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Abstract— This paper addresses the challenge of bridging the seman-
tic gap between the rich meaning users desire when they query to locate
and browse media and the shallowness of media descriptions that can be
computed in today’s content management systems. To facilitate high-level
semantics-based content annotation and interpretation, we tackle the prob-
lem of automatic decomposition of motion pictures into meaningful story
units, namely scenes. Since a scene is a complicated and subjective concept,
we first propose guidelines from film production to determine when a scene
change occurs. We then investigate different rules and conventions followed
as part of Film Grammar that would guide and shape an algorithmic so-
lution for determining a scene. Two different techniques using intershot
analysis are proposed as solutions in this paper. Further, we present differ-
ent refinement mechanisms such as film punctuation detection founded on
film grammar to further improve the results. In addition, the refinement
techniques demonstrate significant improvements in overall performance.

I. INTRODUCTION�
OWERFUL computing infrastructure and high capacity
storage devices are spurring digital media archival for

reuse, which in turn has stimulated the need for effective content
management for instant access, search, and browsing. Content
management requires developing tools that enable annotating,
indexing, cataloguing, and ultimately understanding unstruc-
tured video data. The core task is to structure streams of data
and determine their associatedconceptual descriptions in an ef-
fective and meaningful manner. The first problem is therefore
the identification of the required structure in a media stream and
enablement of its automated extraction.

Motion pictures, like other video genres are constructed from
shots, which are contiguous sequences of frames taken by a sin-
gle camera. A large body of literature has been devoted to the
problem of shot boundary detection using color, edges, object
correlation and motion cues, singly or in combination. While
fundamental and essential, shots in film are analogous to let-
ters or words in written language (depending on their length and
complexity), they convey little semantic information in isola-
tion. Most meaningful information is embedded at a higher level
of film structure, known as scenes or story units, which reflect
the aggregation of multiple shots revolving around a single dra-
matic person, incidence or location. Numerical statistics may be
useful here. On an average, a film contains around 2000 shots
and 50 scenes, a complexity reduction at a factor of 40, a number
that humans can deal without strain. The high-level scene struc-
ture reflects the dramatic and narrative structure of the film, as it
reflects many film making decisions that are made such as char-
acter appearance, background setting, camera placement, sound,
music, pace, mood. and so on. Although, the recovery of this
level of structure is a challenging problem, it is the first step
toward greater semantic understanding of the film, and a crucial
endeavor in bridging the semantic gap [1] that beleaguers much

of today’s content management systems. In addition, segment-
ing the film into scenes will help create compact film summaries
and enable meaningful nonlinear navigation of the film.

Content annotation at a scene level will not only provide the
connections between shots that compose the scenes in terms of
concepts that appear to unite the shots, but also highlight the
progression of changing content in the scene in terms of dy-
namical aspects of concepts that differ from shot to shot. The
MPEG-7 standard [2] provisions for both such higher level de-
scriptions, where, for example, a Video Segment DS can be used
to describe a scene.

For the purposes of this paper, the problem of extracting
scenes becomes the problem of locating boundaries between
scenes. The latter implies that we determine whether a scene
boundary occurs across two groups of shots (a group may con-
tain just a single shot) and this definition is followed throughout
this paper. Since scenes are composed of many shots, the detec-
tion of scene boundaries requires high-level concepts connecting
sequences of shots and between shot analysis.

We propose two approaches to extracting scene boundaries
using only visual content. The first one is an novel approach
based on multi-resolution edge detection on the � , � , and 	
shot signals inspired by [3]. The second technique is based on
a neighborhood visual coherence measure at each shot bound-
ary. We also propose a new shot similarity measure that takes
similarity of colours into account in the formulation of color co-
herence. Lastly, we exploit Film Grammar to devise ways to
further improve the results in four different ways.

The novelty of our work lies in its use of film grammar as
the foundational underpinning. First, to establish where scene
changes occur, we use the guidelines from film grammar for
scene composition. This enables us to set up ground truth that
is verifiable and easily replicable. Second, to define and refine
the algorithms, we draw insights from rules and techniques that
film makers use for scene construction. Lastly, we analyse the
errors in the context of film production and this gives us useful
insights into the limitations of colour based methods.

The outline of this paper is as follows. In Section 2, we de-
scribe previous work. Section 3 discusses how the scene def-
initions in film literature can be adapted to set up a consistent
ground truth. Section 4 explains the concept of Film Gram-
mar for scene composition. Section 5 describes features used
in our techniques. Our first edge based approach is described
in Section 6. Section 7 presents shot neighborhood coherence
method. Section 8 discusses different techniques for further im-
provement of the results. Experimental results and their analysis
are presented in Section 8. Section 9 concludes this paper.
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II. PREVIOUS WORK

There are two major trends in using visual information for
scene boundary extraction. The first trend groups shots into dif-
ferent clusters and interprets the temporal ordering of elements
from each cluster [4], [5], [6]. Techniques from the second
trend [7], [6] develop a memory viewer based model which is
either causal, finite or non causal infinite to form a shot coher-
ence measure based on shot recall ability and scenes are detected
by searching for local minima on this coherence curve.

The problem with techniques from the first trend is that they
critically depend upon clustering parameters (threshold, num-
ber of clusters), as clustering is the first step in this technique.
Clustering also inhibits the ability to visualize the progression
across shots which would be useful in locating scene bound-
aries. Techniques from the second trend requires accurate lo-
cal minima detection from a rather noisy signal (due to many
parameters involved in computation, shot length, spacing, etc)
which would be difficult. Further, this model rather draws from
the guidance on the subjective perception of viewers, as opposed
to being based on how scenes are constructed using cinematic
devices by directors.

Observing that a change in audio signal is closely associ-
ated with the boundaries of story units, several research groups
have recently developed algorithms for detecting scene bound-
aries that incorporate both audio and visual information [8], [9],
[6]. Generally, audio is segmented and often classified into mu-
sic, speech, silence and environmental sounds. The position
and type of audio segments are interpreted in relation to visual
changes, to decide whether it strengthens or reduces the possi-
bility of the current shot being at a scene boundary.

Film Grammar has not been systematically exploited in pre-
vious work in high level segmentation of video streams. [10]
suggests the use of different editing cues to generate meaning-
ful semantic decompositions of streams. [11] proposes a multi-
modal rule based approach. They first identify local rules about
shot transition, shot repetition, editing rhythm; and then con-
struct scenes, or ‘macro-segments’, by combining rules.

Many high level video segmentation techniques exploit spe-
cific characteristics embedded in highly structured video do-
mains such as sports and news casts. [12] and [13] have pro-
posed a multimodal mechanism for segmenting news program
into reported news stories that correlates various video, audio,
and close-captioned cues to detect when a story segment occurs.
Similar work is reported in the Informedia Project [14]. These
techniques are too domain oriented to be carried over to films.

In our survey of existing work, we discovered that most of the
reported algorithms are not tested on a significant and compre-
hensive test set. Some are tested using TV programs in which
the general definition of film scene would no longer be appli-
cable. Although in this work we only focus on contemporary
mainstream color motion pictures, we aim to address the issue
by constructing a large data set and show comparative perfor-
mance results from the two techniques proposed. This is an
essential stage before any significant conclusion based on the
performance statistics can be inferred. Furthermore, we analyze
the errors and examine them in the context of film production
techniques, which gives useful insights into the limitation of any
color based method.

III. ON SCENE DEFINITION

The term ‘scene’ is borrowed from the French classical the-
ater that had a precise beginning and ending corresponding to
the arrival and departure of characters [15]. As nonlinear film
editing and complex camera movement opens up opportunities
for better modeling of causal and parallel nature of film events,
the term, while still being used widely in the film literature, has
lost the precision of its meaning. One definition of film scene is
given as, “In the strictest sense, a scene is defined as a section of
a motion picture which is unified to time and space. It is made up
from a series of shots from varying angles and is usually filmed
in one session. As a unit of language, the scene is intermediate
between a shot and a sequence, being a larger unit than the first
and smaller unit than the latter” (The Film Encyclopedia) [16].

Sequence

Shot

Scene

Stream

Fig. 1. Syntactic structure of films

As we seek a computational approach to detecting boundaries
between scenes, there should be a mechanism to set up ground
truth such that it is verifiable, replicable and widely accepted.
This issue has not been addressed in the previous work except in
[6]. [6] defines computable scenes as containing “long term con-
sistency of chromacity, lighting condition and ambient sound”.
In our view, it is more appropriate to define scenes from the film
maker’s viewpoint and study cinematic devices to design an al-
gorithmic solution. We use the following rules as guidelines to
set up the ground truth and define scenes in our work:
1. When there are no two interwoven parallel actions, a change
in location or time or both defines a scene change (e.g., a moun-
tain shot sequence to a underwater sequence).
2. An establishing shot (e.g., a shot of New York city preced-
ing a dialogue), although maybe different in location to its cor-
responding scene, is considered part of that scene, as they are
unified by dramatic incidence.
3. When parallel actions are present and interleaved, and there
is a switch between one action to another, a scene boundary is
marked if and only if the duration of the action is shown for at
least 30 sec. The reasoning is intuitive. When an action is briefly
shown, it serves more as a reminder than representation of any
significant event. This also means that the supporting action
may never make a scene, while the dominant action would be
broken into smaller scene units. For example, during the training
scene in The Matrix, a few short shots are inserted to show group
members watching through a computer (i.e., a different locale),
and these shots should not be considered making up a new scene.
4. A montage sequence involves “dynamic cutting”, where
shots may containing different spatial properties are rapidly
joined to convey a single dramatic event, forming a single scene.
For example, in order to convey the desperate effort of Carolyn
Burnham to sell a house in The American Beauty, the film maker
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joins many different shots of the character showing different
customers, different parts of the house. This is also common
in dream/flashback sequences (12 Monkeys, Sleepy Hollow)

IV. FILM GRAMMAR FOR SCENE COMPOSITION

Film Grammar is defined in [17, p.2] as being comprised of
a body of ‘rules’ and conventions that are “the product of ex-
perimentation, an accumulation of solutions found by everyday
practice of the craft”, and results from the fact that films are
composed, shaped, and built to convey a certain story. There-
fore, understanding Film Grammar is essential to understanding
the film data under investigation.

The fundamental assumption in all visual aspect based scene
detection algorithms is that shots within a scene exhibit higher
visual similarity than those across scenes. This is inherent in the
scene definition which generally requires shots in a scene to be
homogeneous in space. However, the film maker can easily con-
trol the colors to be included/excluded in the scene by changing
the camera angle. Similarly, she can minimize or emphasize a
particular color in the scene by moving the camera backward
for a long shot or forward for a close-up. Therefore, by control-
ling the the camera alone, the film maker could easily falsify the
above assumption about color homogeneity. Fortunately, there
are certain rules, or “structural elements” as termed in [18], that
film makers use to craft a series of shots into a unified scene,
that would ensure that the visual similarity assumption is still
valid. The two most common structural elements are Separation
and Familar Image as described by Sharff in his investigation of
cinesthetic impact [18]. Separation is the arrangement of shots
showing subjects individually and interleaving, creating the shot
pattern ...ABABAB.... This contains but is not limited to shot-
reverse-shot dialogue scenes. Separation is used widely, since it
is capable of creating intimate relationships between characters.
In addition, in separation, any action involving motion should
take place while the characters are involved in the screen, min-
imizing abrupt visual changes. For example, a character cannot
be in a different corner of a room the next time we see him, even
though he had enough time to walk to new position while an-
other character is being shown. The familiar image is an element
of structure in which a picture reappears in a film with rhythmic
frequency with approximately the same composition and fram-
ing [18]. It can be distributed throughout the film to create the
effect of recall. Within a scene, it functions as a pivot image.
Separation and familiar image are among the factors motivating
the computation of shot neighborhood coherence discussed later
in this paper.

Further, it is well understood that color plays a important role
in denoting/connoting a certain character, time, setting or mood
[19]. Therefore, transitions between scenes, essentially involv-
ing changes in time and space, are often associated with changes
in characters and mood, resulting in great visual changes. In ad-
dition, to reflect certain moods or themes, film makers may de-
sign the color for the scene using a mono-chromatic design, or
a limited palette, which emphasizes a single color, varying only
in hue or saturation [20]. This technique will essentially reduce
the color differences between shots within a scene. However, a
note of caution should be made here that when this technique is
used in a larger scale or throughout the entire movie, it would re-

duce the scene boundary detection rate, as the visual distinctions
across scenes is reduced.

In addition to reinforcing the visual and dramatic unifica-
tion of all shots within a scene, film devices in entering/exiting
scenes are deliberately placed by the film maker in order to de-
liver extra meaning to the viewer. These devices are termed as
‘film punctuation’ [17]. According to Arijon, separation be-
tween sequences, pauses in narration, and stress of a passage
in films are achieved by editing, camera movement and object
movement, either alone or used in combination [17]. In this
section, we only discuss devices that are computable. The pop-
ular device for denoting a time transition between scenes is fade
out/fade in. A fade is a gradual shot transition in which the im-
age gradually darkens and is replaced with another image which
fades in or begins abruptly. White out and color fades are occa-
sionally used as an alternative to ordinary fades. Other gradual
transitions such wipes and dissolves can also be used to to con-
nect two sequences isolated in time and/or space. Dark areas
can also be used as an alternative to gradual shot transition de-
vices. In this technique, the camera can pan or track from behind
a dark area that fills screen and then cuts to the similar open-
ing device. According to Arijon, if all scenes begin abruptly,
undue emphasis would be placed on them. It is better to be-
gan neutrally and then move on to the main event, which can
be achieved by moving the character or the camera. The actor
body may block the camera lens and then start to move away
disclosing the scene. Alternatively, the camera frames an object
in silhouette that blackens the screen completely and tracks to
the side to reveal the new scene behind. Since these punctua-
tions denote scene changes, they can detected and merged with
the list of scene indices detected by other methods.

We employ these guidelines in devising mechanisms that im-
prove the results of the proposed automatic scene extraction
techniques.

V. FEATURE EXTRACTION

This section describes color features used in our work and
how these features are efficiently computed for each shot and
segments of shots from individual keyframes.

A. HLS Color Space

For this work, HLS color model, rather than RGB, becomes
a natural choice, since it better models human perception and
is commonly used in art and psychology literature. HLS color
model comprises of Hue ( 
 ), Lightness ( � ) and Saturation ( � ).
According to [21], in our objective perception of color we can
detect three basic color sensations, which are also referred to as
color attributes. These are: (1) hue; (2) saturation, or chroma;
and (3) lightness, or value. Hue describes the color itself such
as blue, red, green or yellow. Saturation or chroma describes the
color richness, the color strength. Since white, gray and black
have no chroma, they are called achromatic. Lightness indicates
how light or dark the color would appear.

We quantize the HLS space into 12 bins of hue, 5 bins of
lightness, and 4 bins of saturation. All colors with the first and
last bin of lightness are combined as black, and white respec-
tively, while all colors with first bin of saturation form 3 differ-
ent gray levels, depending on their lightness. We have a total of
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color palette.

B. Temporal normalization scheme

Shots have been long recognized as the fundamental unit for
video sequence analysis. In our work, we use algorithms dis-
cussed in [22] without dissolve detection, as the number of dis-
solves detected is small compared to the number of false pos-
itives produced by high motion. Feature extraction at the shot
level is common in video indexing and retrieval literature. In this
section, we describe a simple, yet effective method, for comput-
ing color features for shots or sections of many shots. We can
model the content of a shot by taking the average of all frames
within the shot. However, this method is computationally ex-
pensive considering the average duration of a film is around
200000 frames (at 25fps). Alternatively, we can compute the
color content of a shot based on its representative frames ( * -
frame). The simple technique of selecting the first, middle or
last frame of a shot as an * -frame may not effectively approxi-
mate the content of a shot due to object and camera movement.
It is desirable to extract * -frames in a manner such that the num-
ber of extracted frames is proportional to the degree of visual
change within the shot. The following technique can meet this
requirement: Assume +-, , +%,/.�0 ,... +-1 are 2 �435�6

frames
making up a shot 7 , * -frames +98;: , +-8=< , ..., +98=> are selected as:? 0 �@3

, and for all
&ACBEDGF��H

, + 8=IKJ : is the first frame
after + 8=I such that L � + 8=IMJ :ONP+ 8=I �/QSR

with L � +%T$NO+VU � being the
histogram difference measure between frame +9T and +VU . If the
shot is static, we only need one * -frame, the first frame of the
shot, whilst we require some * -frames in the middle if the shot
exhibits a significant level of visual change. Let 7�W denote the
length of shot 7 and

?�X .Y0 � 2 . The color feature Z of this shot
can be normalized from these * -frames as follows:

7\[ �5] XTK^�0 + [ 8=I=_ � ? TK.�0 � ? T �7 W
where + [ 8 I is the measurement of frame

? T . In this scheme, each* -frame accounts for the visual content of the shot from its po-
sition to the position of the next * -frame. Similarly, the featureZ of a segment ` comprising of consecutive shots 7ba .�0 , 7�a .dc ,
..., 7 a . X can be computed as:

` [ � ] X TK^�0 7 [ a .\T _ 7eWa .dT] X TK^�0 7 W a .dT
Essentially, this scheme weights the color content of a frame or
shot by the duration it remains in effect.

The averaging of f when computed for a shot needs to take
into account the circular arrangement of f values. The vector
addition operation appears to be an adequate approximation for
this computation. This operation projects f values on both both
the g - and h -axes, computes the averages with respect to these
axes individually and finds the resulting average value of f us-
ing the i�jPkmlOion function:

+/p � ��q�r�ts i�jPkmlOion)u ]wv TyxPz n �${ pT �] v Ty|;} x �${ pT �t~

where
{ T is the

B
th color in our quantized color palette. Sincef , � and � values are different in domain ranges, they need to

be normalized before they can be combined together effectively.
We normalize the signals using first and second order moments.
For example, the value of f for a shot

B
is normalized as.�+/pT ��+ pT ��� p� p N

where
� p and � p are the first and the second moments of + p

computed for every shot in the movie.

VI. EDGE DETECTION BASED APPROACH TO SCENE

EXTRACTION

Changes in the overall color atmosphere in a film will result
in changes, together or individually, in the f , � , � histograms
of associated shot sequences. These color transitions can be
detected using an edge detector such as the one based on De-
riche’s recursive filtering algorithm using Gaussian kernels [3].
This is a multi-scale edge detector that is parameterized by � ,
which determines the slope of target edges in the signal. Larger� detects smaller slopes of the target edges and vice versa. Two
thresholds ( � , and - � ), one negative and one positive, can be ap-
plied to the output from this algorithm, known as the edge sig-
nal, to locate true edges: the higher the threshold, the larger the
edges detected, and vice versa. The section above/below these
thresholds means a negative/positive change in the original sig-
nal. Since there are three different edge signals in our feature
set, one for each f , � , and � signal, they need to be combined.
There are two possible ways to do this. In the first method,
edges are detected from each of these signals, they are individ-
ually thresholded and the output edges are then combined. The
second way is to combine edge signals from the three features
first before applying thresholds to extract edges. We chose the
latter because it allows accumulation of smaller scale changes
in f , � and � . For each � and shot index

B
, accumulated edge

signal � pV� �T is computed from individual edge signals � p T , � �T
and � � T as follows:

�dp����T � � �V���/� �ep� � � �'�"���V� �\�� � � �'�����m� ���� � � �'�
The weighting reflects different degrees of contribution of

changes in f , � and � to a scene change. For example, if �
changes contribute less to the scene change compared to f ,

�
should receive a smaller value than

�
. Currently, with the ab-

sence of any specific statistical information about their propor-
tional contribution, we set all weights to 1. Then, � pV���T � � � is
thresholded to extract edges.

Fig. 2 shows the detected edges on f , � and � signals for
a segment of movie, Twelve Monkeys. Each bar indicates the
temporal extension of the detected edges.

Visually, a shot should be more similar to other shots in the
same scene than to shots in a different scene. Therefore, the
exact location of a scene transition should maximize average
inter-differences between every shot of the previous scene and
every shot of the next scene. For a detected edge extending from
shot 7\, to 7d1 , the exact scene transition position � ��3 NP2 � , (i.e.,
the index of the first shot of the next scene) in terms of shot
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Fig. 2. Detected edges indicating scene tranistions on average � , � and � .

indices can be determined as:�-�$�&���\� �6¡£¢%¤¦¥E§M¨©«ª¬®ª�¯±° ¬®²e³´Kµ © ° ¯¶Pµ ¬�· �®¸ ´ �=¸ ¶ ���¢b¹��)�;���º¹&¢d»½¼"�¿¾ �
where · is the similarity measure between two shots as defined
in the next section.

VII. SHOT NEIGHBORHOOD COHERENCE APPROACH

Measuring the visual similarity between shots is the basis of
most scene boundary detection techniques that use visual con-
tent. However, these techniques have failed to handle at least
one of the following issues adequately, and in particular, the first
one:
1. The similarity between two colors should be modeled as a
continuous, rather than a discrete value. Shots within a scene
may exhibit different lighting or shading characteristics, due to
different camera shooting angles and overall motion.
2. In fast motion scenes, or slow disclosure shots, only a part of
a shot is similar to another shot of the same scene. Therefore, we
should use as many frames as needed to evaluate the similarity
between shots. This is previously suggested in [23] in terms of
the reduced frame set.

We address the first issue by moving away from traditional
image comparison using bin-wise histogram comparison, which
does not take similarities between colors into consideration. A
technique for comparing histograms incorporating the similarity
information between colors presented in a quadratic form is pro-
posed in [24]. We propose a new metric, which mimics the pro-
cess of measuring the similarity between two images by grad-
ually excluding regions with highest similarity. We first form
the color similarity matrix À based on the Euclidean distance be-
tween colors in Á , Â and Ã space. Moreover, we set the distance
to INF when the Á component of two colors are more than two
hue levels apart. This is to confirm the fact that it is neither pos-
sible to obtain both blue and red colors for the same object or
background region by changing the camera angles nor to have
both red/blue shading of the same color. Other values are nor-
malized to [0-1]. Let Ä ´PÅ ÆÇ denote the bin Æ of frame Ä ´ , and

À;ÈoÉ , the similarity between colors Æ and
¢
. We define component

similarity between two frames Ä ´ , Ä ¶ and two bins Æ �P¢ as:ÊV� Ä ´ � Ä ¶ � Æ �P¢��b� À ÈoÉ ¥E§M¨Y� Ä%Ë Å ÌdÇ � ÄYÍ Å Î;Ç �
The overall similarity of two frames can be calculated as the
recursive sum of individual component similarities:

· � Ä ´ � Ä ¶ �m�ÐÏ · � Ä9Ñ´ � Ä9Ñ¶ �\»�ÊV� Ä ´ � Ä ¶ � ÆyÒ ��¢ Ò �ÔÓd� ÆyÒ ��¢ Ò �Õ
otherwise.

with� Æ Ò ��¢ Ò �m��¡Ö� Æ ��¢��%¤���¥Ø×tÙ³=Ú�Û�Ü ¬®Ú�Ý À ÈtÉ �Þ��Ê�� Ä%Ë � ÄYÍ � Ì � Î ��ß¦à ¾
Ä Ñ´ Å ÆáÇ � Ï Ä ´ Å ÆáÇ ¹�¥E§K¨\� Ä ´ Å ÆÒ'Ç � Ä ¶ Å ¢ Ò'Ç � if Æ � ÆÒÄ ´�Å ÆáÇ otherwise.

Ä Ñ¶ Å ¢ Ç �âÏ Ä ¶ Å ¢ Ç ¹&¥ã§K¨\� Ä ´ Å ÆÒ'Ç � Ä ¶ Å ¢ Ò'Ç � if
¢m��¢ ÒÄ ¶ Å ¢ Ç otherwise.

This means that after taking the component similarity of the
two most similar colors, the component similarities of the re-
maining part of the two histograms are recursively extracted un-
til there does not exist any pair of colors from each histogram
that has component similarity greater than zero, i.e., two colors
are not similar at all or the bin size of at least one of the colors
is zero. The value of · is then normalized by the total number
of pixels of a frame. It should be noted that this measure is es-
sentially the conventional bin-wise intersection metric when À is
the identity matrix, that is:

· � Ä ´ � Ä ¶ �m�Hä Û ¥E§K¨�� Ä ´PÅ ÆáÇ � Ä ¶�Å ÆáÇ �Þ�
In order to handle the second issue, we formulate similarity

between two shots as the maximum similarity between any pair
of å -frames of these shots. In our å -frame representation,
the number of frames needed for each shot is proportional to the
magnitude of visual changes within the shot. If two shots are
static, only their first frames are used. On the other hand, during
a chase scene, many frames are used for each shot to adequately
cover the changing scene. Thus, · is given as:

· �®¸ ´ �=¸ ¶ �m� ¥Ø×tÙæyçéèdê=ë�ì�íê Ü æyçéî;ï"ë�ì�íï · � Ä-ð èdê � Ä-ð î;ï �
We then define the shot neighborhood coherence measure at

shot
¸ © as the maximum similarity · between neighborhood

shots preceding and succeeding this shot and within a windowñ . The low visual variance within a scene as well as the shot
repetition (separate, dialogue, familiar images) means that the
shots within a scene are highly coherent. On the other hand,
we are unlikely to find two similar shots between two scenes,
where the coherence between shots across the scene boundaries
is typically low. In our implementation, we use both the number
of frames and number of shots in defining the temporal window,
as it would cater to both long and short shots. The neighborhood
coherence at shot

�
is measured as:ò �®¸ © �ó� ¥Ø×tÙ´ ª�©9Ú ¶ Ü ¶ ª ´Môdõ · �®¸ ´ �=¸ ¶ �
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Missed shot indices present a major problem with this coher-
ence measure. This is illustrated in Fig. 3. Assume a gradual
transition is missed between real shot x and y which results in
the shot transition detector claiming shot b as the sequence con-
taining these two. Since both scene and shot changes happen
across x and y, these shots are likely to be visually distinctive
causing a ö -frame of shot b fall into the y part. This ö -frame
shares the same color characteristics with the following shots c
and d; therefore, the coherence level at b-c is high and no scene
change is detected. Similarly, no scene changes are detected be-
tween a-b either as the first ö -frame of shot b shares the same
visual characteristics with shot a. The issue would be resolved
by ignoring the immediate preceding shot in computing the shot
coherence, that is shot b not playing a part in measuring coher-
ence across shots b and c. A scene boundary, therefore, maybe
claimed between shot b and c. Doing this would increase the
noise level of the coherence measure and so we apply a larger
threshold. This is reasonable as both dissolves and wipes rep-
resent high time and space transitions in scale, and therefore,
connected scenes are usually visually distinctive.

a b c d

x y

Fig. 3. Missed shot indices.

VIII. REFINEMENT TECHNIQUES

The identification of edges/thresholding shot coherence sig-
nal would return the majority of scene indices. They, however,
do not specifically cater for punctuation devices such as those
described in Section IV. They also contain many false positives
due to fast visual changes across shots due to high camera move-
ment, scene activity or complex film editing. The following sub-
sections will discuss how these false alarms can be eliminated by
extending the temporal window, and by using tempo and further
color analysis. The data for learning parameters in this section
are generated from ground truth of 7 movies (although 2 are not
used in the final performance analysis).

A. Detecting film punctuations

We use a technique proposed in [22] to detect fades. This
method first detects monochrome frames as significant fade
cues. It then examines the luminance means and variances in
the neighborhood frames to determine if a real fade is present.
We observe that whilst the algorithm described in [22] can de-
tect dissolves adequately in television programs, it is sensitive
to high tempo segments in motion pictures and therefore would
cause many false positives when compared to the number of
correctly detected dissolves. Therefore, the dissolve detection
process is omitted. We have not evaluated any wipe detection
algorithm, so the wipe detection process is omitted as well.

The detection of other devices such as dark areas is done by
searching for all shots that have the mean and variance of the
lightness of the first or last frame below a threshold. Appar-
ently, dark scenes contain low lightness as well. Fortunately,

dark night scenes are often presented as a mixture of black
and vibrant, highly saturated dark colours. For example, deep
blues or greens are often used to convey the exterior night atmo-
spheres. Therefore, after discarding the black component, night
shots generally have higher average saturation than dark frames
inserted for film punctuation purposes. As one of the primary
uses of this technique is to create suspense (the viewer is left
waiting for something to happen but does not know when [17]),
we can set a lower bound on the duration of such shot. If the first
or the last frame of a shot is detected as a punctuation frame, the
current or the next shot respectively is considered as the start of
a new scene.

As evident from the results reported in section IX, these punc-
tuation frames can be reliably detected and are highly indicative
of scene changes. The punctuations detected are merged with
the list of indices output from the earlier step of the algorithm.

B. Relaxing the temporal window

This technique is inspired from the work described in [23].
In computing shot neighbourhood coherence, the temporal win-
dow is kept small, so that all shorter scenes can be detected, es-
pecially when they are succeeded and preceded by scenes with
similar visual characteristics. This means some actual scenes are
broken down into many units resulting in an over-segmentation
of the film. For many applications, it is more beneficial to
have several units representing an actual scene, and to present
all these units, rather than to have one unit representing several
scenes, as these scenes cannot be recovered in subsequent anal-
ysis [23]. Many falsely detected boundaries using shot neigh-
bourhood coherence can be eliminated by extending the tem-
poral window, thus countering the fixed-window-size limitation
of the approach. Shot neighbourhood coherence is computed
for each shot at each scene boundary using the extended tem-
poral window. The new temporal window extends to either the
next detected scene boundary or 10 shots (depending on which
is lesser) on either side of the current shot. If the coherence
level is greater than a threshold, that scene boundary is deemed
as a false positive. If all scene boundaries are detected in the
first step, the relaxed window for each shot at a boundary can
extend from the first shot of the last scene to the last shot of the
succeeding scene. However, if a scene boundary is missed, it
would result in the window being extended too much either in
the forward or backward directions. This problem is tackled by
imposing a rather large threshold on the maximum length of the
extended window. This also reduces the amount of computation
required.

A C DB

W Y ZX

Max window size

Fig. 4. Temporal window extension

An illustration of how the window extension mechanism is
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used is shown in Fig. 4, assuming A, B, C and D are real scene
boundaries; W, X, Y, and Z are boundaries claimed by the pro-
posed algorithm. W, X and Z are correctly detected as A, B and
D, while C is missed and Y is a false alarm. Extended tempo-
ral windows are denoted by the sequence at the bottom. When
we extend the temporal window of shots around Y, it is more
likely to find similar shots and Y would be eliminated. Note
that without applying a large threshold on maximum extension,
the window around X can be extended to D and we may find
a shot within CD similar to a shot within AB and X would be
incorrectly removed.

C. Tempo analysis

As mentioned earlier, formulations for a pace/tempo function
based on shot length and motion are proposed in [3]. The un-
derlying basis for a tempo function is that a film sequence with
fast editing and/or high motion tends to be perceived as being of
high tempo and vice versa. Fast tempo sequences often involve
dynamic visual contents causing low shot neighborhood coher-
ence. Therefore, more false alarms occur during high tempo
segments of the film. In addition, it is unlikely that the film
maker juxtaposes two scenes of high tempo in succession, es-
pecially when their visual contents are not highly distinctive, as
the narration may confuse the audience. Therefore, a detected
scene boundary would be deemed as a false alarm if sequences
preceding and succeeding it have both high tempo and notable
visual similarity. This argument is supported by Fig. 5 plot-
ting the tempo similarity vs histogram ‘similarity’ across sample
scene indices. The tempo similarity here is measured as the min-
imum (intersection) of two tempo values. When color similarity
is greater than 0.6, few two successive scenes have tempo simi-
larity greater than 0.1. This information can be used to eliminate
these false positives.

0
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Fig. 5. Tempo Similarity and color similarity across sample scene indices

The initial tempo function proposed in [3] is as follows:÷�ø$ù\ú û�ü«ýeþ�ÿ�� þ �� þ ��� ���� ÿ�ý �� �
�

where 	 refers to shot length in frames, 
 to motion magnitude
and

ù
to shot number. The motion magnitude is calculated for

each shot as the aggregation of the absolute value of the sum of
the pan and tilt value for consecutive frame pairs of that shot.
The 1st and 2nd statistical moments (mean, ý and standard de-
viation � ) of shot length and motion magnitude are calculated
for entire film. We use a simpler version in our implementa-
tion, in which the shot length is normalized using the median

and the motion was calculated from intensity differences across
frames.

D. Analysis of high “impact” colors

Colors can function as indexical signs to denote or connote
the character, place and time [19]. It can also be used to add
excitement and drama [21]. Scenes such as blue flashing lights
of police car and colorful uniforms of a marching band illustrate
how colors excite us and/or dramatically intensify an event. Col-
ors can also be used as principal events such as projecting red
flashes over entire screen to express a character’s intense mo-
ments of rage or love. For maximum impact and comprehen-
sion, these colors tend to have high ‘aesthetic impact’, and is
sometimes denoted as color energy [21]. They are unlikely to be
associated with normal objects or backgrounds that are common
from scene to scene. Two segments containing these colors are
often semantically associated, and if consecutive, they are often
part of the same scene. In fact a prior continuous value can be
assigned to each color to denote its possibility as a dramatic el-
ement in the scene. Fig. 6 shows the unequal distribution of
colors across scenes. Each color in our pallete is represented
by a circle with the radius representing the average amount of
that color across scene indices. Five circles lying on the x-axis
represent five achromatic colors: black, white and 3 gray scales.
The y-coordinate indicates the Hue of each color from Red (1) to
Purple-Red (12). The x-axis indicates three lightness levels cor-
respond to 3 segments (1-3), (4-6) and (7-9). In each segment,
saturation increases from left to right. As can be seen from the
figure, the most common colors across scenes are black, grey
and other earthy tones which are common in our living envi-
ronment. Blue/Green is also common as it represents the night
color. It rarely occurs that the same highly saturated colors are
contained in adjacent scenes.
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Fig. 6. Average across scene color intersection

The colors mapping to circles with radius smaller than a
threshold are filtered to form the list of high ‘impact’ colors.
Let �� denote the maximum occurrence of color � across a set
of scene indices used as training data. Successive scenes are
merged if the amount of color � in both are more than

ü � � .
ü

should be greater than 1 to avoid overfitting the training data.
This approach would be further improved if we would develop
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a valid probability model of color occurrence across scene in-
dices.

An important note is that this technique needs to be used se-
lectively, since somearthouse movies, animated films may pos-
sesses a great deal of highly saturated colors.

IX. EXPERIMENTAL RESULTS

As stated previously, we limit our research to contemporary
mainstream, color films. This means B&W, early colored and
arthouse films are not included in the data set. However, the
styles and characteristics of a film are influenced, although not
determined, significantly by its genre. The wide selection of
movies of different genres would ensure the overall measures of
the performance of the algorithm are not biased toward a specific
movie kind. Therefore, we set up a data set consisting of 10 full-
length movies of all major genres including action (Act), hor-
ror (Hrr), science fiction (Scifi), adventure (Adv), thriller (Thrl),
fantasy (Fts), family (Fml), drama (Drm), comedy (Cmd) and
mystery (Mys). Basic information about each movie is repre-
sented in Table I. The genre classification is taken from The
Internet Movie Database Web site (IMDB) 1.

TABLE I

EXPERIMENTAL DATA AND GROUND TRUTH

Movie Dur(min) Scenes Genre

Star Wars I 134 97 Scifi/Adv/Act
The 13th Floor 100 65 Mys/Scifi/Thrl
The Matrix 136 60 Act/Thrl/Scifi
Sleepy Hollow 103 61 Fts/Hrr/Mys
Tall Tale 98 51 Adv/Family
Chameleon 120 46 Scifi/Thrl
12 Monkeys 130 68 Drm/Thrl/Scifi
The Mummy 124 52 Adv/Act/Hrr
American Beauty 121 74 Drm/Cmd
The Siege 115 72 Act/Thrl/Drm
Overall 1181 646 All genres

A. Performance statistics

Table II shows the final results of the edge based approach in
terms of number of boundaries correctly detected (Det), number
of missed boundaries (Miss), number of false alarms (False),
recall rate (Rec) and precision rate (Prec). The corresponding
results for shot neighbourhood coherence approach is presented
in Table III. A scene boundary index is considered correctly de-
tected if its extension was covered by one of the indices claimed
by the algorithm. Recall and precision (measured in percentage)
are calculated as 100*Det/(Det+Miss) and 100*Det/(Det+False)
respectively.

Overall, the shot neighborhood coherence approach yields
better precision and recall (86.3%, 79.2%) compared to the
edge based approach (78.7%, 73.9%). This also persists across
individual movies except for the recall values in The Matrix,
Sleepy Hollow and The Mummy and the precision values of
Chameleon, Tall Tale and American Beauty. The reason may
�
www.imdb.com

TABLE II

PERFORMANCE OF EDGE BASED METHOD

Movie Det Miss False Rec % Prec %

Star Wars I 77 20 38 79.4 67.0
13th Floor 46 19 11 70.8 80.7
Matrix 54 6 22 90.0 71.1
Sleepy Hollow 51 10 24 83.7 68.0
Tall Tale 40 11 14 78.5 74.1
Chameleon 38 8 8 82.7 82.7
12 Monkeys 54 14 18 79.5 75.0
Mummy 35 17 17 67.4 67.4
American Beauty 56 18 10 75.7 84.9
The Siege 57 15 18 79.2 76.0
Overall 508 138 180 78.7 73.9

TABLE III

PERFORMANCE OF COHERENCE BASED METHOD

Movie Det Miss False Rec % Prec %

Star Wars I 85 12 31 87.7 73.4
The 13th Floor 55 10 11 84.7 83.4
The Matrix 52 8 5 86.7 91.3
Sleepy Hollow 49 12 10 80.4 83.1
Tall Tale 43 8 17 84.4 71.7
Chameleon 43 3 10 93.5 81.2
12 Monkeys 63 5 17 92.7 78.8
The Mummy 33 19 11 63.5 75.0
American Beauty 67 7 16 90.6 80.8
The Siege 67 5 19 93.1 78.0
Overall 557 89 147 86.3 79.2

be that the colors of The Matrix, Sleepy Hollow and The
Mummy are tinted towards specific tones (grayish green, gray-
ish light blue, and earthy respectively). This lowers shot co-
herence across scenes in these movies. The normalization of
average � , � and � magnifies slight changes in color atmo-
sphere, hence allowing more indices to be retrieved by the edge
based approach. On the other hand, Chameleon and Ameri-
can Beauty contain a wide range of colors making the coher-
ence based method more sensitive to false alarms than the edge
based method, as the normalization of average � , � and � now
would suppress small changes in color atmosphere. This also
suggests that the coherence based method could be further im-
proved if such normalization processes were incorporated. The
highest results for the edge based approach are obtained with
Chameleon (82.7%, 82.7%), The Matrix (90.0%, 71.1%) and
American Beauty (75.7%, 84.9%). Similarly, the shot coherence
based approach performs best on Chameleon (93.5%, 81.2%),
The Matrix (86.7%, 91.3%), American Beauty (90.6%, 80.8%)
and The Siege (93.1%, 78.0%).

As the shot coherence based approach yields better results,
the remaining part of this paper is focused on this technique.
The improvements obtained for shot neighbourhood coherence
is shown in Table IV for all four refinement methods. Punctua-
tion detection would correctly add to the list of scene indices or
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increase false positives, while extending the temporal window,
merging high tempo segments and merging high dramatic seg-
ments may reduce the number of false positives or increase the
number of missed boundaries. As can be seen from this table,
the use of punctuation devices are rather common in film prac-
tice. Fades and dark frames alone are used at 10.7% (69/646) of
scene boundaries. The detection of film punctuation devices are
highly accurate. Only 7 false alarms out of 76 claimed devices
are found. Two of them are false fades, and the rest are due to
the fact that the dark areas did not signal a scene transition, but
only a pause in narration. The elimination of false alarms is also
highly effective. It eliminates 34% (78/(78+152)) of the original
false alarms. The accuracy rate of the elimination techniques
is 86.7% (78/(78+12)). On the negative side, the refinement
techniques seems to be counter productive when applied to The
Mummy which produces 3 false punctuation devices and elimi-
nates 4 true indices. This is due to the fact that a large part of this
movie is shot in a cave which is both very dark and earthy. These
dark sequences are sensitive to false detection/interpretation of
punctuation devices. On the other hand, due to the same dark
tones in all scenes in the cave, when the temporal window is ex-
tended, the probability of finding two shots from two adjacent
scenes with the same visual property increases, resulting in them
being incorrectly merged as the same scene.

TABLE IV

IMPROVEMENTS FOR THE COHERENCE BASED METHOD

Movies Punctuation False Elimination
Correct False Correct False

Star Wars I 4 2 8 1
The 13th Floor 10 1 7 1
The Matrix 9 0 6 0
Sleepy Hollow 7 0 13 2
Tall Tale 9 0 9 0
Chameleon 3 0 8 2
12 Monkeys 6 1 6 1
The Mummy 10 3 4 4
American Beauty 6 0 8 0
The Siege 5 0 9 1
Overall 69 7 78 12

B. Analysis of missed and false scene boundaries

It is useful to analyze the nature of missed scenes and false
alarms. This gives an insightful look into the strengths and limi-
tations of the algorithms and suggests further improvements. As
it is not practical to analyze all errors individually, broad catego-
rization of false alarms and missed scene boundaries is adopted
here.

False alarms are classified into six major types and the statis-
tics for each type is presented in Table V. The first type is due
to multi-angular camera shooting where the camera wanders
around a continuous space, and this is common in crowd scenes
or montage sequences. This accounts for more than half of false
alarms (79/147) and some may be explained as a change in loca-
tion at a finer resolution. Multi-angular cameras cause different
parts of the space being represented on the screen frame, and

therefore reduces the level of visual coherence between shots.
As different camera angles lead to differences not only in color
histogram, but also edge structures, textures etc, we consider
this kind of error as unrecoverable using visual features alone
without significant reduction of detection rate. Type II errors
are due to parallel actions with fast movement and fast inter-
leaving rhythm. These parallel actions are too short to reinforce
a scene change according to Rule 3 in our ground truth setting,
but the visual property of the scene has significantly altered next
time it is shown, resulting in low visual coherence. This type of
error in very hard to overcome even by incorporating other fea-
tures such as audio. Fortunately, they are less harmful in general
as they would be considered as correctly detected if the scene
definition would be loosened in some way. False alarms of type
III are due to the increase/decrease of shot distances leading to
a significant chromatic change between shots (eg. a master shot
followed by a close-up shot). These errors can be recovered by
a better visual similarity measure such as those incorporating
template matching, background segmentation, and/or detection
of shot distances. One possible way to measure the shot dis-
tance is to locate faces and their size in the shot. The fourth type
of false alarms is due to the use of multiple establishing shots
and/or clear separation of dramatic build-ups and main events.
These kinds of false indices are also not very harmful as they
carry some significant dramatic information of their own. Type
V errors are caused by false detection of punctuation devices and
should be identical to that of Table IV. The last error type in-
cludes the rest of false alarms but is generally due to the changes
of lighting and/or background without any changes in camera
angle or distance, etc. This kind of error can be perhaps recov-
ered by a more sophisticated visual similarity measure.

TABLE V

CATEGORIZATION OF FALSE ALARMS

Movies I II III IV V VI

Star Wars I 14 0 9 4 2 2
13th Floor 4 0 0 4 1 2
The Matrix 1 2 1 0 0 1
Sleepy Hollow 5 1 2 2 0 0
Tall Tale 13 1 2 0 0 1
Chameleon 3 0 2 3 0 2
12 Monkeys 11 1 0 1 1 3
The Mummy 6 0 0 2 3 0
American Beauty 9 3 3 1 0 0
The Siege 13 1 2 1 0 2
Overall 79 9 21 18 7 13

Missed scene boundaries are also classified into four major
types. The first one is due to the fact that two adjacent scenes do
not show any significant visual changes, taking human recog-
nition capability as the upper limit. This type of error is con-
sidered as unrecoverable using visual cues without causing a
large number of false alarms. Examples of this are scenes in
the cave in the Mummy. Type I errors account for the largest
portion of missed boundaries (35/89). The second type of error
is due to the inadequacy of our similarity measure and/or co-
herence model. For example, two scenes that are largely visual
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distinctive are merged into one, because there are two similar (or
deemed as being similar by our measure) shots in these close to
each other. In other cases, it may be that the size of our temporal
window is too large to detect a short scene enclosed by two visu-
ally similar scenes. This type of error is the second largest and
would suggest that a better model be developed. The type III
errors are due to missed transitions, often gradual ones, which
of course can be recovered by the help of reliable shot transi-
tion detection. The fourth type of error is a side-effect of Rule
3 in our scene definition. Consider a shot sequence of the form
..XYXYAX ABAB.. with (A,B) and (X,Y) are two interleaving
parallel actions. According to Rule 3 a boundary is not marked
between Y-A as the next shot after A is X. On the other hand,
a scene index is placed between X-A. However, this index is
missed as shot coherence between X-A is low due to the repeti-
tion of A shot. Fortunately, this only accounts for 2/89 missed
boundaries. Type V errors result from false elimination of ini-
tially detected scene indices and should be identical to that in
Table IV. Category VI includes the rest of missed boundaries.

TABLE VI

CATEGORIZATION OF MISSED BOUNDARIES

Movies I II III IV V VI

Star Wars I 3 2 4 0 1 2
13th Floor 3 4 0 1 1 1
The Matrix 4 2 2 0 0 0
Sleepy Hollow 4 3 0 1 2 2
Tall Tale 4 4 0 0 0 0
Chameleon 0 1 0 0 2 0
12 Monkeys 3 0 0 0 1 1
The Mummy 8 4 3 0 4 0
American Beauty 3 4 0 0 0 0
The Siege 3 1 0 0 1 0
Overall 35 25 9 2 12 6

Other important statistics regarding errors are that 19.7%
(29/147) of false alarms can be considered as correct bound-
aries if the scene definition would be relaxed to cater for all their
variance (for example, a scene change is marked even if the next
portion of two interwoven actions is short) and that 7.9 % (7/89)
of missed boundaries are removed if the scene definition is tight-
ened (for example, different parts of a cave are considered as a
part of a single ‘cave’ scene)

X. CONCLUSION

In this paper, we have addressed the problem of automatically
determining scene boundaries in motion pictures. We investi-
gate different rules and conventions used in Film Grammar that
would underpin and shape an algorithmic solution to this prob-
lem. We proposed two different techniques. The first is based on
an edge detection mechanism on color signals formed by nor-
malized average Hue, Lightness and Saturation computed for
each shot. The second approach estimates the coherence level at
each shot by computing colour similarity of neighborhood shots.
We proposed different mechanisms for further improvement of
the results from our scene detector including film punctuation

detection, temporal window extension and scene color likeli-
hood models. Final results show that our technique based on
the shot sequence coherence performs well and reasonably bet-
ter than color edges based approach. In addition, the refinement
techniques demonstrate significant improvements in overall per-
formance.
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