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Branch-and-Cut Proofs∗

Sanjeeb Dash
IBM Research Division

T. J. Watson Research Center
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Abstract

Branch-and-cut methods are among the most important techniques for solving integer
programming problems. They can also be used to prove that all solutions of an integer
program satisfy a given linear inequality. We examine the complexity of branch-and-cut
proofs in the context of 0-1 integer programs. We prove an exponential lower bound on the
length of branch-and-cut proofs which use 0-1 branching and lift-and-project cuts (called
simple disjunctive cuts by some authors), Gomory-Chvátal cuts, and cuts arising from the
N0 matrix-cut operator of Lovász and Schrijver. A consequence of the lower-bound result
in this paper is that branch-and-cut methods of the type described above have exponential
running time in the worst case.
Key words. Cutting planes, cutting-plane proofs, branch-and-cut proofs, proof complexity.

1 Introduction

Branch-and-cut algorithms, which combine linear programming based branch-and-bound with
cutting planes, are currently the most important methods for integer programming . Such
methods have been used with great success over the last decade in solving both specific combi-
natorial optimization problems – such as the traveling salesman problem – and general integer
programs arising in practical situations. Earlier, branch-and-cut implementations typically em-
ployed problem specific cutting planes (e.g., comb inequalities for TSP instances), but recently,
general cutting planes such as disjunctive cuts (Balas 1979), Gomory mixed integer cuts (Go-
mory 1960), and MIR cuts (Nemhauser and Wolsey 1990) have become important components in
branch-and-cut. See Balas, Ceria, Cornuéjols and Nataraj (1996), Bixby, Fenelon, Gu, Rothberg
and Wunderling (2000), and Marchand and Wolsey (2001).

Different types of complexity properties of branch-and-cut methods have been studied by
various authors. Three types of complexity issues which have recently been addressed are:

(i) Given an arbitrary point, how difficult is it to find a violated inequality from a given class
of cutting planes ?

∗This work was supported in part by ONR Grant N00014-01-1-0058.
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(ii) Given a class of cutting planes, what is the rank of the linear programming relaxation for
a problem with respect to the closure operation (for the class of cuts) ?

(iii) What is the worst-case time complexity of a given branch-and-cut method ?

See Cornuéjols and Li (2002), Caprara and Letchford (2002), and Eisenbrand (1999) for re-
cent work on the first aspect. See Eisenbrand and Schulz (1999), Goemans and Tunçel (2001)
and Laurent (2001) for studies of rank. Here we study the time-complexity of branch-and-cut
methods, and the sizes of proofs or certificates generated by such methods.

In spite of the many successful applications of branch-and-cut, such methods are unlikely to
have polynomial time-complexity as the integer programming problem is NP-hard. Some special
classes of branch-and-cut algorithms are known to have exponential time-complexity; however,
not many results of this type are known. Jeroslow (1974) showed that any branch-and-bound
procedure for the 0-1 integer program max{x1 |x1+· · ·+xn = n/2, x1, . . . , xn ∈ {0, 1}} where n is
an odd integer, requires at least 2(n+1)/2 iterations. Chvátal (1980) showed that every (LP based)
branch-and-bound procedure requires an exponential number of nodes for almost every problem
in a certain class of 0-1 knapsack problems. Gu, Nemhauser and Savelsbergh (1999) strengthened
Chvátal’s result by presenting a class of 0-1 knapsack problems such that any branch-and-cut
method based on lifted-cover inequalities requires exponentially many nodes. Chvátal, Cook and
Hartmann (1989) proved exponential lower bounds on the number of cutting-planes generated
by a class of (Gomory-Chvátal) cutting-plane algorithms for the traveling salesman problem;
their bounds are however exponential in the number of variables, but not in the number of
constraints. Pudlák (1997) provided the first true exponential lower bound on the complexity
of cutting-plane algorithms based on Gomory-Chvátal cuts; he showed that such algorithms
must generate exponentially many cuts in order to establish the infeasibility of some 0-1 integer
programs.

Chvátal (1973) introduced the notion of a cutting-plane proof; this can be viewed as a way of
writing down a certificate of optimality or infeasibility generated by a cutting-plane algorithm.
This notion is further developed in Chvátal (1984, 1985); it can trivially be extended to the notion
of branch-and-cut proofs. An important common thread through the results in the previous
paragraph is this: each result essentially shows the non-existence of “short” or polynomial-size
branch-and-cut proofs of a certain type (e.g., proofs having only Gomory-Chvátal cuts). Such
results are obviously more general than complexity bounds on a single algorithm. For example,
Pudlak’s result shows that not only does Gomory’s algorithm (1958) take exponential time in
the worst case, but so does every other algorithm which sequentially generates Gomory-Chvátal
cuts.

We need to clarify a point here. A simple example by Bondy (see Schrijver 1986) shows that
for max{x1 |x1 +kx2 ≤ k, x1−kx2 ≤ 0, x1, x2 integral} where k is a positive integer, at least k/2
Gomory-Chvátal cuts are required to establish that integral solutions satisfy x1 ≤ 0 (i.e., the
optimal value is 0). On the other hand, we can indirectly verify that the optimal value is 0 by
showing that no integral solutions satisfy x1 ≥ 1; a single cut is enough for this. More generally,
for any cutting-plane proof of cTx ≤ d, there is a always a cutting plane proof of the same length
showing that no integral solutions satisfy cTx ≥ d + 1, whereas the converse is not true. (See
Cook, Coullard and Turán 1987 for a discussion of indirect cutting-plane proofs). In this sense
cutting-plane proofs of infeasibility are more general than cutting-plane proofs of optimality.
Bondy’s example easily yields exponential lower bounds (the number of cuts is exponential in
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the encoding size) for proofs of the second type, whereas Pudlák’s result is the first exponential
bound for proofs of the first type and is far more difficult.

The main reason for studying sizes of cutting-plane proofs of infeasibility (i.e., the number of
bits needed to write down the proof) is because of the connection to the NP 
= coNP question.
The problem of determining if Ax ≤ b has a 0-1 solution for arbitrary A and b is NP-complete;
not only do we expect that no polynomial-time algorithm exists, we expect that polynomial size
cutting-plane proofs of infeasibility do not always exist for Ax ≤ b with no 0-1 solutions. This
is because of the belief that NP 
= coNP , or that there is no “good characterization” of the
integer feasibility of an arbitrary set of linear inequalities. A discussion of cutting-plane proofs
in the context of complexity theory can be found in Cook, Coullard and Turán (1987), Cook
(1990), Pudlák (1999) and Bonet, Pitassi and Raz (1997).

In this paper we study branch-and-cut proofs of infeasibility of 0-1 integer programs. We
extend the notion of cutting-plane proofs given in Chvátal (1973) – we refer to the proofs there
as Gomory-Chvátal cutting-plane proofs or G-C proofs – and study cutting-plane proofs based
on lift-and-project cuts (Balas, Ceria and Cornuéjols 1993), Gomory-Chvátal cuts, and the cuts
described in Lovász and Schrijver (1991). We also consider branch-and-cut proofs which use the
cutting planes above along with branching on the 0-1 variables. When these proofs are restricted
to using the weakest version of matrix cuts described in Lovász and Schrijver (1991), we call
them L-M-G proofs and L-M-G branch-and-cut proofs. Extending Pudlák’s (1997) ideas, we
prove an exponential lower bound on the lengths (and therefore on the sizes) of L-M-G branch-
and-cut proofs. Thus, we show that any branch-and-cut algorithm which uses branching on the
variables and the cuts above has exponential worst-case complexity.

The paper is organised as follows. In Section 2, we describe the different cuts we use in
this paper, and state some of their properties. The material after Theorem 2.3 is somewhat
technical; we recommend that the reader refer to it while going through Section 4 and Section 5.
In Section 3 we discuss the notion of branch-and-cut proofs. In Section 4, we discuss interpolation
and monotone interpolation and their usefulness in establishing lower bounds on the lengths of
cutting-plane proofs. We also present Pudlák’s exponential bound for G-C proofs. In Section 6,
an exponential lower bound on the lengths of lift-and-project cutting-plane proofs is proved. We
then use this result to obtain the main result of the paper, an exponential lower bound on the
lengths of L-M-G branch-and-cut proofs for 0-1 integer programs. We also answer a question
posed by Pudlák (1999) on matrix-cut based proofs. We will assume familiarity with linear
programming theory; see Schrijver (1986) for basic results in this area.

2 Some Classes of Cutting Planes

Two widely studied classes of general cutting planes are Gomory-Chvátal cutting planes (Go-
mory 1958, Chvátal 1973) and lift-and-project cuts (Balas, Ceria and Cornuéjols 1993). Gomory-
Chvátal cuts are defined for general integer programs, whereas lift-and-project cuts are defined
only for 0-1 integer programs (which is the case we are interested in here). Lift-and-project cuts
— also called simple disjunctive cuts in Cornuéjols and Li (2001) — are special cases of the
disjunctive cuts of Balas (1979), the matrix cuts of Lovász and Schrijver (1991), and the RLT
framework of Sherali and Adams (1990). Split cuts, defined in Cook, Kannan and Schrijver
(1990), generalize both Gomory-Chvátal cuts and lift-and-project cuts (and are also called dis-
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junctive cuts). In this paper we study properties of algorithms and certificates (cutting-plane
proofs) which use the above cutting planes.

Let Qn = [0, 1]n be the 0-1 cube in Rn. If the dimension is obvious from the context, we
denote the 0-1 cube by Q. Let aTi x ≤ bi (i = 1, . . . ,m) be a system of rational linear inequalities
in Rn (we generally assume linear inequalities are rational). Assume that the inequalities 0 ≤
xj ≤ 1 (j = 1, . . . , n) are included in the above system. Let P ⊆ Q be defined by

P = {x | aTi x ≤ bi, i = 1, . . . ,m}, (1)

and let PI stand for the convex hull of 0-1 points in P .
If cTx ≤ d is a linear inequality valid for P and c is integral, then cTx ≤ �d is valid for all

0-1 points in P , and is called a Gomory-Chvátal cutting plane for P (abbreviated as a G-C cut).
If an inequality aTx ≤ b is valid for both P ∩ {x | cTx ≤ d} and P ∩ {x | cTx ≥ d + 1} for some
integral c and d, then aTx ≤ b is called a split cut. A G-C cut is obviously a special type of split
cut. The Chvátal closure of P is the set of points satisfying all G-C cuts for P and is denoted
by P ′. The split closure of P is defined similarly in terms of split cuts, and is denoted by sc(P ).

In what follows, we write aTx ≤ b as b− aTx ≥ 0. All points in P satisfy

(bi − aTi x)xj ≥ 0, i = 1, . . . ,m, j = 1, . . . , n,

(bi − aTi x)(1− xj) ≥ 0, i = 1, . . . ,m, j = 1, . . . , n, (2)

obtained by multiplying the inequalities in (1) with the inequalities defining Q. Also, 0-1 points
in P satisfy

x2
j − xj = 0, j = 1, . . . , n. (3)

Adding non-negative multiples of the inequalities in (2) and arbitrary multiples of the equations
(3) yields inequalities valid for all 0-1 points in P . A linear inequality of this form is a cutting
plane for P , and is called an N -cut.

Formally, an inequality cTx ≤ d or d− cTx ≥ 0 is called an N -cut for P if

d− cTx =
∑
i,j

αij(bi − aTi x)xj +

∑
i,j

βij(bi − aTi x)(1 − xj) + (4)

∑
j

λj(x2
j − xj),

where αij ≥ 0, βij ≥ 0 and λj ∈ R for i = 1, . . . ,m, j = 1, . . . , n. A weakening of N -cuts, called
N0-cuts, can be obtained if in (4) we insist that xixj and xjxi are distinct terms, for all i, j with
i 
= j. That is, we do not combine xixj and xjxi terms. A lift-and-project cut for P with respect
to a variable xk is a linear inequality of the form

α(b1 − aT1 x)xk + β(b2 − aT2 x)(1− xk) + λ(x2
k − xk), (5)

where aT1 x ≤ b1 and aT2 x ≤ b2 are valid for P , λ is some real number and α and β are non-negative
reals. Thus a lift-and-project cut is a special type of N0-cut.

N -cuts and N0-cuts are examples of matrix cuts; see Lovász and Schrijver (1991) and Lovász
(1994). N -cuts are also described in Sherali and Adams (1990). Lovász and Schrijver (1991)
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define N+-cuts, which are stronger than the previous two classes. An inequality d− cTx ≥ 0 is
called an N+-cut for P if it is formed by adding n+ 1 squares of linear functions (i.e., terms of
the form (gk + hTk x)

2) to the sum in (4). Note that every inequality defining P is an N -cut, as
is 1 ≥ 0 and any non-negative linear combination of N -cuts; this is true as well for N0-cuts and
N+-cuts.

Of course, a notion of closure, similar to Chvátal closure, can be defined in the context of
matrix cuts. The sets N(P ) and N+(P ) are defined as follows:

N(P ) is the set of points satisfying all N -cuts for P, (6)

N+(P ) is the set of points satisfying all N+-cuts for P. (7)

N0(P ) is defined similarly in terms of N0-cuts; these sets have alternative projection represen-
tations. N(P ) and N0(P ) are polytopes, whereas N+(P ) is generally non-polyhedral. Pk is the
polytope obtained from P by adding all lift-and-project cuts with respect to the variable xk.
Observe that every inequality valid for N(P ) is an N -cut for P . This is true even if N(P ) = ∅;
similar properties hold for N0(P ), N+(P ) and Pk. We refer to N0, N and N+ as the matrix-cut
operators.

The Chvátal closure can be iterated to obtain PI from P ; see Chvátal (1973), Schrijver (1980),
and Eisenbrand and Schulz (1999). Lift-and-project cuts can also be generated iteratively.

Theorem 2.1 (Balas 1979). If i1, i2, . . . , in is any permutation of {1, 2, . . . , n} and P is a
polytope in Qn, then (· · · ((Pi1)i2) · · ·)in = PI .

A proof can be found in Balas, Ceria and Cornuéjols (1993).
The matrix-cut operators can be iterated to obtain approximations of PI which are strictly

contained in P (if P 
= PI). Let N0(P ) = P and N t+1(P ) = N(N t(P )) if t is a non-negative
integer. Let N t

0(P ) and N t
+(P ) be similarly defined. Lovász and Schrijver (1991) establish the

following facts (Theorem 2.2 can be derived from Theorem 2.1).

Theorem 2.2 Let P ⊆ Qn be a polytope. Then Nn
0 (P ) = PI .

Theorem 2.3 (Lovász and Schrijver 1991). Let P = {x |Ax ≤ b} be a polytope contained in
Qn. For any fixed value of t, it is possible to optimize linear functions over both N t

0(P ) and
N t(P ) in time bounded by a polynomial function of the encoding size of Ax ≤ b.

Theorem 2.2 remains true if N0 is replaced by N or N+, as both of these operators yield smaller
convex sets than N0. In the case of N+, it is possible to approximate the maximum or minimum
of a linear function over N+(P ) to within a prescribed error tolerance in polynomial time.

The next result can be found in Cook and Dash (2001); an analogous property holds for
Chvátal closures (Schrijver 1980).

Lemma 2.4 If F is a face of a polytope P ⊆ Q, then N(F ) = N(P )∩F . This equation is also
valid for the N+ and N0 operators.

Lemma 2.4 is useful in many contexts. Let F be a face of a polytope P and let cTx ≤ d be an
N -cut for F . From Lemma 2.4, N(F ) is a face of N(P ). As N(P ) is a polytope, we can “rotate”
cTx ≤ d to get an inequality (c′)Tx ≤ d′ valid for N(P ), and hence an N -cut for P , such that

F ∩ {x | cTx ≤ d} = F ∩ {x | (c′)Tx ≤ d′}. (8)
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Compare this with Lemma 6.33 in Cook, Cunningham, Pulleyblank, and Schrijver (1998) (the
same result for P ′). We may not be able to “rotate” cTx ≤ d in the case of N+(P ) as it may
not be a polytope. Lemma 2.4 also implies:

F is a face of Q ⇒ N(P ∩ F ) = N(P ) ∩ F. (9)

Lemma 2.5 and Lemma 2.6 combine results from Lovász and Schrijver (1991) and Balas,
Ceria and Cornuéjols (1993) and give useful properties of N0(P ).

Lemma 2.5 Assume that aTx ≤ b is valid for P ∩ {x |xi = 0} and P ∩ {x |xi = 1}, where P is
a polytope, and 1 ≤ i ≤ n. Then aTx ≤ b is valid for Pi and N0(P ).

Proof: It is easy to see that there are non-negative numbers α and β, such that

aTx− αxi ≤ b is valid for P,

aTx− β(1− xi) ≤ b is valid for P.

Multiplying the first inequality by 1− xi and the second by xi, replacing x2
i by xi and adding,

we see that aTx ≤ b is a lift-and-project cut with respect to the variable xi. ✷

Lemma 2.6 If P ⊆ Qn is a polytope, then Pi = conv((P ∩{x |xi = 0})∪ (P ∩{x |xi = 1})) for
i = 1, . . . , n, and N0(P ) = ∩iPi.

We now state some well-known properties of symmetric positive semidefinite matrices which
we need; see Horn and Johnson (1985). We denote the fact that a matrix A is positive semidef-
inite by A � 0. A principal submatrix of a matrix is a square submatrix obtained by deleting
some rows and the corresponding columns from the matrix. If A � 0, then every principal
submatrix of A is positive semidefinite. If a matrix A has a block-diagonal decomposition, then
A � 0 ⇔ every block is positive semidefinite. For example,

if A =

[
A1 0
0 A2

]
, then A � 0 ⇔ A1 � 0, A2 � 0 . (10)

A useful characterization of positive semidefinite matrices, involving Schur complements, is:

Proposition 2.7 Let A be a non-singular matrix, and let B and C be matrices.

If D =

[
A B

BT C

]
, then D � 0 ⇔ C −BTA−1B � 0 .

We now proceed to formalize the intuitively obvious idea that given two independent systems
of inequalities, if a cutting plane is derived from the combined system, then it is implied by
cutting planes derived separately from the two systems. We first give a very concise description
of some results from Lovász and Schrijver (1991). For a vector z ∈ Rn, define z as the vector
(1 zT )T , and assume the coordinates of z are indexed from 0 onwards. Thus, z0 = 1 and zi = zi
for i = 1, . . . , n. Also assume (n + 1) × (n + 1) matrices are indexed from (0,0) onwards, and
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that ei is the ith unit vector in Rn+1. Observe that if z is a 0-1 solution of (1), then M = zzT

satisfies:

(i) (bi -aTi )Me0 ≥ 0 and (bi -aTi )M(e0 − ei) ≥ 0 (i = 1, . . . ,m, j = 1, . . . , n),

(ii) Mi0 = Mii (i = 1, . . . , n), (iii) M = MT , and (iv) M � 0.

Lovász and Schrijver (1991) provided the following characterizations of N+(P ) and N(P ) (dual
to (6) and (7)):

N(P ) = {x |x = Me0, where M satisfies (i) - (iii) above}, (11)

N+(P ) = {x |x = Me0, where M satisfies (i) - (iv) above}. (12)

The set of matrices satisfying conditions (i) - (iii) (as in (11)) is called M(P ), and M+(P ) is the
set of matrices satisfying (i) - (iv) above. N0(P ) can be defined similarly: x ∈ N0(P ) ⇔ x = Me0

for some M satisfying (i) and (ii) (the set of such matrices is M0(P )). The next result is essential
for some of the lower bounds we prove later on.

Lemma 2.8 Let P1 = {(x, y) |Ax ≤ e} and P2 = {(x, y) |By ≤ f} be two polytopes contained
in Q. Then N+(P1 ∩ P2) = N+(P1) ∩N+(P2). An identical result holds for N and N0.

Proof: For any two polytopes P1 and P2, it is true that N+(P1 ∩P2) ⊆ N+(P1)∩N+(P2). Let
P1 and P2 satisfy the conditions of the lemma. To prove the reverse inclusion, assume that

z =

(
x

y

)
∈ N+(P1) ∩N+(P2) . (13)

Then there are symmetric matrices X ∈ M+(P1) and Y ∈ M+(P2) such that z = Xe0 = Y e0,
where

X =


 1 xT yT

x X11 XT
12

y X12 X22


 and Y =


 1 xT yT

x Y11 Y T
12

y Y12 Y22


 . (14)

Also X,Y � 0. As X and Y are positive semidefinite,(
1 xT

x X11

)
� 0 and

(
1 yT

y Y22

)
� 0 ; (15)

the above matrices are principal submatrices of X and Y . We can conclude that X11 −xxT and
Y22 − yyT are both positive semidefinite. This is true because of Proposition 2.7 (set A = 1).

Now, let Z be the matrix defined by

Z =


 1 xT yT

x X11 xyT

y yxT Y22


 . (16)

It is not difficult to verify that Z is contained in M(P1 ∩ P2). Also, observe that Z − zzT is
a block-diagonal matrix with non-zero blocks X11 − xxT and Y22 − yyT . Therefore Z − zzT

is positive semidefinite by (10); this implies that Z � 0. Since z = Ze0, we have shown that
z ∈ N+(P1 ∩ P2), and the result follows for the semidefinite operator.
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Observe that in (14), if we start out with X in M(P1) and Y in M(P2), then Z yields the
result for N(P ). Now let X and Y belong to M0(P1) and M0(P2) respectively. Then X and Y

are as in (14), except that they are non-symmetric and XT
12 is replaced by X21, and Y T

12 by Y21.
The matrix Z above, formed from X and Y , belongs to M0(P1 ∩ P2), and the result for N0(P )
follows. ✷

3 Cutting-Plane Proofs and Branch-and-Cut Proofs

Traditionally, the phrase “cutting-plane proof” refers to a proof using G-C cuts. We refer to
such proofs as Gomory-Chvátal cutting-plane proofs (or as G-C proofs for shortness’ sake). By
a cutting-plane proof, we mean one which uses any of the cutting planes discussed in Section 2.

Let Ax ≤ b denote the following linear system in Rn:

aTi x ≤ bi (i = 1, . . . ,m). (17)

Assume cTx ≤ d is valid for all 0-1 solutions of Ax ≤ b. An N -cutting-plane proof of cTx ≤ d

from Ax ≤ b is a sequence,
aTm+kx ≤ bm+k (k = 1, . . . ,M), (18)

with cTx ≤ d the last inequality in the sequence, and a collection of numbers

αkjl, β
k
jl ≥ 0 (k = 1, . . . ,M, j = 1, . . . ,m + k − 1, l = 1, . . . , n) (19)

such that, for k = 1, . . . ,M , aTm+kx ≤ bm+k is derived as in (4) using αkjl and βkjl from

aTj x ≤ bj (j = 1, . . . ,m + k − 1).

Informally, an inequality in the sequence is an N -cut for the previous inequalities in the sequence.
The length of the cutting-plane proof is M and its size is the sum of the sizes of the inequalities
and numbers αkjl, β

k
jl in the proof. (The size of a proof is the number of bits required to write

it down). If an inequality belongs to or is implied by Ax ≤ b, we say it has an N -cutting-plane
proof of length 0 from Ax ≤ b. We can assume that inequalities in (17) and (18) are integral.
Proofs using lift-and-project cuts, N0-cuts, or N+-cuts are defined in a similar fashion. An
N -cutting-plane proof will be abbreviated as an N -proof. We analogously define N+-proofs.

If an inequality cTx ≤ d has an N -proof from P , then cTx ≤ d is valid for PI . Conversely,
an inequality valid for PI has an N -proof from P ; this follows from Theorem 2.2 and the fact
that N(P ) is a polytope whenever P is. Because of this property the set of N -proofs is said
to be complete or to define a complete proof system. Similarly, each class of cutting planes in
Section 2 defines a complete proof system. If PI is empty, we refer to a cutting-plane proof of
0Tx ≤ −1 as a cutting-plane proof of infeasibility.

We can use both G-C cuts and N+-cuts in a cutting-plane proof; such a proof will be called
an N∗-proof. We also define N#-proofs and L-M-G proofs ; in the first class, each cut is either
an N -cut or a G-C cut and in the second proof system, every cut is either a lift-and-project cut,
or an N0-cut or a G-C cut.

An important property of G-C cuts is the following: if cTx ≤ �d is a G-C cut for Ax ≤ b,
then

∃λ ∈ Rn+1 such that λ ≥ 0, cT = λTA, λT b ≤ d. (20)
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(We say that cTx ≤ �d is derived from Ax ≤ b with multipliers λ). Thus, each inequality in
a G-C proof is derived only from n + 1 or fewer previous inequalities. A similar property holds
for matrix cuts.

Lemma 3.1 If cTx ≤ d is an N -cut derived as in (4), then cTx ≤ d can be obtained with at
most 1

2n(n + 1) + 1 of the numbers αij and βij nonzero.

Proof: Let cTx ≤ d be an N -cut obtained as in (4). Let pij = (bi − aTi x)xj and qij =
(bi − aTi x)(1− xj) for i = 1, . . . ,m and j = 1, . . . , n. Then

d− cTx =
∑
i,j

αijpij +
∑
i,j

βijqij +
∑
j

λj(x2
j − xj)

for some values of αij , βij ≥ 0 and some λj . Let p′ij stand for pij with x2
j replaced by xj and let

q′ij be derived from qij in a similar manner. Then

d− cTx =
∑
i,j

αijp
′
ij +

∑
i,j

βijq
′
ij.

As the quadratic inequalities p′ij and q′ij lie in a 1
2n(n+1)+1 dimensional space, Carathéodory’s

Theorem implies the desired result. ✷

Lemma 3.1 remains true with N -cuts replaced by N+-cuts. Both can be refined slightly; see
Lemma 3.3 in Dash (2001).

It follows from the work of Cook, Coullard and Turán (1987) that a G-C proof of infeasibility
can be transformed into a G-C proof of the same length with polynomially bounded size (in the
length of the proof, and the encoding size of the problem). Hence, strong (exponential) lower
bounds on the sizes of G-C proofs are equivalent to strong bounds on the lengths of such proofs
(we do not know if the same is true for matrix-cuts). Chvátal, Cook and Hartmann (1989)
proved that the length of G-C proofs can be exponential in the dimension of the problem; they
obtained (essentially) a lower bound of 2n/n on the length of G-C proofs of infeasibility of the
following system of inequalities:

Pn = {x ∈ Qn |
∑
i∈J

xi +
∑
i/∈J

(1− xi) ≥
1
2
, for all J ⊆ {1, . . . , n}}. (21)

Applying the technique used in Chvátal, Cook and Hartmann (1989), a lower bound of 2n/n2

can be established on the lengths of N -proofs of infeasibility of Pn. However, as Pn has 2n

inequalities, the above lower bounds are not exponential in the size of Pn; we shall see true
exponential bounds for L-M-G proofs in the next section.

The branch-and-cut method can be used to prove that a given inequality is satisfied by all
0-1 solutions of (17); this yields the notion of a “branch-and-cut proof”. We define the length of
a branch-and-cut proof to be the sum of the number of cuts and the number of non-leaf nodes
(or the number of times we branch) in the proof. We will mainly deal with branch-and-cut
proofs of infeasibility where 0Tx ≤ −1 is the last inequality in each branch. See Cook, Coullard
and Turán (1987) for a discussion of the relationship of (cutting-plane) proofs of infeasibility to
proofs of more general inequalities.

Cook and Hartmann (1990) presented, in the context of the traveling salesman problem, an
exponential lower bound on the length of branch-and-cut proofs using Gomory-Chvátal cuts (the
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Figure 1: A branch-and-cut tree

actual result is more general). However, in their result, the lower bounds are exponential in the
dimension of the problem (the number of cities squared), but not in the number of inequalities
defining the problem (the standard linear programming relaxation of the TSP). Gu, Nemhauser,
and Savelsbergh (1999) provided an exponential lower bound on the length of certain classes of
branch-and-cut proofs of optimality for knapsack problems. The cutting planes they consider
do not however form a complete system (thus any number of such cuts will not suffice); they
show that exponentially many nodes have to be evaluted to prove optimality. We study branch-
and-cut proofs which use the cutting-plane classes described in Section 2.

4 Interpolation and Cutting-Plane Proofs

The problem of determining if a system of linear inequalities Ax ≤ b has a 0-1 solution is NP -
complete. Therefore, every algorithm which finds a 0-1 solution, or provides a certificate that no
0-1 solution exists, is expected to have super-polynomial time complexity. In fact, many believe
that polynomial-size certificates of infeasibility (in the encoding size of A, b) do not always exist;
this is the same as saying that NP 
= coNP . This question is far from being solved. However
there has been progress in studying various restricted classes of certificates – formally, proofs in
some proof system – and in showing exponential worst case complexity (size) for some classes.
Achieving this goal for all proof systems would show that NP 
= coNP , and therefore that
P 
= NP . (Note that exponential length branch-and-cut proofs have exponential size; we will
focus on the lengths of such proofs).

Most of the literature on this subject deals with propositional proof systems, which are
methods of writing down certificates of unsatisfiability of instances of SAT, i.e., of boolean
formulae ψ : {0, 1}n → {0, 1} in conjunctive normal form. Branch-and-cut proof systems, which
we study here, can be viewed as propositional proof systems: ψ is satisfiable if and only if
an associated linear system Aψx ≤ bψ has a 0-1 solution. A well-known propositional proof
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system is the resolution proof system. It is shown in Cook, Coullard and Turán (1987) that
G-C proofs form a stronger proof system than resolution proofs. A similar statement is true for
lift-and-project proofs (see Pudlák 1999) and N0-proofs.

See Beame and Pitassi (1998) for a nice survey on propositional proof complexity; see also
Pudlák (1999). Some of the methods developed to establish exponential worst-case complexity
for proofs in various proof systems are the bottleneck counting method of Haken (1985), the
restriction method of Ajtai (1994), and the interpolation method. Kraj́ıček (1994, 1997) proposed
the idea of using effective interpolation to etablish lower bounds on the lengths of proofs in
different proof systems. This idea was first used by Razborov (1995), and independently, by
Bonet, Pitassi, and Raz (1997), to prove exponential lower bounds for some proof systems (the
latter paper contains bounds for a special case of G-C proofs). Both of these papers use a
restriction of interpolation called monotone interpolation. Pudlák (1997) derived exponential
lower bounds for lengths of G-C proofs using a generalization of monotone interpolation. We
now discuss this technique in the context of cutting-plane proofs.

We will be interested only in infeasible 0-1 integer programs; we will use the phrase “integer
program” to mean a problem without an objective function where we want to find 0-1 solutions
of linear inequality systems. Assume that the following integer program in the disjoint sets of
variables x, y and z is infeasible:

Ax + Cz ≤ e,

By + Dz ≤ f, (22)

x, y, z are 0-1 .

Then 0Tx + 0T y + 0T z ≤ −1 has a G-C proof P from (22). Let z′ denote some 0-1 assignment
to z. The system

Ax ≤ e− Cz′,

By ≤ f −Dz′, (23)

x, y are 0-1 ,

obtained from (22), is still infeasible. Now, P can be modified to a proof P ′ of infeasibility of
(23), with the same length and the property that (let Pi stand for the ith inequality in P):

if Pi is aTx + bT y + cT z ≤ d then P ′
i is aTx + bT y ≤ d− cT z′, (24)

P ′
i is derived with the same multipliers as Pi. (25)

In (23) we have two linear systems, with no variables in common, and at least one of the
two has no 0-1 solutions. If Ax ≤ e−Cz′ has no 0-1 solutions, then we can certainly construct a
G-C proof of infeasibility (in the variables x). Can such a G-C proof be derived from the proof
P ′ ? Pudlák (1997) showed that P ′ can be “split” in the following sense:
Given any z′, it is possible to construct in polynomial time (in the size of P), two G-C proofs,
one involving x alone and the other involving only y, such that either the last inequality in the
first proof is 0Tx ≤ −1 or the last in the second proof is 0T y ≤ −1.
Hence, associated with each G-C proof P, there is an algorithm FP(z), with running time
bounded by a polynomial function of the size of P, which takes as input a 0-1 z′ and decides
which of the two systems in (23) has no 0-1 solutions. This is called effective interpolation and
FP(z) is called an interpolating algorithm.

11



Interpolating algorithms FP derived from different proof systems use restricted sets of
boolean or arithmetic operations, and this allows their complexity to be analyzed in some cases.
Strong lower bounds on the complexity of FP for various proof systems (including G-C proofs
P) have primarily been derived from Razborov’s (1985) beautiful result on monotone circuit
complexity, and an important extension proved independently by Pudlák (1997) and Cook and
Haken (1999). (A result similar to Razborov’s was proved independently by Andreev 1985).
These results are stated in terms of monotone boolean circuits, and we will briefly dwell on this
topic.

A boolean circuit can be thought of as a description of the elementary steps in an algorithm.
It is often represented by a directed acyclic graph with three types of nodes: input nodes –
nodes with no incoming arcs, a single output node – the only node with no outgoing arcs, and
computation nodes (also called gates), each of which is labelled by one of the boolean functions
∧,∨, and ¬. For nodes i and j, an arc ij means that the value computed at i is used as an
input to the gate or function at node j. A computation is represented by placing 0-1 values
on the input gates, and then recursively applying the gates to inputs on incoming arcs, till the
function at the output node is evaluated. Thus, an algorithm A can be represented by a class
{Cn |n ≥ 1}, where Cn is a boolean circuit with n input gates. For input size n, the running time
of the algorithm equals the number of gates in Cn (called the size of Cn, denote this by |Cn|).
If there is a polynomial p(n) such that |Cn| ≤ p(n) for all n ≥ 0, then A is a polynomial-time
algorithm.

x

1,x2,x3,x4)

1 x2 x3 x4

 

f(x

Figure 2: A boolean circuit

We define a monotone function to be a real-valued non-decreasing function f : Rn → R,
that is, if x ≤ y with x, y in Rn, then f(x) ≤ f(y). We refer to an application of a monotone
function to given inputs as a “monotone computation”, and define a monotone algorithm to
be one whose elementary steps are monotone computations. Examples of monotone unary and
binary functions (we call these monotone operations) are

tx, r + x, x + y, �x, thr(x,−1) (26)

where t is a non-negative constant, x and y are real variables, and r is a real constant; thr(x,−1)
is a threshold function which returns 0, if x ≤ −1, and returns 1 otherwise. The functions ∧
and ∨ are monotone operations, when their domain is restricted to {0, 1}. A monotone boolean
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circuit is one which uses only ∧ gates and ∨ gates; a monotone real circuit is one with arbitary
monotone operations as gates. We will only consider monotone circuits with 0-1 inputs and
outputs.

Many important problems in the complexity class NP can be represented by monotone
boolean functions (with 0-1 inputs and outputs). For example, consider CLIQUEk,n (say k

is fixed), the function which takes as input n-node graphs (represented by incidence vectors
of their edges) and returns 1 if the graph has a clique of size ≥ k, and 0 otherwise. This is
obviously monotone, as adding edges to a graph (changing some zeros to ones in the incidence
vector) causes the maximum clique size to increase, and removing edges results in the maximum
clique size decreasing. It turns out that every monotone boolean function can be computed by a
monotone boolean circuit; Razborov showed that in contrast to the non-monotone case, strong
lower bounds can be obtained on the sizes of monotone boolean circuits. Alon and Boppana
(1987) strengthened his lower bound result.

Theorem 4.1 (Razborov 1985, Alon and Boppana 1987) Let Cn be a monotone boolean circuit
which takes as input graphs on n nodes (given as incidence vectors of edges), and returns 1 if
the input graph contains a clique of size k = n2/3, and 0 if the graph contains a coloring of size
k − 1 (and returns 0 or 1 for all other graphs). Then

|Cn| ≥ 2Ω((n/ logn)1/3). (27)

Thus any monotone boolean circuit computing CLIQUEk,n, with k given as above, has expo-
nentially many gates. This result is essentially true for monotone real circuits as well (Cook and
Haken proved a slightly different statement).

Theorem 4.2 (Pudlák 1997, Cook and Haken 1999) Let Dn be a monotone real circuit which
has the same inputs and outputs as in Theorem 4.1. Then Dn must have exponentially many
gates (the lower bound for |Cn| given in Theorem 4.1 is also valid for |Dn|).

Theorem 4.2 is the main result used in Pudlák’s exponential lower bound on the complexity
of G-C proofs, and for our bounds in the case of lift-and-project cuts. To use Theorem 4.2,
Pudlák defined a system of inequalities, having the same form as (22), which in a sense encodes
the problem of Theorem 4.1. We use a slightly modified inequality system, defined in the
following way. Let k = n2/3. Consider the set of nodes N = {1, . . . , n}, with N2 standing for

{ij | 1 ≤ i < j ≤ n}. Let z be an

(
n

2

)
-vector of 0-1 variables, such that every 0-1 assignment to

z corresponds to the incidence vector of a graph on n nodes. Let x be the 0-1 vector of variables
(xi | i = 1, . . . , n) and let y be the 0-1 vector of variables (yij | i = 1, . . . , n, j = 1, . . . , k − 1). We
want to impose the conditions:

the set of nodes {i |xi = 1} forms a clique of size ≥ k,

for all j ∈ {1, . . . , k − 1}, the set {i | yij = 1} is a stable set.

Thus, the variables yij define a mapping of nodes in a graph to k−1 colors in a proper colouring.
To this end, add the inequalities ∑

i

xi ≥ k, (28)
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xi + xj ≤ 1 + zij , ∀i, j ∈ N2, (29)∑
j

yij = 1, ∀i ∈ N, (30)

yis + yjs ≤ 2− zij , ∀i, j ∈ N2 and ∀s ∈ {1, . . . , k − 1}. (31)

Let Ax + Cz ≤ e stand for the inequalities (28) and (29), and let By + Dz ≤ f stand for
the inequalities (30) and (31). Let (22) stand for the above systems of inequalities along with
the condition that x, y, z are 0-1 (more precisely, there is such a system for every n). Then any
0-1 solution of (22) corresponds to a graph which has both a clique of size k, and a coloring
of size k − 1. As this is not possible, (22) is infeasible. Note that (22) has O(n3) variables
and constraints; for technical purposes we will also need the fact that C ≤ 0. Now, because of
Theorem 4.2, every monotone real circuit which takes a graph on n nodes as input (in the form
of a 0-1 vector z′) and decides whether Ax ≤ e− Cz′ has no 0-1 solution or By ≤ f −Dz′ has
no 0-1 solution, has exponential size.

Pudlák showed that in the case of G-C proofs P, a polynomial-time interpolating algorithm
FP , which uses monotone operations only (and can be mapped to a monotone real circuit), can
be derived. This is called monotone interpolation and leads to exponential lower bounds on the
complexity of G-C proofs. We now give Pudlák’s (1997) monotone interpolation result for G-C
proofs. We use a similar approach for our bound on L-M-G proofs later on.

Assume that the following integer program, in n variables and m inequalities, is infeasible:

Ax ≤ e, x is 0-1 , (32)

By ≤ f, y is 0-1 , (33)

and assume that x and y have no variables in common. For convenience, we assume that the
initial inequalities in every cutting-plane proof of infeasibility from the above system are precisely
the inequalities in the system.

Proposition 4.3 (Pudlák 1997) Let R be a G-C proof of 0Tx+0T y ≤ −1 from (32) and (33).
In polynomial time (in the size of R), a G-C proof of infeasibility of either (32), or of (33), can
be constructed from R. Further, whether (32) has no 0-1 solution or (33) has no 0-1 solution
can be determined using polynomially many monotone operations.

Proof: Let aTi x + bTi y ≤ di be the ith inequality in R and call this Ri. Now, R1, . . . ,Rm are
just (32) and (33) and Rk (for some k) is precisely 0Tx+0T y ≤ −1. We can assume that R has
integral inequalities. We say that Ri is derived from R1, . . . ,Ri−1 if

aTi x + bTi y =
∑
j

λij(aTj x + bTj y) and di = �
∑
j

λijdj,

where λij ≥ 0 for j = 1, . . . , i− 1.
We construct a sequence of inequalities S involving only x, and another sequence T , involving

only y, such that Si and Ti together imply Ri. Let Ii stand for {1, . . . , i− 1}. For i = 1, . . . ,m,
if Ri involves only x, then set Si to Ri and Ti to 0T y ≤ 0, otherwise set Si to 0Tx ≤ 0 and Ti to
Ri. Define subsequent terms of S and T as follows: for i = m + 1, . . . , k, if Ri is derived from
Rj (j ∈ Ii) with the numbers λij ≥ 0 (j ∈ Ii), then let Si be derived from Sj (j ∈ Ii) and let Ti
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be derived from Tj (j ∈ Ii), with the same numbers λij. If the right-hand sides of Si and Ti are
gi and hi respectively, we can conclude that

Si ≡ aTi x ≤ gi and Ti ≡ bTi y ≤ hi with gi + hi ≤ di. (34)

Therefore the last inequalities in S and T are, respectively, 0Tx ≤ gk and 0T y ≤ hk. Since
dk = −1, one of gk and hk is at most -1, and we have a G-C proof of infeasibility of either (32)
or (33). This is a polynomial-time construction.

To prove the second part of the theorem, observe that it suffices to compute S: if gk ≤ −1,
we know that (32) has no 0-1 solutions and we output 0, otherwise we know that (33) has no
0-1 solutions and we output 1. To compute S, we only have to compute gi, i = 1, . . . , k, as
we already know the left-hand sides of S. Each gi can be computed from g1, . . . , gi−1 with at
most 2(n + 1) of the monotone operations in (26); this is because of (20). Finally we apply the
threshold function in (26) to gk. ✷

Once again let (22) stand for the inequalities (28) - (31). Suppose P is a G-C proof of
0Tx+0T y + 0T z ≤ −1 from (22). Now define a monotone interpolating algorithm FP(z) in the
following way.

1. If z′ is a 0-1 assignment to z, first compute the right-hand side of Ax ≤ e−Cz′. As C ≤ 0,
this can be done with polynomially many monotone operations.

2. Compute g1, . . . , gk as in Proposition 4.3, and return thr(gk,−1).

Now, if P has length L, for every 0-1 z′ FP decides whether z′ has a clique of size k or a coloring
of size k − 1 with only O(Ln4) monotone operations. Then Theorem 4.2 implies the following.

Theorem 4.4 (Pudlák 1997) Every G-C proof of unsatisfiability of the inequalities (28) - (31)
has exponential length.

We would like to use similar techniques for other cutting-plane systems. To this end, note
that FP uses a number of properties of G-C cuts: properties (24) and (25) (we refer to these as
properties (A) and (B) ) and also the properties:

(C) if aTx+ bT y ≤ d is a G-C cut for Ax ≤ e,By ≤ f , and x, y have no variables in common,
then there exist G-C cuts aTx ≤ g and bT y ≤ h, such that g + h ≤ d and g and h can be
computed in polynomial time,

(D) g can be computed from Ax ≤ e using polynomially many monotone operations.

Though property (C) is trivially true in the case of G-C cuts, showing it for the other classes of
cuts is not completely straightforward. We will see in the next section that most of the classes
of cuts given in Section 2 satisfy properties (A), (B) and (C) (with some caveats); these three
properties imply the existence of the effective interpolation property. The main difficulty is in
showing property (D); this is required for monotone interpolation and exponential lower bounds,
at least in the above framework.

It follows from results in Chvátal (1973) that G-C proofs simulate branch-and-bound proofs
of infeasibility. More precisely,
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Proposition 4.5 (Chvátal 1973). If a 0-1 integer program has a branch-and-bound proof of
infeasibility with k nodes (including leaf nodes), then it has a G-C proof of infeasibility with
length k.

This immediately implies that every branch-and-bound proof of infeasibility of (28) - (31) has
exponential length. We will generalize Proposition 4.5 in the next section.

5 Bounds for other proof systems

In this section we present the main result of this paper, which is that L-M-G branch-and-cut
proofs of infeasibility of the system (28) - (31) have exponential length. We will approach this
result by first showing that some stronger proof systems have the effective interpolation property.

Pudlák showed that N#-proofs have the effective interpolation property; this however does
not yield an exponential lower bound on the complexity of these proofs. Recall from Section 3
that these proofs combine N -cuts and G-C cuts. The main part of his result involves showing
that N -cuts have property (C).

Proposition 5.1 (Pudlák 1999) Let R be an N#-proof of 0Tx ≤ −1 from (32) and (33). In
polynomial time (in the size of R), an N#-proof of infeasibility of either (32), or of (33), can
be constructed from R.

We now proceed to extend the above result to N+-proofs (more precisely N∗-proofs) thus
answering a question which is mentioned as being unsolved by Pudlák (1999, page 11).

Proposition 5.2 Let R be an N∗-proof of 0Tx ≤ −1 from (32) and (33). In polynomial time
(in the size of R), an N∗-proof of infeasibility of either (32), or of (33), can be constructed from
R.

Proof: We can assume that all inequalities in R are integral and N+-cuts for the previous ones
in R. G-C cuts can be handled as in Proposition 4.3.

Let R be as in Proposition 4.3 (only R is an N+-proof of infeasibility). We construct two
N+-proofs S and T with the same length as R. Let the first m terms in S and T be as in
Proposition 4.3. By definition, if Rj is aTj x + bTj y ≤ dj and i = m + 1, then for all j < i

Sj ≡ aTj x ≤ gj and Tj ≡ bTj y ≤ hj with gj + hj ≤ dj . (35)

Assume that we have obtained Sj and Tj satisfying (35) for all j < i, where i is some number
greater than m. Let P1 be the polytope defined by S1, . . . ,Si−1. Similarly, let P2 be defined by
T1, . . . ,Ti−1. Now, if P is defined by R1, . . . ,Ri−1, then P1 ∩ P2 ⊆ P .

It follows that aTi x + bTi y ≤ di is valid for N+(P1 ∩ P2). By Lemma 2.8 and Carathéodory’s
Theorem, we have

aTi x + bTi y =
∑
j∈J

αjp
T
j x +

∑
k∈K

βkq
T
k y and

∑
j∈J

αjrj +
∑
k∈K

βksk ≤ di, (36)

where pTj x ≤ rj (j ∈ J) are N+(P1)-cuts and qTk x ≤ sk (k ∈ K) are N+(P2)-cuts and αj ≥ 0
and βk ≥ 0 for all j ∈ J and k ∈ K. Adding separately the N+(P1)-cuts and the N+(P2)-cuts,
we see that there are there are real numbers g′i and h′i such that

aTi x ≤ g′i is an N+(P1)-cut and bTi y ≤ h′i is an N+(P2)-cut, (37)
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and g′i + h′i ≤ di. The numbers g′i and h′i can be computed as

g′i = max{aTi x | (x, y) ∈ N+(P1)}, h′i = max{bTi y | (x, y) ∈ N+(P2)}. (38)

To get the ith terms of S and T , we compute g′i and h′i as in (38), by solving two semidefinite
programs (see Theorem 2.3 and the discussion following it). As these are not necessarily integers,
we round them down to get gi and hi; we have completed the construction of the ith terms in
S and T . Repeating this process we get, as the last terms in S and T , 0Tx ≤ gk and 0Tx ≤ hk
where at least one of gk or hk is bounded above by -1. ✷

In the proof above, if we replace N+(P ) by N(P ), we get Pudlák’s result, Proposition 5.1,
by combining with Proposition 4.3. We can also use N0(P ) instead of N+(P ) and get a result
analogous to Proposition 5.1 in the case where we have proofs using N0-cuts and G-C cuts.
Proposition 5.2 essentially shows that N+-cuts have property (C). We now present an effective
interpolation property for N∗-proofs.

Theorem 5.3 Let (22) stand for the system (28) - (31). If P is an N∗-proof of infeasibility of
(22), then there is an algorithm FP(z) with the following properties:
(i) if z′ is a 0-1 vector, then FP computes 0 if Ax ≤ e− cz′ is infeasible, and 1 otherwise;
(ii) FP performs monotone computations only;
(iii) The running-time of FP is bounded above by a polynomial function of the length of P.

Proof: Let P be an N∗-proof of 0Tx + 0T y + 0T z ≤ −1 from (22). By Lemma 2.4, if P ′ is
defined by (24) then P ′ is an N∗-proof of the infeasibility of (23). In fact, properties (A) and
(B) follow directly from definition: an N+-cut is a linear combination of quadratic terms, just
replace z by z′ in every quadratic term. Now, let R denote P ′; as in Proposition 5.2, obtaining
the N∗-proof S suffices to decide whether Ax ≤ e−Cz′ is feasible or not. We proceed as in the
case of G-C proofs and first compute e − Cz′ and then the numbers g1, g2, . . . , gk described in
Proposition 5.2, and finally thr(gk,−1) to get FP(z′).

The numbers g1, g2, . . . , gk can be obtained by monotone computations. To see this, observe
that the following computation

max{aTi x |x ∈ N+(P )},

P = {x ∈ Q | aT1 x ≤ g1, . . . , a
T
i−1x ≤ gi−1}, (39)

performed in (38), is monotone in the inputs g1, g2, . . . , gi−1. If the numbers g1, . . . , gi−1 are
increased, then P is larger, and so is N+(P ), and the maximum in (39) increases.

Finally, assume (22) has m inequalities and n variables. Computing e − Cz′ requires at
most 2mn monotone operations (C ≤ 0). The numbers g1, g2, . . . , gk each require a monotone
computation of the form (39). Hence, the number of monotone computation steps is at most
2nL, where L is the length of P (here m ≤ L). ✷

Theorem 5.3 does not yield an exponential lower bound on the length of N∗-proofs as all
monotone computations do not have a bounded number of inputs (they are not monotone
operations, for example). But we can prove:

Theorem 5.4 Let In stand for the inequalities (28) - (31). Every lift-and-project proof of
infeasibility of In has exponential length (in n).
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Proof: Let O be a lift-and-project proof of length L of the infeasibility of In for a given integer
n. Note that In has fewer than p(n) = cn3 variables and constraints for some constant c > 0.
Every Oi is a lift-and-project cut (say with respect to the variable xk; this variable changes with
i) for O1, . . . ,Oi−1. Therefore Oi is equal to αq1 +βq2 +λ(x2

k −xk) for some α, β ≥ 0 and some
λ, where q1 and q2 are inequalities implied by O1, . . . ,Oi−1. Define a sequence P of length at
most 3L by

P3i−2 ≡ q1, P3i−1 ≡ q2, P3i ≡ Oi. (40)

As lift-and-project cuts are also N0-cuts, P is an N0-cutting-plane proof of 0Tx+0T y+0T z ≤ −1
with the special property that each inequality is either a non-negative linear combination of
p(n) + 1 previous inequalities in P (In has at most p(n) variables) or is an N0-cut derived from
at most two previous inequalities.

If in Theorem 5.3, we replace N∗ by N0, we get an interpolating algorithm FP which performs
only monotone operations. To see this, let z′ be some 0-1 assignment to z, and let R ≡ P ′ where
P ′ is defined as in (24). As in the proof of Proposition 5.2 define the proofs S and T from R with
the following property. If Ri = λ1R1 + · · · + λi−1Ri−1 for non-negative numbers λ1, . . . , λi−1,
then Si equals λ1S1 + · · ·+ λi−1Si−1 and Ti equals λ1T1 + · · ·+ λi−1Ti−1. If Ri is the inequality
aTi x+ bTi y ≤ di and is an N0-cut derived from two previous inequalities, say Rj and Rl, then Si
is the inequality aTi x ≤ gi such that

gi = max{aTi x |x ∈ N0(P )},

P = {x ∈ Q | aTj x ≤ gj , a
T
l x ≤ gl}. (41)

Similarly Ti is the inequality bTi y ≤ hi derived as an N0-cut from bTj y ≤ hj and bTl y ≤ hl; also
gi + hi ≤ di. Hence, if P has k inequalities, then either gk ≤ −1 or hk ≤ −1. Also, g1, g2, . . . , gk
can be computed by monotone operations only. Either gi is the non-negative linear combination
of p(n) + 1 previous numbers from g1, . . . , gi−1 (this requires 2(p(n) + 1) monotone operations)
or gi is computed as in (41), which is a monotone operation. Combining the facts above, we
can construct a real monotone circuit Dn, as in Theorem 4.2, with O(Ln3) gates. Hence L is
exponential (the bound in (27) divided by n3) and the result follows. ✷

Theorem 5.4 implies that every cutting-plane algorithm based only on lift-and-project cuts
requires exponential time (in the worst-case) to solve In. For example, the algorithm given in
Theorem 3.1 of Balas, Ceria, Cornuéjols (1993), which the authors call the “specialized cutting
plane algorithm”, has exponential time complexity. The next result implies that N0-cutting-
plane proofs of the infeasibility of In, given in Theorem 5.4, must have exponential length.

Lemma 5.5 Let P be an N0-proof of cTx ≤ d, from some polytope in Qn, of length L. There
is a lift-and-project cutting-plane proof of cTx ≤ d of length at most (n + 2)L.

Proof: Let aTx ≤ b be an inequality in the proof. Let P = {x |Ax ≤ b} be the polytope defined
by the inequalities used in deriving aTx ≤ b as an N0-cut. By Lemma 2.6, N0(P ) = ∩iPi, where
Pi is the lift-and-project operator with respect to the variable xi. Therefore N0(P ) is completely
defined by the inequalities defining the polytopes Pi. Hence, by Carathéodory’s Theorem, aTx ≤
b is a nonnegative linear combination of n + 1 inequalities gT1 x ≤ h1, . . . , g

T
n+1x ≤ hn+1, where

for i = 1, . . . , n + 1, gTi x ≤ hi is valid for some Pk (1 ≤ k ≤ n). It follows that aTx ≤ b is
a nonnegative linear combination of n + 1 lift-and-project cuts for P . Let R be a sequence of
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inequalities such that aTx ≤ b in P is replaced by the inequalities gT1 x ≤ h1, . . . , g
T
n+1x ≤ hn+1

and aTx ≤ b (in order). In R, every inequality is either a nonnegative linear combination of
previous inequalities or a lift-and-project cut derived from previous inequalities; hence R is a
lift-and-project cutting-plane proof of length at most (n + 2)L. ✷

Combining Theorem 4.2, Proposition 4.3, Theorem 5.4 and Lemma 5.5, we get the following
theorem.

Theorem 5.6 Let In be as in Theorem 5.4. Then any cutting-plane proof of infeasibility which
uses only N0-cuts, lift-and-project cuts and G-C cuts must have exponential length, i.e., length
at least e(n)/h(n) where e(n) is the exponential function in Theorem 4.1, and h(n) is some
polynomial function of n.

We refer to the cutting-plane proofs in Theorem 5.6 as L-M-G proofs. To get an exponential
lower bound on the length of branch-and-cut proofs for In, we prove the following lemma.

Lemma 5.7 Let P ⊆ Qn be a polytope which does not contain 0-1 points. Let P be an L-M-G
branch-and-cut proof of 0Tx ≤ −1 from P , with m cutting planes and k branches. Then there
is an L-M-G cutting-plane proof of 0Tx ≤ −1 with length exactly m + k.

Proof: As discussed earlier, every lift-and-project cut is an N0-cut; so we can assume that the
cuts in the proof are either N0-cuts or Gomory-Chvátal cuts. Assume P has exactly one branch
and s inequalities in the left branch and t inequalities in the right branch. Further assume that
the very first step in the branch-and-cut proof consists of branching on the variable x1. In the
the left branch, we impose the condition x1 = 0 and in the right branch the condition x1 = 1.

Let the inequalities in the left branch be aT1 x ≤ b1, a
T
2 x ≤ b2, . . .. Let aT1 x ≤ b1 be an N0-cut

for P and the inequality x1 = 0. We can assume that aT1 x ≤ b1 is an N0-cut for P ∩{x |x1 = 0},
i.e., aT1 x ≤ b1 is an N0(P ∩ {x |x1 = 0})-cut. From Lemma 2.4 and the subsequent discussion,
we know that aT1 x ≤ b1 can be “rotated” to get an N0-cut for P of the form aT1 x + α1x1 ≤ b1
for some number α1. To continue this process, for i = 2, . . . , s do the following: if aTi x ≤ bi is
an N0-cut from P , x1 = 0, and the inequalities aT1 x ≤ b1, . . . , a

T
i−1x ≤ bi−1, let Pi−1 equal P

intersected with the inequalities aT1 x+α1x1 ≤ b1, . . . , a
T
i−1x+αi−1x1 ≤ bi−1. Then aTi x ≤ bi is an

N0(Pi−1∩{x |x1 = 0})-cut and can be rotated to get an N0(Pi−1)-cut of the form aTi x+αix1 ≤ bi.
This rotation process can also be performed if aTi x ≤ bi is a Gomory-Chvátal cut. Similarly an
inequality cTi ≤ di in the right branch gets rotated to cTi x + βi(1− x1) ≤ di for some βi.

The last inequality in the left branch is mapped to 0Tx+αsx1 ≤ −1 and the last inequality
in the right branch is mapped to 0Tx + βt(1 − x1) ≤ −1. Multiplying the first of these two
inequalities by (1 − x1) and the second by x1, replacing x2

1 by x1, and adding, we get the
inequality 0Tx ≤ −1 as an N0-cut. Observe that we have removed a branch and replaced it by
an N0-cut, to get a cutting-plane proof of infeasibility of length s + t + 1.

If a branch-and-cut proof has many branches, we can start from the lowermost branches,
and recursively eliminate the branches by adding an extra N0-cut for every branch eliminated.
This completes the proof. ✷

The exponential lower bounds on the length of L-M-G branch-and-cut proofs follows imme-
diately from Theorem 5.6.

Theorem 5.8 Every L-M-G branch-and-cut proof of infeasibility of In given in Theorem 5.4
has exponential length.
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6 Some open questions

The main open question we would like to set down here is:

Question 6.1 Do N+-proofs of infeasibility have exponential size in the worst-case ? What
about cutting-plane proofs using split cuts ? What about proofs of the system In given in Propo-
sition 5.4 ?

The first part of Question 6.1 is presented as an unsolved question in Beame and Pitassi (1998)
and Pudlák (1999). This question is also examined in Grigoriev, Hirsch and Pasechnick (2002),
who show that an extension of the N+-proof system is strong in the sense that there are short
proofs for In in this extended system. Proving exponential bounds on the lengths of such proofs
will obviously yield similar bounds on their sizes; note that we do not know if the sizes and
lengths of N+-proofs and split proofs are polynomially related as in the case of G-C proofs.

Let Ax ≤ b define a polyhedron P contained in the n-dimensional 0-1 cube. Suppose cTx ≤ d

is valid for PI . As the Chvátal rank of P is bounded by 3n2 log n (see Eisenbrand and Schulz
1999), there is a Gomory-Chvátal cutting-plane proof of cTx ≤ d, from Ax ≤ b, of length
bounded above by nO(n2 logn). This follows from results in Chvátal, Cook and Hartmann (1989).
An interesting question is the following.

Question 6.2 If cTx ≤ d is an N -cut (N+-cut) for Ax ≤ b, a polytope in Qn, does there always
exist a Gomory-Chvátal cutting-plane proof of cTx ≤ d from Ax ≤ b with length bounded by a
polynomial function of n ?

If the answer to this question is positive, we will say that the Chvátal proof system (defined by
Gomory-Chvátal cuts) polynomially simulates the N -cut proof system. Let f(n) be the bound
in question 6.2; if we replace N -cuts by N+-cuts, let the bound be f+(n). We do not know the
answer to the above question, i.e., we do not know if either of f(n) or f+(n) is a polynomial.

However, we can say the following.

Proposition 6.3 If f(n) is a polynomial function, then the Chvátal rank of polytopes in Qn,
will be bounded above by nf(n), also a polynomial in n. Further, there will exist infeasible
integer programs, with polynomially many (in n) variables, but requiring an exponential length
N -cutting-plane proof.

This is easy to see. Firstly, for any polytope P , P (f(n)) is contained in N(P ). Further, if f(n)
is polynomial, then a polynomial-length N -proof can be translated into a polynomial-length
Chvátal-proof, and, if the final inequality is 0Tx ≤ −1, into a polynomial-size Chvátal-proof by
results in Cook, Coullard, and Turán (1987). Then Pudlák’s result, that for an infinite class of
integer programs, every Chvátal-proof of infeasibility must have exponentially length (and size),
would imply the second statement.

We can then say that f(n) > 1 as there are examples of polytopes with Chvátal rank greater
than n (see Eisenbrand and Schulz 1999). Also

f+(n) ≥ $log2(n− 1)%;

this follows from Hartmann (1988, Theorem 3.1.1), where the Chvátal rank of the fractional
stable set polytope of the complete graph is shown to equal the right-hand side of the above
equation (the N+-rank is 1 in this case).

Consider the reverse problem.
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Question 6.4 Is it possible to polynomially simulate Gomory-Chvátal cuts by N -cuts or N+-
cuts.

Again letting g(n) (g+(n)) stand for the maximum length of an N -cut (N+-cut) based proof
of a Gomory-Chvátal cut, it turns out that g(n) or g+(n) is at least n. This is because given
x1 + · · ·+ xn ≥ 1

2 , any N+-proof of x1 + · · ·+ xn ≥ 1 has length at least n (see Cook and Dash
2001), but x1+· · ·+xn ≥ 1 is a G-C cut. (In fact n N+-cuts are enough to derive x1+· · ·+xn ≥ 1;
combining this with the polynomial simulation of resolution by Gomory-Chvátal cutting planes
given in Cook, Coullard, and Turán 1987, we have a polynomial simulation of resolution by
N -cuts or N+-cuts.)

Let GC2 stand for the restriction of the G-C proof system, where only division by 2 is allowed.
This means that while taking nonnegative combinations of inequalities, we are only allowed to
multiply inequalities with multiples of 1

2 . Buss and Clote (1996) proved the following interesting
result.

Proposition 6.5 GC2 polynomially simulates the G-C proof system for 0-1 integer programs.

This means that Question 6.4 is equivalent to

Question 6.6 Given an inequality cTx ≥ d − 1
2 where c and d are integral, does there exist a

polynomial-length N -proof (or N+-proof) of the inequality cTx ≥ d ?

We believe that any N+-proof of x1 + · · ·+ xn ≥ �n2 , from

x1 + · · ·+ xn ≥ �n
2
 − 1

2
,

is exponential in n. We have not been able to demonstrate this fact. An almost identical con-
jecture is stated in Grigoriev, Hirsch, and Pasechnik (2002).
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