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Kang-Won Lee, Suresh Chari, Anees Shaikh, Sambit Sahu, Pau-Chen Cheng
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Abstract— Denial of service (DoS) attacks continue to be a
daunting challenge for service providers on the Internet. Recent
work on countering these attacks has focused primarily on attacks
at a single server location or on network resources. Increasingly,
however, high-volume sites are distributed using content distribu-
tion networks (CDNs). In this paper, we develop two mechanisms
to deter DoS attacks against CDN-hosted Web sites and CDN in-
frastructure servers. First, we propose a novel CDN request rout-
ing algorithm which allows CDN servers to effectively distinguish
attack traffic from legitimate requests. Our scheme, based on a
keyed hash function, significantly improves the resilience of CDNs
to DoS attacks. Second, we introduce several site allocation al-
gorithms based on binary codes which insure that an attack on
one hosted Web site will have a limited impact on other hosted
sites. Our schemeguarantees that a specified minimum number
of servers remain available for other sites even when the intended
victim is successfully attacked. Together, our schemes significantly
improve the resilience of CDN-hosted Web sites, and complement
other work on countering DoS and distributed DoS attacks.

I. INTRODUCTION

The problem of detecting and thwarting denial of ser-
vice (DoS) attacks against Internet servers has recently
drawn considerable attention. These attacks typically
flood a network or server with bogus request packets, ren-
dering it unavailable to handle legitimate requests. De-
spite increased awareness about security issues, denial of
service attacks remain a challenging problem. According
to a recent Computer Security Institute survey, for exam-
ple, the number of respondents indicating their sites had
been the victim of a DoS attack rose from 27% in 2000 to
38% in 2001 [1].

DoS attacks often target network resources by gener-
ating a large volume of bogus traffic that consumes net-
work bandwidth on the links that connect to the target site.
The impact of such brute-force attacks can be mitigated,
however, by deploying network level mechanisms such as
packet filtering and rate limiting [2], [3], [4]. While net-
work level mechanisms provide a first level of protection,
they cannot completely prevent attack traffic from reach-
ing its targets unless ubiquitously deployed. Moreover,

certain types of attacks are intrinsically hard to counter at
the network level. Therefore, considerable attention has
been devoted to developing server-side measures to with-
stand DoS attacks on Internet servers [5], [6].

In today’s Internet architecture, many high volume sites
are distributed, either by replicating content in several
data centers, or distributing content via a content distribu-
tion service provider (CDSP). Due to the increased server
and network capacity available from their geographically
distributed server infrastructure, CDSPs offer increased
resilience to DoS attacks in addition to promising bet-
ter performance. However, content distribution networks
(CDNs) are not bullet-proof. For example, a determined
attacker can infiltrate thousands of machines on the Inter-
net using automated attack tools and launch a very large
scale distributed DoS (DDoS) attack in order to bring
down CDN servers in a specific region. Defense against
such large scale DDoS attacks is most difficult when the
attacker uses ‘legitimate’ packet types accepted by CDN
servers, such as TCP SYN packets, to flood the target site.
Hence, we focus on flooding attacks using TCPSYN pack-
ets on CDNs.

In addition, the shared nature of a CDN’s infrastructure
can be a weakness because an attack on a single CDN-
hosted Web site can affect many (or all) of the other cus-
tomer sites hosted by the same CDN. Without a care-
ful site allocation strategy, the redundancy and replica-
tion provided by the CDN offer limited protection for the
hosted customers.

In this paper, we develop deterrence mechanisms to
DoS attacks that are suited for CDNs. Our proposed
scheme makes the job of the attacker significantly more
difficult by leveraging features unique to CDNs, namely
the request routing system, which directs client requests
to the most appropriate CDN server. We also introduce
novel allocation algorithms to provide sufficient isolation
among CDN-hosted Web sites to prevent an attack on one
Web site from bringing down other sites.

More specifically, our contributions are:
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� Hash-based request routing: We augment the CDN
request routing scheme with a keyed hashing mech-
anism to help CDN servers distinguish legitimate re-
quests from bogus requests. Using this mechanism,
the total amount of attack traffic required to victim-
ize a CDN increases quadratically with the number
of CDN servers in the region. This significantly im-
proves resilience over conventional CDNs, where the
amount of traffic necessary to bring down a CDN in-
creases linearly with the number of servers.

� Site allocation policies and algorithms: We pro-
pose an allocation strategy based on binary codes,
which insures that a successful DDoS attack on any
individual Web site that disables its assigned CDN
servers, does not collaterally bring down other Web
sites hosted by the same CDN. Our scheme guaran-
tees that the non-target Web sites are served from at
least a specified minimum number of servers, thereby
ensuring a lower bound on availability and perfor-
mance.

As with any Internet security measure, our scheme is
not a comprehensive solution by itself. Rather, we pro-
pose a set of mechanisms to complement the existing
techniques used to combat DDoS attacks. Our proposed
mechanisms cannot protect, for example, against attackers
who target the network bandwidth resources on the links
connected to the CDN servers. Such attacks are better ad-
dressed by other DDoS countermeasures, such as packet
filtering and rate limiting. It should be noted, however,
that many observed attacks do not generate enough traf-
fic to consume the bandwidth on today’s high-speed links,
but are quite sufficient to overwhelm a server [7].

The improved resilience provided by the hash-based
request routing scheme comes at the cost of selecting
servers based on non-performance metrics within a re-
gion. Also our site allocation scheme assigns Web sites to
a subset of the CDN servers, instead of using all servers to
serve all sites. Our approach is flexible, however, in that
it allows a CDSP to balance the trade-off between perfor-
mance and security. We discuss this trade-off in Section
VI.

The remainder of this paper is organized as follows:
Section II reviews related work in the literature. Sec-
tion III defines our CDN model and the types of attacks
we consider. Section IV describes the hash-based request
routing algorithm. Section V presents our site allocation
strategy. Section VI discusses practical issues and further
enhancements. Finally, Section VII concludes the paper.

II. RELATED WORK

This section provides a brief review of existing tech-
nologies to counter DoS attacks.

Network-level mechanisms such as packet filtering [2],
[3] and rate-limiting [4], have been designed to prevent or
mitigate the impact of DDoS attacks. These mechanisms
are deployed in network routers to prevent potential attack
packets from reaching their destination.

A number of recent studies have proposed techniques to
determine the route to the origin of attacks as a deterrence
mechanism. Examples of such techniques include “con-
trolled flooding” [8], audit trails [9], [10], and traceback
[11], [12]. In packet-based traceback, packets are spe-
cially marked as they are forwarded by the routers. When
the end-host receives these marked packets, it can con-
struct the path back to the origin of the attack, given a
large enough number of marked packets [11], [12]. While
traceback techniques deter potential attackers, they are
typically applicable to only postmorem analysis, or while
a site is under attack.

One of the most common types of attacks on end sys-
tems is SYN flooding [13], in which an attacker sends
a large number of TCP SYN packets to the target with-
out fully establishing the connection. Numerous defen-
sive measures have been proposed and deployed against
SYN flood attacks. They include SYN cookies [6], ran-
domly dropping SYN packets, reducing the time allowed
to complete TCP connection establishment. Among these
techniques, SYN cookies are most popular in practice be-
cause of its simplicity and effectiveness. The basic idea
of SYN cookies is to encode the information about the
incoming SYN packets in the sequence number of the
corresponding SYN-ACKs. In this way, the server does
not have to maintain state for partially established con-
nections, thereby substantially improving the resilience to
SYN flood attacks. In Section IV-C, however, we show
that SYN cookies alone may not provide enough protec-
tion from attacks with very high packet rates as reported
in [7].

Unlike most previous work, the main focus of this paper
is to develop security mechanisms tailored to CDNs. Re-
cent work by Jung et al. that addresses the problem of dif-
ferentiating attack traffic from surges due to flash crowds
in CDNs [14] is closely related to our effort, though dif-
ferent in two key ways. First, our scheme differentiates
attack traffic from legitimate requests on-line as they ar-
rive, while Jung et al. provide a post-mortem analysis to
characterize DDoS attack and flash crowd traffic patterns.
Second, our scheme improves the resilience of a CDN-
hosted site by filtering out attack packets whereas Jung et
al. proposed a mechanism to dynamically redirect traffic
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Fig. 1. Content distribution network model

from an overloaded server to less loaded ones.

III. PROBLEM FORMULATION

A. CDN model

We consider a content distribution network model con-
sisting of CDN servers or server clusters distributed in
multiple regions and serving replicated Web content. Re-
gions may be arbitrarily defined, though they typically
have some topological or geographic significance. Servers
deployed in a single ISP network or autonomous system,
for example, could be part of a single CDN region.

Each CDN server in a region is shared in that it serves
content of multiple Web sites (i.e., customers of the
CDSP). There also may be an origin server which acts
as the authoritative source of content for a particular con-
tent provider. We do not make any assumptions about how
content is distributed to servers or which mechanisms are
used to deal with application-level issues such as expira-
tion or consistency. Figure 1 illustrates the model.

Clients access content from the CDN servers by first
contacting a request router which directs the client to a
CDN server within the appropriate region (where the re-
gion is chosen based on client proximity, for example).
We assume that, within a region, the performance received
by the client will be roughly equivalent for any CDN
server in the region. This assumption is consistent with re-
cent work showing that fine-grained load balancing does
not generally result in improved performance [15]. More-
over, in certain types of CDNs, each region may have only
a few clusters of servers. In this case, all servers in the
same cluster provide similar performance.

We assume the request router bases its decision on the
client IP address, perhaps along with other information
about the state of the network or the candidate servers,
or about the content being requested. In practice, the

request router may be a specialized DNS server or Web
server which chooses a proximal server when the client
makes a name resolution request or HTTP request, respec-
tively [16]. If the request router is a DNS server, then ad-
ditional modifications (e.g., as proposed in [17]) or tech-
niques (e.g., in [18]) are necessary to expose the client IP
address.

We note that our proposed mechanisms are designed to
operate for the CDN infrastructure in each region. In other
words, the proposed request routing algorithm selects a
target CDN server only from the local region. Similarly,
our site allocation algorithm makes allocation decision per
region.

B. Assumptions about the attack

In this paper, we assume that the primary target of
DDoS attacks on a CDN is the CDN servers. This assump-
tion is based on observations that the attacker can over-
whelm a server with a relatively small volume of attack
traffic [7], [19]. The attacker need not generate enough
packets to consume the network bandwidth on the links
connecting the CDN server to make it unavailable.

We also assume that the request routers are less suscep-
tible to DoS attacks than the CDN servers. Unlike CDN
servers, which may perform complex operations, such as
dynamic page creation and database query processing, the
request routers typically handle simple request and re-
sponse operations without having to establish connections
or maintain much state (e.g., when using DNS-based re-
quest routing). Thus, we consider attacks against CDN
servers to pose a more immediate threat.

While certain types of DDoS attacks utilize ICMP or
UDP packets, recent empirical observations reveal that the
majority (more than 90% in the study) of attacks use TCP
packets [7]. Also, the observed attack packets commonly
had source IP addresses following a random uniform dis-
tribution, indicating that source address spoofing is widely
used in DDoS attacks. Hence, our focus is on flooding
attacks using TCP SYN packets with spoofed source IP
addresses. By spoofing the source IP address, the attacker
will try to hide the true origin of the attack [10], [11] and
increase the effectiveness of the attack. Note that this is
an extremely difficult type of attack to address, since TCP
SYNs are ‘legitimate’ packet types that must be handled
by the CDN server – there is no distinction between a gen-
uine user request and a bogus one. Attacks which use ac-
tual (i.e., not spoofed) IP addresses are not handled by our
scheme. If the set of actual IP addresses is not very large,
it may be possible to detect a surge of traffic from certain
IP address groups, and block those address regions us-
ing stateful packet filtering. Very large-scale attacks using
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legitimate addresses (e.g., attacks started by worms like
“Code Red” [20]), however, are much more challenging,
and countering such attacks is not part of the goals of this
paper.

C. Quantifying resilience

We begin with a simple notion of resilience of a hosting
environment. Intuitively, we say server A is more resilient
than server B if the attacker must send more attack traf-
fic to bring down server A than to bring down server B
[7]. Here, “bring down” refers to the same unavailabil-
ity condition at both servers (e.g., 95% of the requests to
each site experience time-outs). Thus, we can define the
relative resilience of server A with respect to server B as
follows:

Definition 1—Resilience of a server: Server A is k
times more resilient than server B if k times more at-
tack traffic is required to make server A unavailable than
to make server B unavailable, where unavailability is de-
fined identically for servers A and B.

When we view the CDN as a network of n servers that
replicate the full content of the origin server, it is straight-
forward to show that the CDN provides O(n) resilience
compared to a single server because it takes roughly n
times more attack traffic to bring down all n CDN servers
than to bring down a single server. Some existing CDN ar-
chitectures do not provide O(n) resilience, however, since
they require the index page of a site to be retrieved from
the origin server. In this case, the origin server becomes
a single point of failure. Nevertheless, many CDSPs are
now providing “whole-site” hosting which achieves O(n)
resilience.

Our second metric quantifies the degree of isolation,
or protection, of a Web site from an attack on another
site hosted by the same CDN. For example, consider a
CDSP hosting two customer Web sites A and B. Ideally,
a DDoS attack on site A should not affect the performance
or availability of site B, which is true when the two sites
are not assigned to any common CDN servers. In prac-
tice, though, a given CDN server is shared among multiple
Web sites in order to provide good performance to clients
and to ensure that the CDN servers are well-utilized.

Hence, there is a tension between achieving site iso-
lation and providing good performance. Our goal is to
maximize the number of servers hosting each site while
guaranteeing a specified degree of isolation among them.
One simple way to quantify the degree of isolation is to
count the number of CDN servers that are not shared by
the Web sites of interest:

Definition 2—Isolation between two sites: Let A and
B denote two independent Web sites, and SA =

fs1; : : : ; slg and SB = fs01; : : : ; s
0

k
g denote the sets of

CDN servers allocated to A and B, respectively. We
define the degree of isolation between A and B to be
min(jSA � SBj; jSB � SAj). For example, if SA =

fs1; s2; s3g and SB = fs2; s3; s4; s5g, the degree of
isolation is 1 because jSA � SBj = jfs1gj = 1 and
jSB � SAj = jfs4; s5gj = 2.

In Section V, we show that if sites are assigned to an
equal number of servers, then the degree of isolation be-
tween two sites is d

2 where d (which is always even) de-
notes the number of disjoint CDN servers.

IV. HASH-BASED REQUEST ROUTING

In this section, we present a novel algorithm, called
hash-based request routing, that can significantly improve
the resilience of the CDN against DDoS attacks. The key
idea of hash-based request routing is to treat requests with
legitimate source IP addresses differently from bogus re-
quests with spoofed source IP addresses so that most of
the attack packets are preferentially dropped when the
CDN is overloaded. In particular, the proposed request
routing scheme helps the server to filter out n�1

n
fraction

of the attack traffic without inhibiting legitimate requests,
when n CDN servers are hosting the Web site in a region.

A. Algorithm description

(1) Sends a request
     with ‘site’ and ‘cli’

(3) Responds with
      server id to contact

     with ‘site’ and ‘cli’
(4) Sends a HTTP request

Request router and server 
shares the secret key to the hash H

(6) Responds with
      the site content

      If (H(cli) = self)
         insert into normal queue
      else
         insert into low prio queue

(5) Checks with H

Request router

     H(cli) = server id
(2) Selects cache using H

IP address ‘cli’

CDN serverClient

Fig. 2. Operation of hash-based request routing

When a client wants to access a CDN-hosted Web site,
it first contacts a request router to find the IP address of
the appropriate CDN server to contact. In general, the
request routing decision is based on performance or load-
balancing metrics. In our approach, however, the hash-
based request routing aims to differentiate legitimate re-
quests from potential attack traffic with spoofed IP ad-
dresses. This goal is achieved with simple keyed hash-
ing using a secret key shared between request routers and
CDN servers [21]. The basic idea behind keyed hashing
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is to generate a uniformly distributed pseudo-random se-
quence that cannot be predicted by an attacker who does
not know the secret key. The hash function output is then
mapped to identifiers of CDN servers in the region. The
operation of the hash-based request routing algorithm is
described below (see Figure 2).

1) The client first sends a request to a request router
to learn the address of the CDN server to contact in
order to access a particular Web site.

2) The request router selects a CDN server based on
the requested Web site and the source IP address of
the client using a keyed hash function H , and the
secret key K which is shared with the CDN servers.
We assume a simple uniform keyed hash function
H : IP addr ! CDN server id. In other words,
any given IP address is equally likely to hash into
any CDN server id in the region.

3) The request router responds with the address of the
CDN server to contact. Note that the attacker must
use a legitimate source address to query the request
router because it will not receive the response oth-
erwise. This also implies that the attacker can dis-
cover mappings only for the IP addresses of the
compromised hosts that it has a full control over.

4) Upon receiving the response from the request
router, the client sends a TCP SYN packet to the
server with CDN server id. When the CDN server
receives the SYN packet it verifies if the source
IP address in the SYN packet hashes to its own
address using the hash function H and the shared
key K .

5) If the hash value matches its own address, the CDN
server inserts the SYN packet into the “normal” ser-
vice queue. Otherwise, the SYN packet is inserted
into the “low priority” queue. The low priority
buffer is small, and is meant for packets that may be
misdirected due to temporary inconsistencies in K
between the request router and the server. Packets
in the normal queue are always served before those
in the low priority queue.

6) Once the SYN packet is processed by the server, a
SYN-ACK packet is returned to the client and con-
nection establishment and object retrieval proceeds
normally.

There are a few things to note in this procedure. First,
the keyed hash function (Step 2) can dynamically change
its behavior by simply changing the key. We discuss
how this feature can further improve the robustness
of the scheme in Section IV-B. Second, the attacker
cannot discover the mapping for arbitrary IP addresses
by permutation because it cannot always receive the

responses for them from the request router (Step 3).
Third, the proposed scheme does not generate reverse
traffic, e.g., TCP SYN-ACK, in response to the attack
traffic. Therefore, its behavior to the rest of the network
is much ‘nicer’ than the other SYN flood countermeasures
such as SYN cookies. Finally, as we will see in Section
IV-C, the resilience of the CDN improves even with a few
CDN servers in a region, i.e., n can be small.

Resilience of hash-based request routing: Recall that
the attacker will spoof the source IP address to hide the
true origin of attack and to mimic traffic from real users.
When spoofing the IP address, the attacker will try to
guess an address that will pass the hashing test at a CDN
server. However, the pseudo-randomness of the hash
function ensures that the attacker’s guess is no better than
a random selection.

Suppose the attacker spoofs the source address by ran-
domly selecting an IP address. From our assumption of
a uniform hash function H , statistically only 1

n
fraction

of the total attack traffic, for n CDN servers in a region,
will pass the test at the server and enter the normal service
queue. The other n�1

n
fraction of the attack traffic will

fail the test and be placed in the low priority queue. Since
the low priority queue has only a limited amount of buffer
space as described above, most of the attack traffic will
be silently dropped. Therefore, valuable resources at the
server will not be wasted by the attack traffic.

From the attacker’s perspective, this scheme requires
significantly more attack traffic to bring down a server. In
a conventional CDN, the attacker must bring down all n
CDN servers before the site is unavailable. With the addi-
tion of hash-based request routing, each CDN server will
accept only 1

n
of the attack traffic, thereby increasing by a

factor of n the amount of traffic necessary to bring down
each server. Thus, with this simple scheme in place, the
attacker must generate O(n2) attack traffic in aggregate to
victimize all of the CDN servers in the region.

The proposed scheme effectively addresses the problem
of distinguishing attack traffic from a flash crowd [14]. In
the case of an attack, ideally, the server should ignore the
incoming requests without taking any action. On the other
hand, in the case of a flash crowd, the server should try to
service all user requests in the order of arrival, perhaps at
the cost of increased response time. Our scheme roughly
follows this ideal behavior by dropping most of the attack
packets.

B. Practical considerations

Updating the shared secret: While it is expected that at-
tackers can discover the address-to-server mappings only
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for the hosts they infiltrate, they may learn the mapping
for other addresses through various channels, for example,
by eavesdropping on responses on the network. Although
the attacker may not have the resources or time to learn all
the mappings, the attacker may still manage to discover a
large portion of it.

We can further impede the attacker by periodically
changing the secret key K , thus invalidating any map-
pings learned by the attacker in the previous periods.
Note that the CDSP can distribute a set of shared keys
to request routers and servers in advance, allowing CDN
servers and request routers to independently update the
hash function based on the time of day, for example.
To allow for temporary inconsistencies, the CDN server
maintains a “hand-off” period, during which both old
and new mappings are honored. With this added level of
protection, it becomes significantly harder for the attacker
to discover the mapping.

Overhead of the proposed scheme: The hash-based re-
quest routing scheme does add extra overhead to the CDN
infrastructure in terms of key distribution and hash com-
putation. Distribution overhead can be mitigated, how-
ever, by piggybacking the secret keys on control traffic
from the administration site of CDSP. The hash compu-
tation at the request routers and the CDN servers must
be optimized since they are on the critical path of object
retrieval. In general, we can employ any uniform hash
function, such as MD5, that generates a pseudo random
sequence with a reasonable overhead.

To avoid the situation where a high-overhead hash com-
putation is itself exploited by an attacker, the hashing al-
gorithm may be designed for efficient implementation in
hardware [22]. Snoeren et al. have demonstrated the fea-
sibility of hardware-based fast hashing in the context of
high speed routers, which compute multiple hashes for
every forwarded packet [10]. A similar technique can be
employed at the request routers and the CDN servers for
fast hashing.

C. Evaluation

In this section, we present a few performance numbers
as a proof of concept. We note that SYN cookies are
widely used to protect servers from SYN flood attacks in
real world. Hence, in this paper, we try to quantify the
benefit of the hash-based request routing scheme in addi-
tion to SYN cookies.

We set up a testbed consisting of one Web server
and four clients, all running Linux 2.4.7 on Pentium III
500 MHz PCs (Figure 3). Among the clients, one is as-
sumed to be a legitimate user and the other three serve

1000BT
switch

CDN
server

attacker

attacker

attacker

1000BT

100BT

client

Fig. 3. Testbed configuration

the role of attackers. The machines are connected via
an Alteon ACESwitch 180 Gigabit Ethernet switch. The
clients are connected to the switch via fast Ethernet while
the server is connected via Gigabit Ethernet to ensure that
network does not become the bottleneck. The server runs
Apache 1.3, and serves local copies of the CNN.com.

In this setting, we examine the performance of a sin-
gle CDN server as if the server is a part of a CDN that
employs hash-based request routing. We emulate the ex-
istence of other CDN servers in the region by controlling
the hash parameter. Recall that the proposed hash-based
algorithm can filter out n�1

n
fraction of attack packets at

each server if there are n CDN servers collaborating in
the same region. To simplify the test, we assume that the
client and the attackers have cached the response from the
request router and know the IP address of the server.

The attackers generate spoofed TCP packets at a spec-
ified rate using raw IP sockets. We use httperf [23]
to generate request traffic from the legitimate client. For
each scenario, five sets of data were collected, where each
data consists of results from 1,000 accesses to the Web
site. At the server, the Linux SYN cookies implementa-
tion is turned on as the basic protection against SYN flood
attack. We note that, without SYN cookies, the availability
of the server is compromised at a much lower attack rate.

Figure 4 presents the number of timed out requests in
the 1,000 accesses from the legitimate user, where timeout
is set to 15 seconds. The x-axis represents the attack rate
(in packets/sec) on each server. The figure plots the results
from the ‘SYN cookies only’ case in comparison with the
‘SYN cookies+hashing’ case, where the number of servers
in the region is assumed to be 2, 3, 4, and 5. From the fig-
ure, we observe that the proposed hashing scheme reduces
timeout events, thereby providing substantially better pro-
tection than the case when only SYN cookies used. For ex-
ample, with the hashing scheme, the legitimate user does
not experience timeouts at the attack rate of 3,500 pack-
ets/sec, whereas 50% of the requests timeout when only
SYN cookies were used. We also observe that the level of
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Fig. 5. Response time vs. attack traffic rate (packets/sec)

protection increases as the number of CDN servers in the
region increases.

A similar trend can be found from Figure 5 for the aver-
age response time of the HTTP requests that did not time
out. As in the previous case, the average response time is
significantly lower when the hashing scheme is used than
the case without. For the same attack rate, the response
time decreases with the number of CDN servers in the
same region.

The improved performance in the hashing case results
from the fact that the hash-based filtering reduces both in-
bound and outbound traffic at the server. Figure 6 presents
the aggerate packet rate (attack traffic + user requests) into
the SYN queue. The figure shows the inbound traffic is
greatly reduced with the hashing scheme as compared to
the ‘SYN cookies only’ case. Similarly, Figure 7 plots the
outbound traffic from the server. From the figure, we ob-
serve that the hashing scheme reduces bogus SYN-ACK
traffic sent from the server out into the network, which
is an added benefit of our hashing scheme. Recall that
SYN packets contain spoofed addresses; therefore, out-
bound SYN-ACKs are destined to random hosts all over
the network [7].

In summary, we conclude that, with our proposed hash-
based request routing scheme, the attack rate required to
bring down a single CDN server increases proportion-
ally to the number of servers in the same region. Con-
sequently, the aggregate attack traffic required to com-
promise all the servers in a region increases quadratically
as the number of servers. In addition to the robustness
against SYN flood attacks, our hashing scheme reduces
the unwanted outbound SYN-ACK traffic.

V. ISOLATING THE IMPACT OF THE ATTACK

In this section, we outline strategies to allocate Web
sites to different CDN servers in order to isolate the im-
pact of an attack on any individual site. Ideally, we want

to allocate Web sites to as many servers as possible while
ensuring that response time and throughput of the site de-
teriorate as little as possible when other CDN-hosted sites
are under attack. In particular, we want to be able to guar-
antee at least a specified minimum degree of isolation be-
tween any two sites in the CDN, while providing good
performance.

Intuitively, however, allocating a large fraction of the
available CDN servers to each of two different sites results
in significant overlap in the set of servers hosting both of
the sites. Thus, an attack which brings down the servers
hosting one site also collaterally causes a large loss of ser-
vice for the other site. Therefore, we have the following
two conflicting goals:

1) For each Web site, we wish to serve the site from a
large number of CDN servers in each region.

2) For any pair of Web sites, if one is the target of a
DDoS attack then the other should experience min-
imal service degradation.

The first goal maximizes the throughput of a site hosted by
the CDN, and the second protects a Web site from attacks
on any other site.

Our contributions in this paper are to relate the problem
of site allocation to a coding theoretic framework and ob-
tain good allocation strategies by adapting carefully cho-
sen codes. We consider the case where there is one level of
service, where each Web site is hosted on the same num-
ber of CDN servers in each region. In ongoing work we
are investigating similar allocation strategies to offer mul-
tiple levels of service, for example to allocate more servers
to more popular sites.

We note that allocating Web sites to a subset of CDN
servers in the region requires modification of the hash-
based request routing scheme. CDN servers now must use
both the client IP address and the requested site in deter-
mining whether an arriving packet is legitimate. Without
establishing the TCP connection, however, the server can-
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Fig. 6. Inbound traffic to the server’s SYN queue
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Fig. 7. Outbound traffic from the server

not automatically determine which site is being requested.
Several techniques can be used to convey the site informa-
tion and we outline one simple scheme in Section V-E.

A. Relating site allocation to codes

Let S be the set of CDN servers and W the set of Web
sites to allocate to the servers in S . For each site w 2 W
form the bit vector of length jSj with bit i set if w is al-
located to server i. This bit vector is called the allocation
vector for the site.

Following standard terminology, the Hamming weight
of a binary vector is defined to be the number of 1s in the
vector. The Hamming weight of the allocation vector of a
site represents the number of CDN servers that serve con-
tent for this Web site. Hence, our goals may be restated
as:

� Requirement (1) states that allocation vectors of each
site have the largest Hamming weight possible.

� Requirement (2) is that for every pair of sites w1 and
w2, the number of servers which serve w1 but not w2

(and vice versa) is as large as possible, i.e. if s1 and
s2 are the allocation vectors of w1 and w2 respec-
tively, then the Hamming weights of the bit vectors
(s1^s2) and (s2^s1) should be as large as possible.1

When all Web sites are treated equally, i.e. when all allo-
cation vectors have equal Hamming weight, we have

Hamming weight(s1 � s2)

= 2� Hamming weight(s1 ^ s2)

= 2� Hamming weight(s2 ^ s1); (1)

where a � b denotes XOR of vectors a and b. The
Hamming weight of (s1 � s2) is called the Hamming
distance between s1 and s2. Thus, in this restricted
case, our problem is to find allocation vectors with large
Hamming weight under the constraint that the Hamming

1
x denotes the ones–complement of the binary vector x.

distance between the vectors is as large as possible. Thus
the problem of site allocation can be stated as follows:

Allocation problem: Given n, the number of CDN
servers in a region, find an efficient algorithm to enu-
merate a large number of binary vectors each of length
n, each vector having Hamming weight exactly h (as
large as possible) and the minimum pairwise Hamming
distance d between vectors being as large as possible.

Given such an algorithm, we can sequentially generate
such n bit vectors and assign them as the allocation vec-
tors for each Web site. Under such an allocation each Web
site is served by h CDN servers out of n. If the servers
hosting a particular site are all rendered inoperative due
to a DDoS attack, then any other site is guaranteed to be
served by at least bd2c servers. Each Web site thus uti-
lizes h

n
of the available capacity and the resulting loss of

service when any one Web site is taken down is at most
(1� d

2h) � 100 percent.

B. Allocation strategies from binary codes

In this section, we outline general allocation methods
where we try to maximize h and d along with maximizing
m, the total number of Web sites which we can accom-
modate. Later, in Section V-D we consider other possibil-
ities such as the case when the CDSP has a target number
of customers and wishes to find the best allocation (i.e.,
given m, optimize h and d). Our allocation strategies are
adaptations of results from coding theory and we outline
general constructions without details of actual codes. We
refer the interested reader to [24] for comprehensive de-
tails about codes and their constructions.

In general, defining codes with many vectors where all
codewords have exactly a fixed Hamming weight, is a
very difficult problem in coding theory. The few codes
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that exist to generate constant Hamming weight code-
words, called constant weight codes, generally yield only
a small (polynomial in the length of the code) number
of codewords. To accommodate a larger number of Web
sites, we take arbitrary codes and prune them to yield bi-
nary vectors fitting our specification. Our first cut at an
allocation strategy is the following naive algorithm:

Algorithm 1 : Fix a code of length n with a large mini-
mum distance d. Choose parameter h so that there are
enough codewords of Hamming weight h. Then gener-
ate all binary vectors with Hamming weight exactly h
and output only those vectors which belong to the code.

Note that in the algorithm we have not fixed particu-
lar values for d or h. To do this we first fix a code from
a family of codes which fixes the parameter d. Once we
fix a code, the distribution on the Hamming weight of the
vectors is defined. The parameter h is then chosen to have
an allocation for at least m Web sites based on this distri-
bution of Hamming weights.

Besides finding good values for h and d, we also wish
to use codes which have explicit constructions and effi-
cient algorithms to enumerate codewords. A particularly
good class of codes which have easy algorithms to iden-
tify codewords are the class of linear codes. This includes
a number of codes such as the Reed–Solomon codes [24].

Definition 3: An (n; k; d) code is a linear code of
length n with minimum distance d and the dimension of
the linear subspace is k. It is defined by a k � n binary
matrix G called the generator matrix and the set of code-
words is obtained by x�Gwhere x ranges over all binary
vectors of length k [24].
Note that linear codes produce codewords with arbitrary
Hamming weight. The algorithm to generate codewords is
straightforward: Sequentially enumerate vectors of length
k and multiply by the generator matrix G. Alternately, a
linear code is also defined by its syndrome matrix C [24],
an (n� k)� n binary matrix: a n length word x belongs
to the code if and only if x � CT = 0. Using properties
of linear codes, our next refinement is the following:

Algorithm 2 : Fix an (n; k; d) linear code with a large
minimum distance d. Systematically generate all binary
vectors of Hamming weight h and retain words x such
that x � CT = 0. Alternately, enumerate vectors y of
length k and generate codeword y � G. Retain only
those with Hamming weight h.

As before, the parameters d and h are chosen by first
fixing a family of linear codes to define d. Once the
code is fixed, h is chosen to maximize the number of

codewords with Hamming weight h in this code.

We describe another general scheme to obtain alloca-
tion vectors, which focuses on a particular value for h.
Intuitively, if h is too large, then there are few codewords
of Hamming weight h. Also, choosing too large a value
for h makes the maximum distance (which can be at most
n � h) small. On the other hand if h is small, then each
Web site is served by at most h CDN servers and thus re-
sults in wasted capacity. A particularly good value for h is
n

2 : this is the weight at which we have the maximum num-
ber of binary vectors and hence potentially a large number
of codewords. For h = n

2 we can use the following:

Algorithm 3 : Fix a code C of length n with minimum
distance d. Define a modified code C0 such that for each
codeword c 2 C, C0 contains the 2n length word c0 = cc.

In the modified code C0, each codeword has length 2n
and weight exactly n (half the length of the code). The
minimum distance between words in C0 is at least 2d. This
is a quick way to use any code to produce words of con-
stant Hamming weight with h = n

2 . The number of code-
words in C0 is the same as that of C, but now each code-
word can be used as an allocation vector.

These algorithms are general methods to convert codes
into allocation strategies for Web sites to CDN servers.
Plugging good codes into the constructions yields good
allocation strategies. The equivalence holds in the other
direction: any allocation strategy can be converted into
a code. This equivalence is useful to verify if allocation
strategies with certain parameters are possible: There are
a number of tables [25] which list (for small values of
n), given values for h and the distance d, the maximum
number of codewords possible in such a code.

C. Example

As an example, suppose that the CDSP wishes to host
100 Web sites with the guarantee that if a Web site is
attacked, all remaining sites have at least 3 functioning
servers in the CDN region. Restated, the problem is: given
m = 100 and minimum distance d = 6, find optimal val-
ues for n and h (See Table I). The first step is to find
the minimum value of n for which a code with distance
d = 6 and at least m = 100 codewords exists. From stan-
dard tables (see [26]), we see that the minimum possible
value for n is 15. Our first cut is to use a very specialized
non-linear code [26] which yields about 128 codewords
with Hamming weight 8 and with length n = 16. This is
a fairly optimal allocation strategy using an esoteric non-
linear code.
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TABLE I
EXAMPLE SITE ALLOCATION FOR 100 WEB SITES WITH DEGREE OF ISOLATION = 3 (m = 100 AND d = 6)

# Total server # Servers/site Code

Algorithm 1 n = 16 h = 8 specialized non linear code [26]
Algorithm 2 n = 21 h = 11 Reed-Solomon code
Algorithm 3 n = 30 h = 15 Hamming code

Another allocation can be obtained using the Reed–
Solomon code of length n = 21 with a distance of d = 5
which yields 512 codewords. Inspecting the distribution
of the number of codewords for each Hamming weight,
we find the number of codewords is maximized at weights
10 and 11. We choose h = 11 and select only codewords
of weight 11 which yields 126 codewords. For these con-
stant weight words, the distance (which must be even) is
actually 6 which matches the parameters we require.

A slightly less optimal, but straightforward, allocation
is to use Algorithm 3 choosing the code C to be the Ham-
ming code of length 15 and distance 3. With our param-
eters the Hamming code has 2048 codewords. Plugging
this code into the Algorithm 3 gives us an easily imple-
mentable allocation strategy where n = 30 and each Web
site is assigned to at least 15 CDN servers. While not op-
timal, the code yields a large number of codewords which
gives us the flexibility to expand to more Web sites.

We have chosen these codes from many possibilities, to
illustrate the tradeoffs. Optimal codes generally tend to be
non-linear with complex encoding algorithms. Straight-
forward choices for codes such as the Reed–Solomon
code give us slightly less optimal values of n.

D. General Allocation Strategies

In this section we discuss a number of possible alloca-
tion strategies, using various codes to place different em-
phasis on the number of hosted Web sites (m), number of
CDN servers per hosted site (h), and the degree of isola-
tion between sites (d). Table II summarizes the trade-offs
of site allocation strategies using these codes.
Allocations for a small number of Web sites: Our first
case is when m, the number of Web sites, is small com-
pared to n, the number of CDN servers. If m � (2n� 2)

we can use subsets of Hadamard codes [24], [25] and
get very good guarantees on the Hamming distance. The
Hadamard code is a (n; log(2n); n2 ) linear code with 2n
codewords. In fact, using these codes one can construct
2n � 2 binary vectors each with a Hamming weight n

2
with minimum pairwise distance n

2 . With these as allo-
cation vectors, we can assign each site to n

2 servers and
guarantee that a site will always be served by n

4 servers,

even if all the servers hosting one Web site become un-
available. For small values of m, we can therefore get
very good guarantees on resilience.

Codes with efficient algorithms: Besides optimization
of parameters, we need efficient constructions of alloca-
tion vectors. A good class of codes with a large mini-
mum distance and efficient algorithms are Reed–Solomon
codes. Choosing parameters carefully, and using Algo-
rithm 3 stated above, given n, we can use Reed–Solomon
codes to enumerate an exponential number (2c1n) of code-
words with a minimum distance of at least n

c2 log(n)
, where

c1 and c2 are constants. Thus, we can guarantee that no
Web site will suffer more than a log(n) factor drop in ser-
vice under attack. Although this is high, these codes have
the advantage that allocation algorithms are easily imple-
mented.

Allocation strategies for a range of parameters: There
are a number of advanced codes which can be converted
to good allocation strategies. Care should be taken, how-
ever, while using more advanced coding methods since
they typically have complex algorithms for encoding, and
yield the best parameters only for large values of n. One
such family of codes are Justesen codes [24]. Plugging
these codes in Algorithm 3, gives us an algorithm yielding
an exponential number of allocation vectors where each
Web site is allocated to n

2 CDN servers and we can guar-
antee that a Web site which is not under attack will at most
suffer a small constant factor loss of service.

Ruling out some allocation parameters: While the
above are general example of some codes, in practice, the
actual code depends entirely on the values of the parame-
ters n, m and desired values for h and d. The first step to
finding codes to convert to allocation vectors is to investi-
gate the feasibility. For example, given a particular value
for n, there are tables on upper bounds for the number of
codewords for various values of d [25]. This directly gives
us the maximum number of Web sites which we can ac-
commodate given a value of d. Similarly, there are tables
which list upper bounds on the number of constant weight
codewords possible given n, d, and h. These can be used
to rule out possible values for d and h based on m.
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TABLE II
SUMMARY OF THE SITE ALLOCATION STRATEGIES USING CODES

Code Properties Comments

Hadamard code [24], [25] m = 2n� 2; h = n

2 ; d = n

2 good isolation, small number of sites (m)
Reed-Solomon code [24] m = O(2c1n); h = n

2 ; d = n

c2 log n
balances isolation and number of sites,
efficient construction

Justesen code [24] m = O(2c1n); h = n

2 ; d = c2n good isolation, many sites, higher complexity

E. Conveying site information to CDN servers

The hash-based request routing algorithm, as described
in Section IV differentiates bogus packets from legitimate
packets based on a hash function that uniquely maps client
IP addresses to CDN servers in the region. With the intro-
duction of the site allocation algorithm, however, the re-
quest routing algorithm must map a client to a CDN server
identifier based on the client address and also the Web site
it wishes to access. This can be accomplished by introduc-
ing a hash function for each customer Web site. The effec-
tiveness of hash-based request routing may be degraded,
though, if a CDN server does not know which hash func-
tion to apply when it receives a packet that does not indi-
cate the site being requested (e.g., a TCP SYN packet).

We can address this problem if we can force the client
to inform the CDN server which site is being requested
when sending the first SYN to establish a connection.
One simple way is to encode the site information in the
IP address returned by the request router. Specifically,
the request router responds with an address whose net-
work portion contains the true network address of the
CDN server, but the host portion contains an encoding of
hsite; server idi.

For example, if the CDN server to contact for site
A is 192:19:1:13, the request router may respond with
192:19:212:9, where the network address, 192:19:0:0=16,
is the same but the host portion of the address, 212:9, is
encoded information about the site A and the server id.
When the client sends an initial SYN packet, the packet
will be routed to the 192:19:0:0=16 subnet where the CDN
server cluster resides. At the entry point, the packet is
switched to the correct server using a switch (e.g., a fast
NAT box or layer-4 switch), which typically performs
load balancing across the CDN servers. In this scheme,
the switch forwards the packet to the CDN server based
on the hsite; server idi encoding, and the server can
compute the hash function to decide if the packet is legiti-
mate. Alternatively, the CDSP may co-locate the hashing
functionality at the switch to filter out bogus packets ear-
lier. This scheme is appealing in that it is transparent to
the client, and is applicable to CDSPs who deploy a few

clusters of servers in each region.

VI. DISCUSSION

Security vs. performance trade-offs: In most systems
security features come at the cost of degraded perfor-
mance, and our proposed DDoS countermeasures for
CDNs face a similar trade-off. As described in Sec-
tion IV, the hash-based request routing scheme is unlike
a standard CDN request routing algorithm that chooses
the optimal server based on network or server load, or
network proximity. Rather, we assume that each CDN
server within a given region provides roughly equivalent
performance for clients assigned to that region. To
allow further optimization within a region, the approach
could be modified to use weighted hash functions, for
instance, where the weights are determined using con-
ventional request routing metrics. However, if the request
routing function exhibits some predictability based on
performance-related information, it may increase the
vulnerability of CDN servers to attack. Similarly, the
site allocation strategy presented in Section V potentially
reduces the performance of an individual Web site by
assigning it to fewer CDN servers.

CDN server distribution and footprint : The size and
distribution of the CDN influences the effectiveness
of our DDoS countermeasures. The mechanisms we
propose are directly applicable to large CDSPs which
currently operate thousands of CDN servers distributed
across many networks. On the other hand, if the CDN
is composed of a few large regions, each containing a
small number of CDN servers, it may be impossible to
find a site allocation that provides sufficient Web site
isolation. Similarly, the additional protection afforded by
the hash-based request routing is significantly reduced
with a small number of servers. The applicability to small
CDNs may be improved, however, with the emergence of
CDN peering in which multiple, administratively separate
CDNs are combined to create a larger virtual CDN with
increased reach and distribution.
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VII. CONCLUSION

Recent work on countering DDoS attacks typically
has focused primarily on attacks targeting a centralized
server location or network resources. Increasingly, how-
ever, high-profile sites are distributed using CDNs. While
CDNs, owing to their distributed structure, promise better
resilience to DDoS attacks, the shared nature of the CDN
infrastructure introduce unique challenges. In this paper,
we proposed two mechanisms to significantly improve the
resilience of CDN-hosted Web sites and CDN servers to
DDoS attacks: (a) a hash-based request routing scheme
that enables CDN servers to effectively distinguish attack
traffic from legitimate requests, and (b) site allocation al-
gorithms, based on coding theory, which guarantee a min-
imum level of availability of the sites that are not directly
under attack. Together, these schemes improve the re-
silience of CDN-hosted Web sites, and complement ex-
isting techniques used to counter DDoS attacks. Several
issues remain to be addressed in future work. For exam-
ple, mechanisms are still needed to secure request routers
from attack. Also, a CDSP may wish to support multiple
levels of service, or to handle cases where some sites re-
quire more or fewer servers. Although the direct relation
to codes is not valid, we are developing allocation strate-
gies for multiple classes of service using codes.
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