
RC22563 (W0209-065) September 17, 2002
Computer Science

IBM Research Report

Performance Considerations in Web Security

Arun K. Iyengar, Ronald  Mraz
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598
 

Mary Ellen Zurko
IBM Software Group

5 Technology Park Drive
Westford Technology Park

Westford, MA 01886

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research Report
for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , 
P. O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



PERFORMANCE CONSIDERATIONS INWEB

SECURITY

Arun Iyengar

IBM T.J. Watson Research Center

P.O. Box 704

Yorktown Heights, NY 10598

aruni@us.ibm.com

Ronald Mraz

IBM T.J. Watson Research Center

P.O. Box 704

Yorktown Heights, NY 10598

mraz@us.ibm.com

Mary Ellen Zurko

IBM Software Group

5 Technology Park Drive

Westford Technology Park

Westford, MA 01886

mzurko@us.ibm.com

Abstract
This paper discusses techniques for improving Web performance and how

they are affected by security. While security is an essential component for many
Web applications, it can negatively affect performance. Encryption results in
significant overhead. A scalable Web site deploying SSL has special load bal-
ancing requirements in order to allow efficient use of the protocol. We discuss
how fragment-based creation of Web content can allow partial caching of pages
containing encrypted content. We also discuss performance issues related to
security checks on mobile code.

Keywords: cryptography, load balancing, mobile code, Secure Sockets Layer (SSL), Trans-
port Layer Security (TLS), security, Web performance

1



2

Introduction

Performance is critically important for any Web site which receives a sig-
nificant amount of traffic. Highly accessed Web sites may need to serve over
a million hits per minute. The infrastructure required to support such traffic is
significant, and demands continue to increase at a rapid rate.

A key problem with serving Web data efficiently is that the data are often
encrypted or dynamically created. Encrypted data is costly to serve. A major
overhead is negotiating the session keys used for encryption. Dynamically
created data is generated on-the-fly by a program which executes at the time a
request is made. The overhead for satisfying a dynamic data request may be
orders of magnitude more that the overhead for satisfying a static request for
data in a file system. Dynamic data requests can involve complicated back-end
processing involving database accesses.

Scalable Web sites typically deploy multiple Web servers and route requests
to the servers via load balancers or Domain Name Servers. Such load balanc-
ing techniques can prevent repeated requests from the same client going to the
same server. If requests are encrypted using the Secure Sockets Layer pro-
tocol (SSL) or Transport Layer Security (TLS) [17, 6], these load balancing
techniques can cause significant overhead due to more frequent generation of
encryption keys. We discuss affinity-based load balancing techniques which
can prevent this overhead.

Caching is a critical component for improving performance. Caches are
deployed throughout the Web storing content from remote sites. Unfortunately,
caches cannot store confidential data. Confidential data would typically be
fetched from the remote server each time. Using the conventional approach,
a Web page containing confidential data would be encrypted in its entirety
and fetched from the server each time. Encryption would thus eliminate the
performance gains provided by remote caching of Web pages.

One approach which can allow caching in the presence of encryption is
to assemble a Web page from fragments. Confidential information would be
encapsulated within fragments. Nonconfidential fragments could be stored
within caches. A client would then fetch confidential encrypted fragments
from the server, nonconfidential fragments from remote caches, and assemble
the page. Such a system would require appropriate communication protocols
between clients, servers, and caches.

Security and performance are both quality measures of a software system. If
a product is not initially designed to be secure and perform well, security and
performance may be difficult to engineer in after the product is architected, de-
signed, coded and tested. Most areas of security do not explicitly address per-
formance or other quality implications, to the overall detriment of the uptake
of the potentially beneficial security solution. Cryptography has long been the



Performance Considerations in Web Security 3

exception that proves the rule, since the performance impact of cryptography
can be easily isolated and measured. More recently, the security benefits from
the safety guarantees of mobile code such as Java have been well received,
with the commensurate push to increase the performance of applications using
mobile code. We discuss the current work on security performance in those
two areas.

1. Factors A�ecting Web Performance

Popular Web sites need to accommodate high request rates. Peak hit rates
at popular Web sites can exceed 1 million per minute. Load at a Web site can
be highly variable depending upon the time of day. The projected peak load
should be taken into account when doing capacity planning and not just the
average load.

Another thing which needs to be taken into consideration is that capacity
requirements can change over time. A Web site can become more popular as
a company expands or gains more on-line customers, significantly increasing
the traffic at the site. The general growth in Web traffic over time also adds
to capacity requirements. Some sites may experience flash crowds in which
one or more events cause huge increases in request rates for a limited period of
time.

Requests can consume widely differing amounts of resources to satisfy.
If I/O bandwidth is the bottleneck, then large objects become undesirable to
serve. Image files can consume significant I/O bandwidth, so limiting the use
of images can improve performance considerably. Requests for files are known
as static requests and generally consume less overhead than dynamic requests
which invoke programs to generate data on-the-fly for satisfying requests. Re-
quests for dynamic data can consume orders of magnitude more CPU time to
satisfy than requests for static data. Therefore, even if a Web site serves only
a fraction of its requests dynamically, dynamic requests can consume the bulk
of the CPU cycles.

Encryption can also add significant overhead to a Web site. Encryption is
typically handled on the Web using the Secure Sockets Layer (SSL) or Trans-
port Layer Security (TLS). The SSL protocol requires a handshake at the be-
ginning in order for the client and server to negotiate a session key used for
encrypting data via symmetrical cryptography. Session key generation is ex-
pensive. The overhead of session key generation is reduced by using the same
session key for multiple transactions. In order to limit security exposure, ses-
sion keys have a limited lifetime after which they must be changed.



4

1.1 Scalable Web Sites

In a scalable Web site, requests are distributed to multiple servers by a load
balancer. The Web servers may access one or more databases or other back-
end systems for creating content. The Web servers would typically contain
replicated content so that a request could be directed to any server in the cluster.
One way to share static files across multiple servers is to use a distributed file
system such as AFS or DFS [12]. Copies of files may be cached in servers for
faster access. This approach works if the number of Web servers is not too large
and data doesn’t change frequently. For large numbers of servers for which
data updates are frequent, distributed file systems can be highly inefficient. Part
of the reason for this is the strong consistency model imposed by distributed file
systems. Shared file systems require copies of files to be strongly consistent.
In order to update a file in one server, all other copies of the file need to be
invalidated before the update can take place. These invalidation messages add
overhead and latency. At some Web sites, the number of objects updated in
temporal proximity to each other can be quite large. During periods of peak
updates, the system might fail to perform adequately.

Another method of distributing content which avoids some of the problems
of distributed file systems is to propagate updates to servers without requiring
the strict consistency guarantees of distributed file systems. Using this ap-
proach, updates are propagated to servers without first invalidating all existing
copies. This means that at the time an update is made, data may be inconsistent
between servers for a little while. For many Web sites, these inconsistencies
are not a problem, and the performance benefits from relaxing the consistency
requirements can be significant.

1.2 Load Balancing

Load balancers distribute requests among multiple Web servers. One method
of load balancing requests to servers is via DNS servers. DNS servers pro-
vide clients with the IP address of one of the site’s content delivery nodes.
When a request is made to a Web site such ashttp://www.ibm.com/
employment/ , “www.ibm.com” must be translated to an IP address, and
DNS servers perform this translation. A name affiliated with a Web site can
map to multiple IP addresses, each associated with a different Web server. DNS
servers can select one of these servers using a policy such as round robin [2].

One of the problems with load balancing using DNS is that name-to-IP map-
pings resulting from a DNS lookup may be cached anywhere along the path
between a client and a server. This can cause load imbalance because client re-
quests can then bypass the DNS server entirely and go directly to a server [5].
Name-to-IP address mappings have time-to-live attributes (TTL) associated
with them which indicate when they are no longer valid. Small TTL values



Performance Considerations in Web Security 5

can limit load imbalances due to caching. The problem with this approach is
that it can increase response times [19]. Another problem with this approach
is that not all entities caching name-to-IP address mappings obey TTL’s which
are too short.

Another approach to load balancing is using a connection router in front of
several back-end servers. Connection routers hide the IP addresses of the back-
end servers. That way, IP addresses of individual servers won’t be cached,
eliminating the problem experienced with DNS load balancing. Connection
routing can be used in combination with DNS routing for handling large num-
bers of requests. A DNS server can route requests to multiple connection
routers. The DNS server provides coarse grained load balancing, while the
connection routers provide finer grained load balancing. Connection routers
also simplify the management of a Web site because back-end servers can be
added and removed transparently.

IBM’s Network Dispatcher [8] is one example of a connection router which
hides the IP address of back-end servers. Network Dispatcher uses Weighted
Round Robin for load balancing requests. Using this algorithm, servers are
assigned weights. All servers with the same weight receive a new connection
before any server with a lesser weight receives a new connection. Servers
with higher weights get more connections than those with lower weights, and
servers with equal weights get an equal distribution of new connections.

With Network Dispatcher, requests from the back-end servers go directly
back to the client. This reduces overhead at the connection router. By contrast,
some connection routers function as proxies between the client and server in
which all responses from servers go through the connection router to clients.

1.3 Caching

One technique for improving Web performance is to cache data at remote
points in the network. If a request can be satisfied from a cache, this reduces
load on the server and can also reduce the latency for fetching objects since
remote caches can be placed closer to clients. Several clients can share a
proxy cache. That way, repeated requests for the same document from dif-
ferent clients might be satisfiable from a proxy cache. In addition to proxy
caches, content distribution networks (CDN’s) such as Akamai exist which
cache content from Web sites. Web sites pay a fee to use CDN’s.

In order to reduce the overhead for generating dynamic data, it is often fea-
sible to generate data corresponding to a dynamic object once, store the object
in a cache, and subsequently serve requests to the object from cache instead
of invoking the server program again [10]. Using this approach, dynamic data
can be served at about the same rate as static data.



6

However, there are types of dynamic data that cannot be precomputed and
served from a cache. For instance, dynamic requests that cause a side effect at
the server such as a database update cannot be satisfied merely by returning a
cached page. As an example, consider a Web site that allows clients to purchase
items using credit cards. At the point at which a client commits to buying
something, that information has to be recorded at the Web site; the request
cannot be solely serviced from a cache.

Personalized Web pages can also negatively affect the cacheability of dy-
namic pages. A personalized Web page contains content specific to a client,
such as the client’s name. Such a Web page could not be used for another client.
Therefore, caching the page is of limited utility since only a single client can
use it. Each client would need a different version of the page.

One method which can reduce the overhead for generating dynamic pages
and enable caching of some parts of personalized pages is to define these pages
as being composed of multiple fragments [3]. In this approach, a complex
Web page is constructed from several simpler fragments. A fragment may
recursively embed other fragments. This is efficient because the overhead for
assembling a Web page from simpler fragments is usually minor compared to
the overhead for constructing the page from scratch, which can be quite high.

The fragment-based approach also makes it easier to design Web sites. Com-
mon information that needs to be included on multiple Web pages can be cre-
ated as a fragment. In order to change the information on all pages, only the
fragment needs to be changed.

In order to use fragments to allow partial caching of personalized pages,
the personalized information on a Web page is encapsulated by one or more
fragments that are not cacheable, but the other fragments in the page are.
When serving a request, a cache composes pages from its constituent frag-
ments, many of which are locally available. Only personalized fragments have
to be created by the server. As personalized fragments typically constitute a
small fraction of the entire page, generating only them would require lower
overhead than generating all of the fragments in the page.

Generating Web pages from fragments provides other benefits as well. Frag-
ments can be constructed to represent entities that have similar lifetimes. When
a particular fragment changes but the rest of the Web page stays the same,
only the fragment needs to be invalidated or updated in the cache, not the en-
tire page. Fragments can also reduce the amount of cache space taken up by
multiple pages with common content. Suppose that a particular fragment is
contained in 2000 popular Web pages which should be cached. Using the con-
ventional approach, the cache would contain a separate version of the fragment
for each page resulting in as many as 2000 copies. By contrast, if the fragment-
based method of page composition is used, only a single copy of the fragment
needs to be maintained.



Performance Considerations in Web Security 7

2. E�ects of Encryption on Performance

Encryption is essential for preserving confidentiality of information sent via
the Web. The HTTP protocol used for Web traffic sends information in the
clear. It is not difficult for someone to monitor Web traffic and obtain informa-
tion exchanged via HTTP.

The Secure Sockets Layer (SSL) is the protocol commonly used for encrypt-
ing information on the Web. SSL was designed by Netscape Communications
Corporation for use with the Netscape Navigator. SSL 3.0 was used as the
basis for the Transport Layer Security (TLS) protocol [6] developed by the In-
ternet Engineering Task Force (IETF). In addition to confidentiality, SSL also
provides authentication of servers using digital signatures. It can also provide
authentication of clients using digital signatures, although this feature is often
not used.

SSL runs between the TCP/IP layer and the application layer. Although it
was designed to run on top of TCP/IP, it can also run on top of other reliable
connection-oriented protocols such as X.25 or OSI. It is not designed to run
on top of unreliable protocols such as the IP User Datagram (UDP). Other
protocols can use SSL besides HTTP, such as SMTP, Usenet news, LDAP, and
POP3. HTTP traffic encrypted via SSL uses port 443. [17]

Before transmitting data, a phase known as a handshake takes place in which
the client and server agree on a cryptographic algorithm and exchange keys.
The client and server may use different cryptographic algorithms. During the
handshake, the client and server determine the strongest cryptographic protocol
they have in common for encrypting information.

The SSL handshake proceeds in the following fashion. The client first sends
a hello message to the server. The server then responds to the client with its
own hello message followed by a certificate that contains the server’s public
key. The client then verifies the certificate of the server, and if the server is
valid, the client generates a premaster secret. The premaster secret is encrypted
using the server’s public key and sent to the server. The server decrypts the
premaster secret using its private key. The premaster secret is used to generate
a master secret from which encryption and authentication keys are derived.

Public key cryptography is computationally expensive. Therefore, it isn’t
feasible for the client and server to encrypt all of their communications via
public key cryptography. Instead, public key cryptography is only used to
agree onsession keyswhich are used for encrypting the bulk of the content
using symmetric key encryption algorithms such as DES, triple-DES, RC2,
RC4, etc. [18, 7].

In order to reduce the overhead of encryption, some sites use special hard-
ware for performing cryptographic operations in order to offload the compute-
intensive functions. Sites with predominately static content to serve can benefit



8

most from offloading encryption since the overhead to support the SSL proto-
col and encryption in the server would typically exceed the overhead of static
content serving. Sites such as this could be selling subscriptions to content that
is replicated but protected through encryption. These server applications could
include subscription magazine articles, newsletters, etc. and in such Web con-
tent servers, the overhead of encryption predominates. (We address the issues
of serving secure personalized content later. )

The most common ways to offload SSL operations include: adding encryp-
tion hardware to the server, placing one or more SSL proxy(s) between the
router (or load balancer) and the Web content server, or placing one or more
SSL proxy(s) with hardware encryption between the router (or load balancer)
and Web content server.

If there are relatively few unique connections but each connection requires
large amounts of data, then a data encryption card such as the IBM 4197 Cryp-
tographic Accelerator [9] within the Web content server can be useful if the
server utilization is high. We define this case to be when the server provides 10
to 100 or more objects (or transactions) per negotiated SSL session key. [14]

Offloading SSL to a proxy server is desirable since this eliminates the data
encryption, public key overhead and SSL handshake operations previously
handled by the Web content server. An SSL offload proxy can be a card that is
installed in the server and ties into the TCP/IP communication stack in place of
a network communication card. This type of offload is most useful when there
are a high number of public key exchanges for the server to support relative
to the number of objects served. We define a high number of public key ex-
change operations to be when the number of public key operations is within an
order of magnitude of the objects (or transactions) served per session when the
server is highly utilized. Multiple proxies (hardware assisted or otherwise) can
provide scalability [14] if the content server is underutilized without resident
SSL operations.

When architecting or crafting a custom SSL proxy, overhead due to TCP/IP
connection establishment can be reduced if the connections between the proxy
and the Web content server are persistent. Connection establishment can add
significant overhead to data connections [13], and this would be successfully
offloaded to the proxy in addition to SSL processing. Advanced architectures
such as [15] can scale individual components of SSL operations, such as the
handshake, encryption, connection establishment and content serving rather
than multiple operations within a single server or proxy.

Efficiency can also depend upon the rate that unique SSL sessions are started
versus the session duration. This is because the public key operations are the
most computationally expensive part of the handshake. The decryption oper-
ations performed on the server, which are done using the server’s private key,



Performance Considerations in Web Security 9

are particularly expensive [1]. Because of this overhead, it is desirable for
performance reasons to re-use session keys over several transactions.

Once way to increase the number of times a session key is reused would be
to configure each negotiated session key to have an infinite lifetime, assuming
that at least some requests, over time, are from repeat users. Given that such
an arrangement would impose a security risk if the session key were ever de-
termined by a malicious party, session keys have a finite lifetime after which
they are renegotiated. The lifetime is typically set long enough (on the or-
der of 100-300 seconds) for several transactions to take place between a client
and a server using the same session key if the transactions occur within close
temporal proximity to each other.

Key lifetime duration for a reasonable key length can actually be set to sev-
eral hours without risk of security breaches. This will enable an intermittent
user’s request to re-use the previous session key when reconnection is done af-
ter several minutes or even hours. To make this approach effective, one needs
to consider how many keys the server can efficiently store and search versus
the number of users that actually request content in an intermittent fashion over
an extended period of time. This is because every newly created session key
during this lifetime period should be saved for potential reuse.

When the content is predominately personalized as in “shopping carts” or
“on-line brokerage” Web sites, the content generation overhead can be more
expensive than encryption if advanced caching techniques described in this pa-
per are not employed. This is because each request requires a personalized
database lookup (or perhaps a real-time request for data) that is subsequently
formatted into a personalized table of custom HTML generated at request time.
Since the encryption overhead no longer dominates, adding encryption hard-
ware to each Web content server is not efficient use of the hardware, and gains
of only 10% or less may be seen from such an arrangement. In this case, an
effective use of SSL offload would be for a single SSL proxy (with encryp-
tion hardware) to support several Web content servers with some type of load
balancing affinity as discussed later in this section.

Deciding on the cryptographic strength of a particular use of confidential
enciphering through cryptography is particularly sensitive to the performance
assumptions we can make about the security’s attacker. Before computers,
cryptanalysis (breaking ciphers) was limited by the skill, experience, and in-
genuity of its practitioners. The introduction of computers added a new tool to
the discipline: the brute force attack of trying to decrypt a piece of enciphered
text by applying every possible decryption key to the decryption algorithm un-
til one works. As computer processing of mathematical operations gets faster,
the search space for a brute force attack must get larger for that attack to be
ineffective.



10

First, we want to consider how long a key length is “long enough”. A very
short key of 8 bits in length would mean that there are 256 different possi-
ble values, which a brute force attack on a modest computer could find quite
quickly. In addition, on average, there would be a 50% chance the brute force
attack would find the key in half of those attempts. A key that is 128 bits long
would take a supercomputer that can check a million keys a second1025 years
to check all keys, which is more than twice the age of the universe. That seems
like a good starting point for “long enough”. The current NIST-sponsored Ad-
vanced Encryption Standard (AES) in symmetric key cryptography is based on
Rijndael, which supports keys of 128, 192, and 256 bits. It’s hard to see why
someone would take the performance hit of using a key longer than 128 bits,
given the mathematics of a pure brute force attack. Those key lengths may be
supported because it is possible to combine brute force attacks with algorithms
that help narrow the search space more quickly, or with newly found flaws
in existing algorithms. Schneier [18] presents a good discussion of the many
security factors that go into choosing key lengths based on the desired length
of time something must stay encrypted and the presumed future advances in
computer processing power. It is difficult to make accurate assumptions about
future advances in cryptanalysis, which is why a margin of safety is desirable.

The need to think in detail about choosing a key length is motivated by the
desire to minimize the impact cryptographic operations have on the overall
performance and cost of the systems that require it. The impact of key length
on both encryption and brute force attack is not proportional [11]. Increasing
the number of bits in a key byn slows the encryption speed byO(n) while
it slows the brute force attack byO(2n). So, all things being equal, faster
computers favor cryptographers (often called “good guys”) over cryptanalysts
(often called “bad guys”, since they stand in for the attackers).

System configurations can alter the overall performance characteristics of
this relationship. Client-side encryption and decryption distributes the perfor-
mance impact of cryptography across client machines when application-level
end-to-end protection is used. The use of S/MIME to protect email content
is an example of this. However, pushing previously traditional client-side op-
erations into the server increases the overall burden on the server. If the ap-
plication content cannot be protected directly in an end-to-end fashion, it can
be instead transferred over a protected channel, such as SSL or IPsec, which
forces the server to perform cryptographic operations that it might otherwise
not need to.

SSL presents problems for load balancing. When a Web site contains many
servers, the load balancer is likely to send requests from the same client to a
variety of different servers. If the requests are encrypted using SSL, each of the
servers that the client communicates with will have to generate its own session



Performance Considerations in Web Security 11

keys, and this will result in significantly more overhead than if a single server
generates session keys.

IBM’s Network Dispatcher has special features for handling client affinity
to selected servers which are critical for improving performance when SSL is
being used. Network dispatcher recognizes SSL requests by the port number
(443). It allows certain ports to be designated as “sticky”. Network Dispatcher
keeps records of old connections on such ports for a designated affinity life
span (e.g. 100 seconds for SSL). If a request for a new connection from the
same client on the same port arrives before the affinity life span for the previous
connection expires, the new connection is sent to the same server that the old
connection utilized.

Using this approach, SSL requests from the same client will go to the same
server for the lifetime of a session key, obviating the need to negotiate new
session keys for each SSL request. This can cause some load imbalance, par-
ticularly since the client address seen by Network Dispatcher may actually be
a proxy representing several clients and not just the client corresponding to the
SSL request. However, the reduction in overhead due to reduced session key
generation is usually worth the load imbalance created.

Many Web sites make gratuitous use of SSL. For example, some sites will
encrypt all of the image files associated with an HTML page and not just the
HTML page itself. This is often unnecessary. The image files might contain
content which can safely be passed in the clear. A reason why this problem
occurs is that the image tags specifying the images to be embedded within an
HTML page are often specified as relative links to a base location and do not
include the protocol. When this is done, the browser assumes that the protocol
is the same as that of the document including the image. Therefore, if an image
included within an HTML document can be sent in the clear, the image tag
should explicitly specify the HTTP protocol as opposed to the HTTPS protocol
for SSL.

Conventional caching techniques cannot be used for confidential documents.
It would involve too much of a security risk to let a third party cache have ac-
cess to confidential information. Storing encrypted data within a cache would
also be problematic because there would have to be some way for a client ob-
taining the encrypted data to obtain the keys to decrypt the data. A large repos-
itory of encrypted data at a cache would also present a target for a malicious
hacker to try to steal data and decrypt somehow.

In order to allow caching of at least some parts of confidential documents,
the fragment-based techniques described in Section 1.3 can be used. Web
pages are composed using fragments in which the confidential parts of Web
pages are encapsulated in confidential fragments and other parts of the Web
page which may be shared are encapsulated in shared fragments. Shared frag-
ments may be cached. Confidential fragments are encrypted by the server and



12

decrypted by the client. The client reconstructs complete Web pages from the
various fragments. If a significant amount of HTML text in a Web page can be
shared and passed in the clear, then this method of dealing with fragments can
result in significant performance gains.

A problem with deploying this method on the Web today is the lack of stan-
dard protocols for fragment-based assembly of Web pages by clients. This
method could be implemented and deployed in a proprietary system.

Recent work on security for high-performance computing [4] targets cre-
ating low overhead security for a particular set of application assumptions.
The data for control flow of high-performance applications has only short term
value, and therefore needs a shorter cover time than document-based applica-
tion data, which is meant for human consumption. Buffer copies are a major
source of overhead to avoid. To eliminate buffer copies, the encryption tech-
niques of transposition, substitution and data padding while the message is
being marshalled onto the wire may be integrated. The prototype in [4] per-
forms a Diffie-Hellman key exchange at connection setup time. This key is
used to perform simple dynamic substitution of method identifiers, SHUFFLE
transpositions in the data marshalling order, and data padding on the original
message. Performance evaluations indicate less than 10% additional overhead
on the messages and less than 25 microseconds to obtain all of the necessary
random numbers. From the security point of view, more work will be needed
to determine both how long the protected data needs to stay protected, and how
long it is protected with their techniques.

3. Mobile Code

In the case of mobile code systems, such as Java, part of the job of the
security sub-system is to protect the host machine from malicious code. In
Java’s case, the bytecode verifier of the Java virtual machine is invoked to
attempt to prove that a given series of Java bytecodes represents a legal set of
Java instructions. This ensures that no illegal data conversion or casting occurs,
which might provide illegal access to member variables or other data. It also
ensures that no operand stack overflows or underflows occur. Stack overflows
can be used to execute malicious instructions on the target machine, using data
as code. Proving the legality of Java bytecode can be an expensive operation.
Java 2 Platform, Micro Edition (J2ME) does a preverification of the Java code,
so that the runtime verifier just needs to verify the proof instead of generate it,
reducing the footprint from 10KB to about 200 bytes.

Other mobile code protection systems use verification of a proof to ensure
more extensive security properties. Proof-Carrying Code (PCC) [16] is a tech-
nique by which the host establishes a set of safety rules that guarantee safe
behavior of programs. The code producer is responsible for creating a formal



Performance Considerations in Web Security 13

safety proof that proves that untrusted code adheres to the host’s safety rules.
The costly generation of the proof is distributed to the less performance critical
code production time, while the less costly checking of the proof (and ensuring
the code adheres to the presented proof) is done at run time. The checking does
not rely on cryptographic techniques or input from an external trusted entity.
The proofs and checks are based on logic, type theory, and formal verification.
A pragmatic difficulty with using PCC is automatically generating the required
proofs. In one experiment [16], Necula and Lee implemented several network
packet filters in DEC Alpha assembly language, and used a special prototype
assembler to create PCC binaries for them. They checked the proofs with a
validator they implemented, which loads the code if it passes the check. The
cost of loading and checking the validity of the proofs generated was between 1
and 3 milliseconds. In performance tests, they found the cost of validation was
balanced by the run-time performance benefits. In their examples, the cost was
amortized after 1200 packets when compared to a BSD Packet Filter (BPF)
architecture, and 28,000 packets when compared to a Software Fault Isolation
(SFI) architecture. The BPF approach made simple static checks on reading
and writing. The SFI approach parses binaries and inserts run-time checks on
memory operations. A difficulty not addressed by this work is determining the
range of host safety rules that can be supported, and determining which sets
of safety rules are both useful and provide some reasonably coherent safety
model or properties.

4. Conclusion

Security can have a significant effect on performance. Encryption adds sig-
nificant overhead to Web performance. We discussed various techniques for
reducing these overheads as well as the effects of encryption on load balancing
and caching.

In closing, it should be noted that the performance gains which can be
achieved by optimizing encryption are dependent on the application. If the ap-
plication is serving only static data, then encryption may constitute the major
bottleneck to the system. Significant throughput improvements may be possi-
ble by optimizing encryption techniques. For applications serving significant
quantities of dynamic data, the performance bottleneck may be the overhead
for generating the dynamic data. Optimizing encryption techniques will in this
case only result in limited throughput improvements.





References

[1] G. Apostolopoulos, V. Peris, and D. Saha. Transport Layer Security: How much does it
really cost? InProceedings of IEEE INFOCOM’99, March 1999.

[2] T. Brisco. DNS Support for Load Balancing. Technical Report RFC 1974, Rutgers
University, April 1995.

[3] J. Challenger, A. Iyengar, K. Witting, C. Ferstat, and P. Reed. A Publishing System for
Efficiently Creating Dynamic Web Content. InProceedings of IEEE INFOCOM 2000,
March 2000.

[4] K. Connelly and A. Chien. Breaking the Barriers: High Performance Security for High
Performance Computing. InNew Security Paradigms Workshop, 2002.

[5] D. Dias, W. Kish, R. Mukherjee, and R. Tewari. A Scalable and Highly Available Web
Server. InProceedings of the 1996 IEEE Computer Conference (COMPCON), February
1996.

[6] T. Dierksand and C. Allen. The TLS Protocol (RFC 2246). http://www.ietf.org/rfc/.

[7] S. Garfinkel and G. Spafford.Web Security, Privacy, and Commerce. O’Reilly & Asso-
ciates, second edition, 2002.

[8] G. Hunt, G. Goldszmidt, R. King, and R. Mukherjee. Network Dispatcher: A Connection
Router for Scalable Internet Services. InProceedings of the 7th International World Wide
Web Conference, April 1998.

[9] IBM Corporation. IBM 4197 Cryptographic Accelerator. http://www.ibm.com/, 2000.

[10] A. Iyengar and J. Challenger. Improving Web Server Performance by Caching Dynamic
Data. InProceedings of the USENIX Symposium on Internet Technologies and Systems,
December 1997.

[11] C. Kaufman, R. Perlman, and M. Speciner.Network Security, Private Communication in
a Public World. Prentice-Hall, 2002.

[12] T. T. Kwan, R. E. McGrath, and D. A. Reed. NCSA’s World Wide Web Server: Design
and Performance.IEEE Computer, 28(11):68–74, November 1995.

[13] J. Mogul. The case for persistent-connection HTTP. InProceedings of SIGCOMM ’95,
pages 299–313, 1995.

15



16

[14] R. Mraz, K. Witting, and P. Dantzig. Using SSL Session ID Reuse for Characterization of
Scalable Secure Web Servers. Technical Report RC 22323(Revised May 5, 2002), IBM
Research Division, Yorktown Heights, NY, September 2002.

[15] Ronald Mraz. Secure Blue: An Architecture for a High Volume SSL Interent Server. In
17th Annual Computer Security Applications Conference, December 2001, New Orleans,
Louisiana, 2001.

[16] G. Necula and P. Lee. Safe Kernel Extensions Without Run-Time Checking. InProceed-
ings of OSDI ’96, October 1996.

[17] E. Resorla. HTTP Over TLS (RFC 2818). http://www.ietf.org/rfc/.

[18] B. Schneier.Applied Cryptography. John Wiley & Sons, Inc., New York, NY, 1996.

[19] A. Shaikh, R. Tewari, and M. Agrawal. On the Effectiveness of DNS-based Server Se-
lection. InProceedings of IEEE INFOCOM 2001, 2001.


