unlikely
to the property being very likely is very sharp. Both
the property of “having treewidth at most some fixed
integer k7, and the property of “having information
divergence from the target distribution at most some
fixed value 0” have such thresholds. Observe that the
first property is independent of the target distribution.
Now, given the desired closeness to the target distri-
bution, §, we want to find the smallest k£ such that
the probability that the learned distribution is at dis-
tance at most § (or rather the sum of clique weights
is at least d) is still very high (i.e., has not reached
its critical value), yet at the same time the probabil-
ity that models with this edge density have treewidth
at most k is already high. In other words, we want
to restrict ourselves to a class of treewidth-k bounded
models, such that the models in the class are still sim-
ple, yet this class already contains a sufficiently good
approximation to the target distribution. We formal-
ize the problem and give a polynomial-time algorithm
for finding k. In the average-case (parameterized by €),
the class not only contains a good approximation, but
at least an e-fraction of approximations is good. Thus
there is a simple probabilistic algorithm for finding
one; indeed, we just need to sample 1/e distributions
in the class and choose the closest one.

The idea of our algorithm is very simple: we sample
random graphs in order to approximate the informa-
tion divergence threshold p. = p.(4). Then, for each
k, we estimate the probability that a random graph
in G(n, p.) has treewidth at most k, where G(n,p.) is
the probability space of graphs with n nodes and edge
probability p.. Based on these estimates, we either
suggest an appropriate family of bounded-treewidth
graphs as a search space of candidate models, or say
that (with high probability) the target distribution is

inherently complex and cannot be adequately approx-
imated using low-treewidth models.

This paper makes the following contributions. First,
we introduce a new parameter, effective treewidth,
that captures the ”approximability” of a distribution
as a trade-off between approximation accuracy (mea-
sured by the information divergence from the true dis-
tribution) and efficiency of the resulting model (mea-
sured by its treewidth). We show that both treewidth
and information divergence exhibit a threshold behav-
ior when . The relative position of such thresholds
is an inherent property of the underlying distribution.
Finally, we propose an efficient algorithm for estimat-
ing these thresholds from data, thereby predicting the
effective treewidth (the approximability) of the under-
lying distribution. This provides a principled approach
to model selection when learning bounded-treewidth
approximations, which has recently been an active re-
search area [5, 14, 2] since the famous paper by Chow
and Liu [5], who showed that the best tree projection
of an arbitrary distribution can be found efficiently.

2 Preliminaries

Let P be a probability distribution on n discrete ran-
dom variables X1, Xs,...,X,, and let G be an undi-
rected graph on a set of n vertices corresponding to the
random variables in P. We will say that P is decom-
posable (also factorizable) in G, if P can be factored
over the cliques of G, i.e. expressed as a product of
clique potentials,

P(zy,...x) = [ ¢(zo),
C

where the potential ¢(z¢) depends only on the val-
ues of the variables in X¢. Here C' ranges over all
maximal cliques in G, and X¢ denotes the set of vari-
ables corresponing to the nodes in C'. For example, a
tree-decomposable distribution P can be written as
P(zy,...,z,) = Hi,j ¢(x;,2;), where the product is
taken over all pairs of nodes (z;, ;) that correspond
to an edge (i.e., a maximal clique) in the tree. A graph
with an associated set of potential functions is called
a probabilistic graphical model.

Probabilistic graphical models (e.g., Markov and
Bayesian networks) are used for answering queries such
as finding the posterior probability of an unknown
set of variables given evidence (i.e., values of some
other variables), or finding the most-likely variable as-
signment. However, (exact) probabilistic inference in
graphical models is NP-hard [6]. Commonly used in-
ference algorithms, such as the junction tree algorithm
[13], or closely related variable-elimination techniques
(e.g., [8]), are exponential in the size (i.e., dimension-



ality) of largest dependency created by the algorithm,
which is equivalent to the size of largest clique (mi-
nus 1) induced in the graph. This graph parameter is
called the treewidth, and is formally defined as follows.
Given a graph G, the width of variable X; along or-
dering o is the number of X;’s neighbors preceding X;
in 0. The width of G along o is the maximum width
along 0. The induced graph of G along o is obtained by
connecting the preceding neighbors of each X;, going
from i = n to i = 1. The treewidth (induced width)
along o, is the width of the induced graph along o,
while the treewidth (induced width) of G is the min-
imum treewidth over all possible orderings. Another
interpretation of the treewidth is the size of the largest
clique (minus 1) in a triangulation of a Markov net-
work (or a moralized Bayesian network), or, equiv-
alently, the size (in the number of variables) of the
largest function computed during inference.

Given a distribution P(X) and its approximation
P(X), the information divergence ([7]) between of P
from P is defined as D(P||P) = ¥, P(z)log iEi;
This information-theoretic measure can be interpreted
as the average number of extra bits one has to use to
encode a message X drawn from distribution P(X)
if a "wrong” distribution P(X) is assumed instead of
P(X). Note that information divergence is not a met-
ric as it is not necessarily symmetric.

Given a set of independent samples from some un-
known probability distribution P on n discrete random
variables X1, X», ..., X, the general goal is to learn a
model of this distribution that involves dependencies
only on limited subsets of the variables.  Restrict-
ing the size of dependencies controls both overfitting
and the complexity of inference in the resulting model.
Clearly, there is a tradeoff between the complexity of
the model and the accuracy it provides. Thus in or-
der to control the dependency structure of the learned
approximation, it seems appropriate to consider a pa-
rameterized family of classes of distributions decom-
posable on graphs of treewidth at most k, with &k = 1
corresponding to the set of tree-decomposable distri-
butions. We will denote the class of treewidth-£ de-
composable distributions by Dy.

Given a restricted class of distributions D, one natu-
rally wants to find the distribution within D minimiz-
ing the information divergence from the target distri-
bution P, which is called the projection of P onto D,
and which is also the distribution within the class that
maximizes the probability of observing the data. For
each k, let P, denote a projection of P onto Dy.

2.1 Learning bounded-treewidth models

Chow and Liu [5] showed that the projection onto the
set. of trees takes a particularly simple form. They
showed that for a specific tree T, the projection of P
onto the set of Markov networks factorizable over T is
uniquely given by the distribution in which marginal
probabilities along the edges of T' coincide with those
computed from P. Due to the product form of tree-
decomposable distributions, the formula for the infor-
mation divergence decomposes into a term that de-
pends only on the true distribution P (and thus is
the same for all approximations; in fact, it is just the
information contained in P), and a term that addi-
tively decomposes to the edges of T, and is maximized
by the distribution whose marginals along the edges
agree with those of computed from P. (Since for a
fixed structure G, the projection onto the set of dis-
tributions over G is uniquely defined, we will identify
G with this projection, ignoring some abuse of ter-
minology.) Due to this additive decomposition, the
tree yielding the closest (in terms of information di-
vergence) projection is simply given by any maximum
weight spanning tree, where the edge weights are the
mutual informations between the corresponding vari-
ables. Notice that candidate spanning trees can be
compared without any knowledge of P beyond that
given by pairwise statistics.

Srebro [14] showed that a similar decomposition holds
for k-width bounded Markov networks. For a fixed
triangulated graph G, the projection of P onto G is
given by the distribution that agrees with P on all
clique marginals. The projection itself is then just the
product (over all, not necessarily maximal, cliques) of
the clique factors. The main problem is of course to
find a graph with treewidth k giving the closest pro-
jection among all treewidth-k graphs. Since adding
edges can only bring the distribution closer to the tar-
get, all graphs are assumed to be already triangulated.
Srebro reduced this problem to the problem of find-
ing the maximum weight hypertree, and showed that
although finding the best tree projection is computa-
tionally simple, it is NP-hard to find projections for
any k > 2. The main technical contribution of [14, 11]
is an approximation algorithm for the problem. For a
fixed width &, the algorithm finds a treewidth-£ span-
ning subgraph of a given n-node graph such that the
weight of this subgraph is within some k-dependent

factor from the maximum. The time complexity is
O(k)
n= ",

It is important to note that Srebro [14] considered ap-
proximation in the context of density estimation, and
not model selection. The task there is to approximate
a distribution, and the quality of the approximating
distribution is determined by its closeness to the true



one (in terms of its information divergence). Thus the
choice of & is directly driven by the size of the sam-
ple space — the only rationale for limiting the class
of hypothesis distributions is to prevent overfitting.
With an infinite amount of data, they would learn a
clique, since adding edges would always decrease the
divergence. The number of available samples, how-
ever, implicitly puts an information theoretic lower
bound on the treewidth of the learned approximation.
Indeed, the information about the distribution comes
only from the sample, thus the length of the minimum
representation of the disitrbution is upper bounded by
the sample size, which implicitely puts a bound on the
treewidth.

We, on the other hand, are concerned with finding the
width that is characteristic of the target distribution.
In other words, given a distribution, the goal is to find
the most appropriate treewidth-bounded class D;, onto
which to project this distribution. We introduce the
notion of effective treewidth which attempts to capture
this intuition. The treewidth is the worst-case measure
of the complexity of a distribution in the sense that it
is totally oblivious to the actual probability values of
the distribution on top of the graph (i.e., all distri-
butions consistent with the same set of independence
assumptions have the same treewidth). Clearly, the
strength of probabilistic dependencies among variables
may be quite different for different distributions over
the same graph, and what we need is a more refined
measure that captures the effective width of the target
distribution given a desired level of divergence from it.

2.2 Threshold behavior of random graphs

Consider the probabibility space G(n,p) of random
graphs on n nodes with edge probability p (i.e., ev-
ery pair of nodes is connected with probability p, in-
dependently of every other pair). Let G, , stand for
a random graph from this probability space. We will
also sometimes use Gy, to denote a random graph
with n nodes and m edges. When p = m/ (g), the
two models are are practically identical [4]. A graph
property is just a subset of graphs closed under iso-
morphism. A property is monotone increasing if it is
preserved under edge addition; that is, if a graph G
satisfies the propery, then every graph on the same set
of nodes containing G' as a subgraph must satisfy it
as well. For a property P with a fixed set of n nodes,
let 1, (P) denote the probability that Gy, p satisfies P.
We say that almost every (a.e.) Gy, has the property
P if pp(P) converges to 1 as n approaches infinity.
Of course, we can analogously define a monotone de-
creasing property and the corresponding definition of
a.e. graph satisfying it. For example, the property of
having treewidth at most k is monotone decreasing.

The direction of monotonicity will be clear from the
context.

The theory of random graphs was founded by Erdds
and Rényi [9], and one of the main observations they
made was that many natural monotone properties ap-
pear rather suddenly, i.e., as we increase p, there is
sharp transition from a property being very unlikely
to it being very likely in G(n, p). Friedgut [10] proved
that every monotone graph property has such a thresh-
old behavior.

Given a parameter € > 0 and a monotone property P,
let po be given by p,,(P) = €, and p; be such that
tp, (P) = 1 — €; in other words, € quantifies what it
means for P to ”be likely”. The length « of the thresh-
old interval is defined as p; — pg. The threshold inter-
val contains the critical value of p, denoted p., such
that pp, (P) = 1/2, thus p,(P) jumps from nearly 0 to
nearly 1 around p = p.. Both the length of the interval
a(n) and the threshold function p.(n) shrink with n.
The relative rate at which they do so determines the
sharpness of the threshold. Friedgut [10] gave an upper
bound on the length of the threshold interval for any
monotone graph property, a(n) < O(log(1/€)/logn).

3 Formulation of the effective width

Recall that we identify each graph with the projec-
tion of the target distribution onto the graph. We call
a pair (k,d)-achievable for a distribution P, if there
exists a treewidth-k graph decomposable distribution
whose information divergence from P is at most §. In
this case P is said to admit treewidth k(4). Alterna-
tively, P is said to be §(k)-approzimable (as if its pro-
jection onto Dy, is at distance at most §). The effective
treewidth of P, in respect to a given ¢, is defined as the
largest k(d) such that the pair (k,0) is achievable, i.e.
if all distributions at distance at most d from P are not
decomposable on graphs with treewidth less than k().
This formulation gives the level of inevitable complex-
ity (i.e. treewidth) k, given the desired closeness (i.e.
sum of clique weights) 0.

We will also be interested in the ”average-case”
analogs of these definitions. Namely we will say that a
pair (k,0) is e-achievable for P if at least ¢|Dy| graphs
in Dy, certify that (k,d) is achievable. Similarly, P
is 0 (k)-approximable if its projection onto a random
graph in Dy, is at distance at most § from P with prob-
ability at least e. The effective treewidth k.(d) of P
is defined similarly. Thus we not only care about the
existence of an approximation with a given § and k,
but also in the number of such approximations.



4 Two properties of distributions

In this section we introduce and discuss two graph
properties essential for the rest of the paper.

Property Ps Using Srebro’s decomposition [14], the
information divergence of (a set of distributions over)
a given graph G from the target distribution P can be
expressed as

D(P||G) = D(P||0) — W(G),

where W (Q) is the sum of weights ! over all (not nec-
essarily maximal) cliques of G, not including singleton
cliques. Singletons are accounted for in the divergence
from the empty graph (the first term), which is the
same for all approximations, and can be ignored in
the quest for one minimizing the divergence from P.
Hence the best approximation is the one maximizing
W(G). Notice that W(G) can be determined with-
out any knowledge of the actual distribution beyond
its low order marginals necessary to compute clique
potentials.

Fix a target distribution P and some J > 0, and
consider the property of m-node graphs G of hav-
ing W(G) > 4. Call this property Ps. Notice that
this is not a graph property, because it is not nec-
essarily closed under automorphisms (relabellings) of
G. However, it can easily be made a graph property
without increasing the size of G more than polyno-
mially via the following transformation: Substitute
every node i € {1,...,n} by a clique on (n + 1)
nodes (replacing every edge (i,j) by (n + i)(n + j)
new edges), and appropriately scale the weight of ev-
ery clique. More precisely, if G’ is the modified G,
let W(G') = > c[w(C)/ e U(4)], where I(j) is the
multiplicity of node j in G’, and the sum is over all
non-singleton cliques of size at most n. It is not hard
to see that W(G) = W(G').

Observe that Ps is monotone increasing. Adding edges
to a graph can only bring the graph closer to the true
distribution, since any distribution decomposable on
the original graph is also decomposable on the aug-
mented one. Thus if G is a subgraph of G’, then
W(G) > 6 only if W(G') > 0.

Property P, Fix an integer k, and consider the
property of n-node graphs of having treewidth at most
k. Call this property Pr and observe that it is a
structural property of a graph, which does not depend
on the target distribution and its projection onto the

!The weight of clique S is defined by w(S) =
Ex~p[log $(Xs)], where the clique factor ¢(Xs) is given
by P(Xs)/I1gcs ¢(Xs:), and the product is over all, not
necessarily maximal cliques.

graph. It is also a monotone decreasing property, since
if a graph has treewidth at most k, then certainly any
of its subgraphs does.

When k = 1, Py, is just the property of being acyclic
(triangle-free). One of the observations made by Erdds
and Rényi [9] was that both the crtical p and the length
of the threshold interval for £k = 1 are approximately
1/n. Kloks [12] showed that actually very few graphs
have bounded treewidth. In particular, he showed that
for any 7 > 0, and any € < :—j_i, almost all n-node
graphs with edge probability ~7/n have treewidth at
least n€. Furthermore, if 7 is slightly larger (7 > 1.18),
then the treewidth is linear in n. Thus all transitions
from k to k + 1 for k sublinear in n» happen in a very
narrow initial interval of p, bounded above by O(1/n).

5 An overview of the algorithm

Given a target distribution P and a distance parameter
d, the threshold curve p,(Ps) = Pr[W (G, p) > 0] and
its critical value pg are uniquely defined (although un-
known). Recall that p? is given by j,s (Ps) = 1/2. Our
goal is to find the smallest treewidth & such that the
pair (k,0) is e-achievable for P for some large enough
€ to be defined later.

The main idea is very simple. Suppose that we know
the critical value p?. For each width k, let p* de-
note the critical value of the property P} of having
treewidth at most k, i.e., p¥ is such that g, (Py) =
1/2.

For reasons that will become clear in a moment, we
want to find the smallest k& such that p* > pl. In
other words, we want the smallest k satisfying

1
Pr[width(G,, ps) < k] > 3

Let k. be this k. To find k., we will generate a sample
of m independent random graphs in G,, ;s, denoted
Gy,...,G,, and use it to simultaneously approximate
Pr[width(G,, ,s) < k] for k =1,...,n—1. More accu-
rately, for each i and k, let U be an indicator random
variable, which is equal to 1 if width(G;) < k, and 0
otherwise. The analysis of the sampler in Section 6
says that E[UF] provides a sufficiently good estimate
of Pr[width(G, ,5) < k]. Moreover, m (the size of
the sample space) is independent of n, it depends only
on the accuracy of approximation and the error with
which this accuracy is guaranteed. Now k. is just the
smallest k such that E[UF] > 1/2.

We know that at least half of G(n, p?) satisfies Ps. On
the other hand, more than a half of G(n,p?) satisfies
Pr.. By a trivial counting argument, there must ex-
ist graphs in G(n,p?) satisfying both. In fact, many



graphs will; more precisely, at least a (pke —pg)—fraction
of all graphs in Dy,. Clearly we are overcounting, since
the same graphs may contribute to both probabilities.
However, not absurdly, since the graphs in G(n,p?)
with treewidth bounded by k are (at least intuitively)
are not likely to be the onces closest to the target
distribution, since the remaining graphs have larger
treewidth and thus are more likely to fit the distribu-
tion better. Although, as shown in [3], a difference
in treewidth does not necessarily imply a difference in
the information divergence.

The only problem is that we do not actually know
the critical value pS. However, we can estimate it
using random sampling. As mentioned in Section 4,
when p > 27/n for 7 > 1.18, almost every Gy, has
treewidth already linear in n. On the other hand, al-
most every Gy, 1/, is a tree. Suppose that we are given
a constant ( such that if p > §/n, then almost every
G,p has treewith that is too large for us to handle. We
emphasize that the values related to treewidth do not
depend on the target distribution, and can in principle
be precomputed for a given n. In order to find pg, we
will just do a binary search in the interval [1/n, 8/n].
More precisely, during each step of the search with
the current edge probability p, we will approximate
Pr[G, ] using the sampler from Section 6, and based
on the estimate decide which half of the current in-
terval to prune. The search is continued until p gets
sufficiently close to satisfying us(Gpp) = 1/2.

It may be useful to note that if we have a precomputed
expectation E[width(G,, ,s)], then Markov’s inequality
immediately gives an upper bound on k.. Indeed, we
have
E[width(G,
Prlwidth(Gy ) < k] > 1 — ELA(Gnp)]

k

Thus k. must be such that 1 — E[width(G,, ,s)]/k >
1/2, or k > 2E[width(G, ;s)]. The upper bound on k.
is given by the smallest integral & satisfying the above
inequality.

Example A small example should help make the
goals clear. Consider Figure 1, which shows thresh-
old curves for a 3-wise independent distribution on
8 random variables (n = 8). A distribution is k-
wise independent if every subset of k variables is mu-
tually independent (however, there may exist depen-
dencies on larger subsets). Thus we could hardly ex-
pect treewidth-2 graphs to do well on this distribution,
since all triples are independent, and their marginals
do not reveal any higher-order structure; as we shall
see this is indeed the case. The z-axis in Figure 1 cor-
responds to the number of edges, i.e. p(g), the y-axis
denotes the probability that G, , satisfies the prop-
erty corresponding to a given curve. The monotone

0.5

5 10 25 30

Figure 1: Thresholds for a 3-wise independent distri-
bution on 8 random variables.

decreasing curves correspond to the properties Py for
k= {1,...,6} (from left to right respectively). For
k = 7, the curve is just pp(Pr) = 1. We emphasize
that these curves do not depend on the target distribu-
tion. The two monotone increasing curves correspond
to the property Py for two values of § such that d; > do
(the smaller ¢, the worse the quality of approximation
is, thus the higher the probability of attaing it). As
p increases, the probability of having small treewidth
decreases, while the probability of getting close to the
target increases. We want to find to capture the situ-
ation when the first probability is still high, while the
second is already high. Given a level of closeness 4,
we formalize this desired situation as follows: we want
to find the smallest treewidth & such that the corre-
sponding curves meet at the probability above 1/2. Of
course, the algorithm could be parameterized by any
probability greater than 1/2, but we opted for the sim-
plicity of presentation. Suppose that ¢; (correspond-
ing to information divergence 0.1) is our desired level of
“closeness” to the true distribution. Then k(1) = 3,
which is expected, since the target distribution is 3-
wise independent, thus we need at least 4-cliques to
approximate it reasonably well. Similarly, k(d2) = 5,
where d5 corresponds to information divergence 0.06,
thus we essentially need a clique to get within the al-
lowed divergence.

6 The sampler

We show that the straightforward sampling is sufficient
for our purposes. To estimate Pr[W(G,,,) > 4] for
given p and 6, the algorithm just generates m indepen-
dent copies of G, p, denoted G, ..., Gy, and outputs
S = =31, Uj as its estimate of yu = Pr[W (Gpp) >
d], where U; is a random variable indicating whether
W (G;) > §, and the expectation above is over the uni-
form choice of G, ,. The approximation is parameter-
ized by the error probability v and accuracy p, namely



we want to get a value at most p away from the true
one with probability at least 1 — 7 (over the choice of
G1,...,Gp). By the Chernoff Bound,

Pr[|S, —pul > p] < 2¢ 2’
Setting m = n(2/3) makes the above error probabil-

2p2
ity at most 7, as required. Thus O(ln(pl#) samples

suffice. The same argument works for estimating the
probability that width(G,,,p) < k, given p and k.

Notice that for estimating the expectation p =
E[W(G,,p)], the number of samples required by the
above algorithm is no longer independent of n. Al-
though the sum of weights is always bounded (which
is crucial, since otherwise no reasonable sampling
method could guarantee any approximation), this
bound is not independent of n. Indeed, for any tar-
get distribution P and graph G, we have W(G) <
D(P||0) < n— H(P) < n. The sampler outputs
Spm o= L3 W(G;) as its estimate of p, and the
Chernoff Bound gives m = n®In(2/7) 1;55/7)‘ The same is
true for estimating E[width(Gy, )], since the range of
width(G,, p) is in general of size linear in n.

7 Putting it together

In this section we describe the algorithm. The input
parameters are the following:

(a) an upper bound ¢ on the allowed treewidth (and
the corresponding value § > 1 such that almost
all graphs with edge probability at least §/n have
treewidth greater than t);

(b) clique factors (for subsets of size at most t) deter-
mined from the target distribution P; (for a sub-
set S, |S| < t, its projected factor [14] is given by
w(S) = Expllog¢(Xs)], and can be estimated
from the data);

(c) accuracy parameter ¢ (i.e. for a model to be ac-
ceptable, its graph G must satisfy W(G) > 9);

(d) error parameter v (i.e. the learned model must
satisfy the guarantees with probability at least 1—

7).

8 Approximating the thresholds

In this section we derive bounds on the threshold func-
tion for Ps. The main idea is as follows. We will ex-
press W(G,, ) as a sum of some random variables in
such a way that E[W (G, )] is easily computable using
linearity of expectation. Then by Markov’s inequality,
Pr[W(G,,p) > 0] < E[W(Gyp)]/0. To get a lower
bound for Py satisfiability, we want to find p such that
the above expectation approaches 0.

Algorithm (P, 4,t,3,7)

Approximating p’:

1. Estimate p = Pr[W (G, g/,) > 0] with accu-
racy p and error v (using the sampler from Sec-
tion 6). If u+ p < 1/2, output "P is can not
be d-approximated by models with treewidth at
most, t”.

2. Otherwise, let [ = 1/n, u = #/n. Until the value

of pS is not set:

(a) Let p= (u+1)/2.

(b) Estimate pu, = Pr[W (G, p) > d] with accu-
racy p and error /2.

(c) If |up — 1/2| < p, set p) = p.

(d) Else if pp, > 1/2, set u = p; otherwise set
l=p.

Approximating k.:

1. For each k = 1,...,t estimate
pr = Pr[width(G,, ps) < k]
with accuracy p and error /2.

2. Let k. be the smallest k such that pix —2p > ps.
Set € = (pk, — pps — 2p).

3. Output “(k.,d) is e-achievable for P with proba-
bility 7”.

For each subset S, let Ug be a binary random variable
indicating whether S is a clique. We have E[Us] =

p(‘gl), Then W(Gp,p) can be written as

W(Gnp) =Y w(S)Us = > w(S)Us,

s 1 S:S|=l

where [ (the size of a subset) ranges in 1 <! < n. By
linearity of expectation,

EW(Gnp)] =Y Y w(S)EUs] = pl) 3~ w(s).

I S:|S|=l l S:|S|=l

The last equality is due to the fact that the clique
weights do not depend on the graph, they depend only
on the target distribution P. Since p < 1, the expres-
sion above yields E[W (G, p)] < p) g w(S), where the
sum is over all non-singleton subsets of the nodes. Re-
call that w(S) = E[log#(Xs)]. It is not hard to see
that the above sum is just D(P||})). Indeed, by linear-
ity of expectation (where the expectation is taken in



respect to P),

S w(S) = Elog [] (Xs)
S S

P(Xy,...,X,) ,
0og Hsrcs d)(XS’) Sgs ¢( S)
|S|>1
= Elog DX, Xn) = D(P||0).

Let D = D(P||@). Then we have E[W(Gy,p)] < pD,
and by Markov’s inequality

EW(Guyp) _ pD.

Pr[W (Gny) > 8] < = -

Now if p < §/D, then almost certainly Gy, , does not
satisfy Ps. If p ~ 53, then the above probability s is
less than 1/2. This gives a lower bound on the critical

value of p, namely pd > §/2D.

This argument, however, does not give any up-
per bound on p., since the values of p making
E[W (G, p)] = oo do not necessarily imply that Gy,
satisfies P? almost always. Such an upper bound,
however, can be obtained using the second moment
method (see, for example, [1]), which we omit here.
Notice that this would also require a lower bound on
E[W (G, )], since we basically want to show that if
this expectation goes to infinity and the variance of
W (G, p) satisfies certain properties, then G,, , satisfies
Ps almost always (from an application of Chebyshev’s
inequality). The lower bound on the expectation then
immediately gives an upper bound on the Pj satisfia-
bility.

9 Conclusions

We introduce a new parameter, effective treewidth,
that captures the ”approximability” of a distribution
as a trade-off between approximation accuracy (mea-
sured by the information divergence from the true dis-
tribution) and efficiency of the resulting model (mea-
sured by its treewidth). We show that both the
treewidth and information divergence exhibit a thresh-
old behavior. The relative position of such thresholds
is an inherent property of the underlying distribution.
Finally, we propose an efficient algorithm for estimat-
ing these thresholds from data, thereby predicting the
effective treewidth (the approximability) of the under-
lying distribution. This provides a principled approach
to model selection when learning bounded-treewidth
approximations, which has recently been an active re-
search area [5, 14, 2] since the famous paper by Chow
and Liu [5], who showed that the best tree projection
of an arbitrary distribution can be found efficiently.

10 Further directions

A complementary goal to that discussed in the paper
is to determine the width with respect to a query distri-
bution. Another important avenue of research focuses
on problem classes that have particular structure.
For example, certain applications often yield prob-
abilistic problems that are characterized by nearly-
deterministic (low-entropy) distributions (e.g. in noisy
channel coding, which mainly involves deterministic
encoding and nearly-deterministic (low-noise trans-
mission) dependencies, and yields an excellent perfor-
mance of local approximation schemes).
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