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Sparse Distance Preservers and Additive Spanners

Béla Bollobás ∗†‡§ Don Coppersmith ¶ Michael Elkin ‖∗∗

Abstract
For an unweighted graph G = (V,E), G′ = (V,E′) is a subgraph if E′ ⊆ E, and G′′ =

(V ′′, E′′, ω) is a Steiner graph if V ⊆ V ′′, and for any pair of vertices u,w ∈ V , the distance
between them in G′′ (denoted dG′′(u,w)) is at least the distance between them in G (denoted
dG(u,w)).

In this paper we introduce the notion of distance preserver. A subgraph (resp., Steiner
graph) G′ of a graph G is a subgraph (resp., Steiner) D-preserver of G if for every pair of
vertices u,w ∈ V with dG(u,w) ≥ D, dG′(u,w) = dG(u,w). We show that any graph (resp.,
digraph) has a subgraph D-preserver with at most O(n2/D) edges (resp., arcs), and there are
graphs and digraphs for which any undirected Steiner D-preserver contains Ω(n2/D) edges.
However, we show that if one allows a directed Steiner (or, shortly, diSteiner) D-preserver,
then these bounds can be improved. Specifically, we show that for any graph or digraph
there exists a diSteiner D-preserver with O(n

2·logD
D·logn ) arcs, and that this result is tight up to

a constant factor.
We also study D-preserving distance labeling schemes, that are labeling schemes that

guarantee precise calculation of distances between pairs of vertices that are at distance at
least D one from another. We show that there exists a D-preserving labeling scheme with
labels of size O( nD log2 n), and that labels of size Ω( nD log D) are required for any D-preserving
labeling scheme.

Finally, we study additive spanners. A subgraph G′ of an undirected graph G = (V,E)
is its additive β-spanner if for any pair of vertices u,w ∈ V , dG′(u,w) ≤ dG(u,w) + β. It
is known that for any n-vertex graph there exists an additive 2-spanner with O(n3/2) edges,
and an additive Steiner 4-spanner with O(n4/3) edges. However, no construction of additive
spanners with o(n3/2) edges or Steiner additive spanners with o(n4/3) edges are known so

far. We devise a construction of additive O(21/δn
(1−δ) �1/δ�−2

�1/δ�−1 )-spanner with O(n1+δ) edges
for any graph and any δ > 01.
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1 Introduction

A graph G′ = (V,E ′) is a subgraph of an unweighted graph G = (V,E) if E ′ ⊆ E. The distance from
a vertex u to a vertex w in G, denoted dG(u, w), is the number of edges in the shortest (in terms
of the number of edges) path from u to w in G. Note that the distances in a subgraph G′ may be
only greater than the corresponding distances in G. A (possibly weighted) graph G′ = (V ′, E ′, ω)
is a Steiner graph of G if V ⊆ V ′, and for any pair of vertices u, w ∈ V , dG′(u, w) ≥ dG(u, w), and
for any edge e′ ∈ E ′, ω(e′) ≥ 0. Observe that any subgraph G′ of G is, in particular, its Steiner
graph. A subgraph or a Steiner graph G′ of G that approximates (in some sense) all the distances
in G is called a spanner. In particular, for a positive integer parameter κ, G′ is a κ-spanner of G,
if for any pair of vertices u, w in G, dG′(u, w) ≤ κ · dG(u, w). The number κ is called the stretch
or distortion factor of the spanner G′.

Spanners were intensively studied during the last fifteen years. They have multiple applications
in distributed computing [2, 3, 22, 14, 4] and computational geometry [9, 12]. Furthermore,
constructing a spanner and applying existing algorithms on it was used as an algorithmic technique
in [4, 10, 11, 14].

Peleg and Schäffer [21] have shown that for any positive integer κ and any n-vertex graph G
there exists a subgraph O(κ)-spanner G′ with O(n1+1/κ) edges. Note that this result indicates a
tradeoff between the stretch of the spanner and the number of edges it uses. This tradeoff was
shown to be essentially the best possible in [21], but some constant factors were improved later on
in [1, 8]. These papers also generalized the result to weighted graphs. Recently, Elkin and Peleg
[15, 14] have shown that the aforementioned tradeoff is tight only as far as the distortion of small
distances is considered, and can be almost eliminated whenever one is interested in approximating
the distances that are greater than certain constant. Specifically, it is shown there that for any pair
of parameters ε > 0, κ = 1, 2, . . . there exists a threshold β = β(ε, κ) such that for any n-vertex
graph G there exists a subgraph spanner G′ with O(n1+1/κ) edges such that for any pair of vertices
u, w that are at distance at least β one from another in G, the distance between in G′ is at most
by a factor 1 + ε greater than the one in G (i.e., dG′(u, w) ≤ (1 + ε) · dG(u, w)). In other words,
large distances can be approximated arbitrarily well by an arbitrarily sparse spanners. In view
of this result due to [15], it is natural to ask whether approximation is at all necessary whenever
large distances are under consideration, or, maybe large distances can be preserved using a sparse
spanner.

To address this question, we introduce a notion of a distance preserving subgraph, briefly, a
preserver. A subgraph G′ of a graph G is a D-preserver of G if for every pair of vertices u, w ∈ V
with dG(u, w) ≥ D, dG′(u, w) = dG(u, w). (The same definition applies to Steiner graphs as well.)
We show that any graph (respectively, digraph) has a subgraph D-preserver with at most O(n2/D)
edges (resp., arcs), and there are graphs and digraphs for which any undirected Steiner D-preserver
contains Ω(n2/D) edges (resp., arcs). However, we show that if one allows a directed Steiner (or,
shortly, diSteiner) D-preserver, then these bounds can be improved. Specifically, we show that

for any graph or digraph there exists a diSteiner D-preserver with O(n
2·logD
D·logn ) arcs, and that this

result is tight up to a constant factor. In particular, it follows that for any graph or digraph there
is a diSteiner 1-preserver with O(n2/ log n) arcs. Generalizing this result, we show that for any
graph (resp., digraph) with m ≥ c′ · n3/2 edges (resp., arcs), for some small constant c′ > 1, there
is a diSteiner 1-preserver with fewer than m arcs, and that a factor of logn

c log logn
(resp., log1−γ n) can
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be “saved” for m = n2/ logc n (resp., m = n2/2logγ n) for any c > 0 (resp., 0 < γ < 1). We also
show that for any bipartite graph with m edges and girth greater than 4, any diSteiner 1-preserver
contains at least m arcs, and as there are such graphs with m = (1/2 + o(1))n3/2 edges, it follows
that this upper bound cannot be generalized to graphs with m ≤ (1/2)n3/2 edges.

Our proof of the existence of sparse diSteiner preservers uses the following theorem.

Theorem 1.1 (cf. [5]) Let G be an n-vertex graph with average degree d, and t = 1, 2, . . .,
s = t, t + 1, . . ., such that n

(
d
t

)
> (s− 1)

(
n
t

)
. Then G contains a Ks,t (complete bipartite subgraph

with one bipartition of size s and another of size t).

In order to convert our proof of existence of diSteiner D-preservers into a polynomial time algorithm
for computing them, we devised a constructive proof of Theorem 1.1. This proof might be of
independent interest in the context of Ramsey theory. From algorithmic perspective, this proof
may serve as an algorithm for computing a subgraph isomorphic to Ks,t in a graph that satisfies the
assumptions of Theorem 1.1. The complexity of this algorithm is O(n2 · t). We use this result for

devising an algorithm with running time O(n4 (log logn)2

logn
) (resp., O(m3 ·n)) for computing a diSteiner

1-preserver (resp., D-preserver) with O(n2/ log n) (resp., O(n
2 logD
D·logn )) arcs for an arbitrary n-vertex

graph with m edges. We remark that any improvement of a factor of Ω(n) in the running time of
an algorithm for constructing a diSteiner 1-preserver would have some interesting applications to
efficient computation of distances in dense graphs (by computing their diSteiner 1-preserver, and
performing distance computations on the 1-preserver, assuming that the latter is sparser than the
original graph).

In particular, our results address the aforementioned question and show that approximation of
large distances is indeed necessary as far as arbitrarily sparse spanners are considered, as there
exist infinite families of graphs in which large distances cannot be preserved by a sparse spanner.

We also generalize the definition of D-preserver, and say that G′ is a (D, g)-preserver of G if
for any pair of vertices u, w ∈ V such that dG(u, w) ≥ D, we have dG′(u, w) ≤ dG(u, w) + g. In
this context, we show upper and lower bounds on the maximal number m1 of edges in a graph for
which any subgraph (D, g)-preserver contains at least m1 edges. We show that Ω(n

1+c0/(g+2)

g·Dc0/(g+2) ) =

m1 = O(n
1+1/�g/4�

D1/�g/4� ), where 4/3 ≤ c0 ≤ 2, and under Erdős girth conjecture, c0 = 2. The lower
bound serves also as a lower bound on the minimal number m2 such that any graph has a subgraph
(D, g)-preserver with m2 edges. However, so far we were not able to prove a non-trivial upper
bound on the size of (D, g)-preservers, and, in particular, it is not clear to us whether these two
dual notions m1 and m2 are equal.

We also study the problem of preserving long distances in the context of distance labeling
schemes. Distance labeling scheme is a pair of functions (M,D). The labeling function M, given
a graph G and a vertex v, returns a bit string, often called the label of v. The query-answering
function D, given a pair of labels, returns an estimate of the distance between the corresponding
pair of vertices.

The problem of devising distance labeling schemes with short labels was introduced in [20],
and is intensively studied till then [17, 25, 24]. We consider D-preserving labeling schemes, that
are schemes that satisfy D(M(G, u),M(G,w)) = dG(u, w) for any graph G = (V,E) and pair of
vertices u, w ∈ V such that dG(u, w) ≥ D. We show that there exists a D-preserving labeling
scheme with labels of size O( n

D
log2 n), and that labels of size Ω( n

D
log D) are required for any

D-preserving labeling scheme.
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Finally, we study additive spanners. A subgraph G′ of an undirected graph G = (V,E) is
its additive β-spanner if for any pair of vertices u, w ∈ V , dG′(u, w) ≤ dG(u, w) + β. (The same
definition applies to Steiner graphs as well.) It is known [13, 15] that for any unweighted undirected
n-vertex graph there exists an additive 2-spanner with O(n3/2) edges, and an additive Steiner 4-
spanner with O(n4/3) edges. However, to the best of our knowledge, no construction of additive
spanners with o(n3/2) edges or Steiner additive spanners with o(n4/3) edges are known.

It is implicit in [15] that the existence of a D-preserver with m edges for a graph implies
the existence of an additive O(D)-spanner with the same number of edges for the same graph.
Hence, our aforementioned results concerning D-preservers imply that for any n-vertex graph and
for any δ > 0 there exists an additive O(n1−δ)-spanner with O(n1+δ) edges. We improve upon

this and devise a construction of additive O(21/δn(1−δ) �1/δ�−2
�1/δ�−1 )-spanners with O(n1+δ) edges for any

graph and any δ > 0. In particular, this implies a construction of additive O(n1/4+ε/2)-spanners
with O(n3/2−ε) edges and O(n1/3)-spanners with O(n4/3) edges and O(n4/9+(2/3)ε)-spanner with
O(n1/3−ε) edges (for additive Steiner spanners we achieve slightly better results). This construction
is based on the construction of (1 + ε, β)-spanners due to Elkin and Peleg [15], and, in addition,
uses distance preservers. We provide a short sketch of this construction in this paper; the complete
proof will be described elsewhere.

Related work: After our basic results (the existence of subgraph D-preserver with O(n2/D)
edges and the lower bound of Ω(n2/D) on the number of edges in subgraph D-preservers) were
communicated to Mikkel Thorup, he devised [23] a more efficient randomized procedure for com-
puting a subgraph D-preserver of size O(n2 log n/D) (greater than optimal by a logarithmic factor).
This more efficient procedure uses some techniques of [26] from the area of dynamic algorithms.
The efficiency of the procedure of [23] makes it more suitable for algorithmic applications such
as (and this is, indeed, the motivation of [23]) computing shortest paths between pairs of vertices
that are at distance at least D one from another. We use a similar idea to devise D-preserving
labeling schemes.

Our algorithm for constructing sparse diSteiner 1-preservers for general graphs successively
extracts large bipartite cliques and replaces them by directed stars. Similar idea of extracting
large bipartite cliques was used by Feder and Motwani in [16] for constructing compressions of
graphs. The notion of compression graph is somewhat similar to the notion of Steiner graph, but
the distances in compression graph may be shorter than the distances in the original graph.

Structure of the paper: In Section 3 we show some preliminary results concerning additive
spanners that are derived quite easily from [15]. In Section 4 we discuss the issue of distance
preservation, which is the main topic of this paper. This section is divided into Subsection 4.2,
that is devoted to the lower bounds, and Subsection 4.3, that is devoted to the upper bounds. In
Section 4.3.2 we address the algorithmic aspects of our paper. In particular, this section contains
our constructive proof of Theorem 1.1 and a description of a D-preserving labeling scheme. Finally,
in Section 5 we sketch the proof of our results concerning the additive spanners.

2 Preliminaries

Given a digraph (resp., undirected graph) G = (V,E), a sequence of vertices P = (v0, v1, . . . , vs),
s ≥ 0, is called a walk if 〈vi, vi+1〉 (resp., (vi, vi+1)) belongs to E, for any i = 0, 1, . . . , s − 1. A
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walk P = (v0, v1, . . . , vs) is a path, if vi �= vj for any i, j = 0, 1, . . . , s, i �= j.
The head (resp., tail) of P , denoted head(P) (resp., tail(P)) is v0 (resp., vs). Given a path

P = (v0, v1, . . . , vs), and an arc 〈vi, vi+1〉 ∈ P , let prefix (P , 〈vi , vi+1 〉) (resp., suffix (P , 〈vi , vi+1 〉))
denote the path (v0, . . . , vi) (resp., (vi+1, . . . , vs)).

For a digraph (resp., undirected graph) G = (V,E), and an arc (resp., edge) e ∈ E, let Ge

denote the digraph (resp., undirected graph) (V,E \ {e}).
In an undirected graph G = (V,E), given a walk P = (v0, . . . , vs), and an edge e = (vi, vi+1) ∈

P , the (e, vi)-endpoint of P , denoted endpoint(P , e, vi), is v0. The (e, vi)-subpath of P , denoted by
subpath(P , e, vi), is (v0, . . . , vi).

Given two walks P1 = (v0, . . . , vs) and P2 = (vs, . . . , vt+s), t, s ≥ 0, the concatenation P1 · P2

is the walk (v0, . . . , vt+s). Obviously, the concatenation is associative, and so P1 · P2 · . . . · Pr is
well-defined, whenever for any i = 1, . . . , r − 1, Pi · Pi+1 is defined.

Given a (directed or undirected) graph G = (V,E), and a pair of vertices u, w ∈ V , let the
distance between u and w in G, denoted dG(u, w) or dE(u, w), be the length of the shortest path
from u to w in G. If no such a path exists, the distance is defined to be equal to infinity.

Let G = (V,E) be a (directed or undirected) graph, and v ∈ V be a vertex. Let Out(v ,G)
(resp., In(v ,G)) denote the set {u ∈ V | dG(v, u) �=∞} (resp., {u ∈ V | dG(u, v) �=∞}).

A digraph T = (V,ET ) is an out-tree (resp., in-tree) if it is acyclic and connected in the
undirected sense and there is a vertex v ∈ V , called the root, such that for any w ∈ V there exists
a unique directed path in T from v to w (resp., from w to v).

Given a digraph G = (V,E), and a vertex v ∈ V , an out-tree (resp., in-tree) T = (V ′, ET )
rooted at v is called the BFS spanning out-tree (resp., in-tree) of G rooted at v, denoted Tout(v,G)
(resp., Tin(v,G)), if V ′ = Out(v ,G) (resp., V ′ = In(v ,G)), and for any vertex w ∈ Out(v ,G)
(resp., w ∈ In(v ,G)), dT (v, w) = dG(v, w) (resp., dT (w, v) = dG(w, v)).

In an undirected graph G = (V,E), a sequence of vertices C = (v0, v1, . . . , vs, v0) is a cycle, if
vi ∈ V for any i = 0, 1, . . . , s, vi ∈ V , and for any i = 0, 1, . . . , s−1, (vi, vi+1) ∈ E and (vs, v0) ∈ E.
The length of the cycle C is s + 1.

For a graph G = (V,E), a vertex v ∈ V , and integer k = 0, 1, 2, . . ., let Γk(v,G) (resp.,
Γ̂k(v,G)) denote the set of vertices that are at distance precisely (resp., at most) k from v, i.e.,
Γk(v,G) = {u ∈ V | dG(v, u) = k}, Γ̂k(v,G) = {u ∈ V | dG(v, u) ≤ k}.

Given a digraph G = (V,E), and a positive integer distance threshold D, the D-path associated
with an arc e, denoted by P (e,D), is one of the shortest paths between its endpoints head(P(e,D))
and tail(P(e,D)) such that

dG(head(P(e,D)), tail(P(e,D))) = |P (e,D)| ≥ D , (1)

dGe(head(P(e,D)), tail(P(e,D))) > dG(head(P(e,D)), tail(P(e,D))) . (2)

Given an undirected graph G = (V,E), and a positive integer D, the D-path associated with the
edge e, denoted P (e,D), is one of the shortest paths between endpoint(P(e), e, v) and endpoint(P(e), e, z )
such that

dG(endpoint(P(e), e, v), endpoint(P(e), e, z )) = |P (e)| ≥ D , (3)

dGe(endpoint(P(e), e, v), endpoint(P(e), e, z )) > dG(endpoint(P(e), e, v), endpoint(P(e), e, z )) .(4)

Note that such a path may not exist, and, on the other hand, there may be several such paths. In
the latter case, set P (e,D) to be an arbitrary such a path.
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Throughout the paper, whenever the value of D is clear from the context, we use the notation
P (e) instead of P (e,D).

3 Additive Spanners: Preliminary Results

A subgraph G′ of a graph G = (V,E) is its (α, β)-spanner if for any pair of vertices u, w ∈ V ,
dG′(u, w) ≤ α · dG(u, w) + β. Our starting point is the following result from [15].

Theorem 3.1 [15] Given constants 0 < ε, δ < 1, there is a constant
β = β(δ, ε) = (1/δ)max{(log log 1/δ−log ε)(1−1/ log 1/δ),3} such that for any graph G, there exists a con-
structible in polynomial time (1 + ε, β)-spanner G′ = (V,E ′) and Steiner (1 + ε, β)-spanner
G′′ = (V ′′, E ′′, ω) with |E ′| = O(βn1+δ) and |E ′′| = O(n1+δ).

(The result about Steiner spanners is implicit in [15].) The next lemma follows from the
definitions.

Lemma 3.2 Let G′ be a (possibly Steiner) (α, β)-spanner of a graph G, and let u, w ∈ V (G) be a
pair of vertices. Then dG′(u, w) ≤ dG(u, w) + ((α− 1)dG(u, w) + β).

Proof: By definition of (α, β)-spanner. dG′(u, w) ≤ α·dG(u, w)+β = dG(u, w)+((α−1)dG(u, w)+
β).

Corollary 3.3 An (α, β)-spanner G′ of an n-vertex graph G is an additive ((α−1)·n+β)-spanner
of G.

Obviously, the same statement is true for Steiner spanners as well. Theorem 3.1 and Lemma
3.2 imply

Lemma 3.4 Given n = 2, 3, . . ., Ω(1/ log n) = δ < 1, t = 1, 2, . . . , n − 1 and an n-vertex graph
G = (V,E), there exists a subgraph G′ = (V,E ′), |E ′| = O(n1+δtδ), and Steiner graph G′′ =
(V ′′, E ′′, ω), |E ′′| = O(n1+δ), such that for any pair of vertices u, w ∈ V such that dG(u, w) ≤ t,

dG′(u, w) ≤ dG(u, w) (5)

+ O(1/δ · t1−
1

(1/δ)(log(1/δ)−1) ) ,

dG′′(u, w) ≤ dG(u, w) (6)

+ O((t · log(1/δ))1−1/ log(1/δ)) .

Proof: By Theorem 3.1, for any ε, δ > 0, and for any n-vertex graph G, there exists a Steiner
(1+ε, β)-spanner, β = β(δ, ε) with O(n1+δ) edges. By Lemma 3.2, for any pair of vertices u, w ∈ V ,

dG′′(u, w) ≤ dG(u, w) + (ε · dG(u, w) + β) .

Hence, for any pair of vertices u, w ∈ V such that dG(u, w) ≤ t,

dG′′(u, w) ≤ dG(u, w) + (ε · t + β) . (7)
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Set ε = 8
t1/ log(1/δ) · (log1− 1

log(1/δ) 1/δ) . Then ε · t = 8 · (t · log(1/δ))1−1/ log(1/δ). Straightforward

computation shows also that β(δ, ε) = 8 · (t · log(1/δ))1−1/ log(1/δ) as well. Hence, by inequality (7),
dG′′(u, w) ≤ dG(u, w) + 16 · (t · log(1/δ))1−1/ log(1/δ).

To prove inequality (6), note that analogously to (7), it follows that there exists a subgraph
G′ = (V,E ′) with O(n1+δβ) edges such that for any pair of vertices u, w ∈ V with dG(u, w) ≤ t,

dG′(u, w) + (ε · t + β). Set ε = 8/δ

tδ/(log(1/δ)−1) . Now, a straightforward computation implies that

ε · t + β(δ, ε) ≤ (8/δ) · t1−
δ

log(1/δ)−1 + 8 · tδ. Also, |E ′| = O(n1+δβ(δ, ε)) = O(n1+δtδ).

Setting t = n implies that

Corollary 3.5 Given n = 2, 3, . . ., Ω(1/ log n) = δ < 1, and an n-vertex graph G, there exists an

additive O(1/δ · n1− δ
2 log 1/δ )-spanner G′ and Steiner additive O((n log 1/δ)1−1/ log(1/δ))-spanner G′′

of G, both with O(n1+δ) edges.

Proof: The first assertion follows from Lemma 3.4 by setting δ′ = 2δ. The second assertion is
an immediate consequence of Lemma 3.4.

Later on (Section 5) we will show that inequality (5) can be improved to (roughly) dG′(u, w) ≤
dG(u, w) +O(t1−δ), and, consequently, the additive error of the spanner G′ in Corollary 3.5 can be
improved to (roughly) O(n1−2δ) by appropriate modification of the arguments of [15] (note that
the proof of Lemma 3.4 uses Theorem 3.1 as a blackbox).

Note also that in Corollary 3.5, n may be replaced by Diam(G). The obtained statement
generalizes the observation that for any graph G there is an additive Diam(G)-spanner G′ that
forms a tree.

However, already the results of Lemma 3.4 suggest that a possible direction towards improving
the bounds of Corollary 3.5 could be showing that distances between remote pairs of vertices can
be preserved using sparse subgraphs. We elaborate on this in the next section.

4 Distance Preservation

4.1 Discussion

Note that Theorem 3.1 implies that for any fixed ε, δ > 0 there exists fixed β ′ = β ′(δ, ε) such
that for any undirected graph G = (V,E) there exists a subgraph G′ = (V,E ′), E ′ ⊆ E with
|E ′| = O(n1+δ) edges that approximates within a multiplicative factor of 1 + ε all the distances
that are already greater than β ′. We start with showing that this result is optimal in the sense
that (1 + ε)-approximation is necessary, and, furthermore, for any fixed δ > 0 there is no fixed
β ′ = β ′(δ) such that for any undirected graph G = (V,E) there exists a subgraph G′ = (V,E ′),
E ′ ⊆ E with |E ′| = O(n1+δ) edges that preserves all the distances already greater than β ′.

To facilitate the discussion, let us introduce some definitions.

Definition 4.1 For D = 1, 2, . . ., a subgraph G′ = (V,E ′) of a graph G = (V,E) is said to
be a (subgraph) D-preserver of G, if for any pair of vertices u, w ∈ V with dG(u, w) ≥ D,
dG′(u, w) = dG(u, w).

The definition extends in a natural way to Steiner D-preservers.

7



Definition 4.2 For n = 2, 3, . . . and D = 1, 2, . . . , n − 1, let f(D, n) (resp., fS(D, n)) be the
minimal number such that for any n-vertex graph there exists a subgraph (resp., Steiner) D-
preserver with at most f(D, n) (resp., fS(D, n)) edges. Also, let f̄(D, n) (resp., f̄S(D, n)) be the
maximal number m of edges in an n-vertex graph whose any subgraph (resp., Steiner) D-preserver
contains at least m edges.

On directed graphs, let f dir(D, n), f̄dir(D, n), fdirS (D, n) and f̄dirS (D, n) denote the correspond-
ing quantities.

The equality between these dual notions follows from their definitions.

Lemma 4.3 For n = 2, 3, . . . and D = 1, 2, . . . , n− 1, f(D, n) = f̄(D, n).

Proof: By definition of f̄(D, n), there exists an n-vertex graph G0 with f̄(D, n) edges whose any
D-preserver contains at least f̄(D, n) edges. By definition of f(D, n), for any n-vertex graph G,
there exists a D-preserver with at most f(D, n) edges. In particular, there is a D-preserver of G0

with m′ ≤ f(D, n) edges. As m′ ≥ f̄(D, n), it follows that f̄(D, n) ≤ f(D, n).
For the opposite direction, note that by the definition of f(D, n), there exists an n-vertex graph

G1 = (V1, E1) such that any D-preserver of G1 contains at least f(D, n) edges, and at least one of
them contains precisely f(D, n) edges. Consider the D-preserver G′

1 of G1 that contains precisely
f(D, n) edges. For any pair of vertices u, w ∈ V1 such that dG1(u, w) ≥ D, dG′

1
(u, w) = dG1(u, w).

Consider some subgraph G′′
1 = (V1, E

′′
1 ) of G′

1 such that E ′′
1 is a strict subset of E ′

1 (i.e., E ′′
1 ⊂ E ′

1).
As |E ′′

1 | < |E ′
1| = f(D, n), it follows that G′′

1 is not a D-preserver of G1. I.e., there is a pair of
vertices u, w ∈ V1 such that dG1(u, w) ≤ D, but dG′′

1
(u, w) > dG1(u, w) = dG′

1
(u, w). Hence, G′′

1 is
not a D-preserver of G′

1 as well. Hence any D-preserver of G′
1 contains at least f(D, n) edges. As

f̄(D, n) is the maximal number of edges in a graph whose any D-preserver contains at least the
same number of edges as the graph itself, it follows that f(D, n) ≤ f̄(D, n). This concludes the
proof.

Analogously, fS(D, n) = f̄S(D, n), fdir(D, n) = f̄dir(D, n) and fdirS (D, n) = f̄dirS (D, n). Also,
as any subgraph D-preserver is, in particular, a Steiner D-preserver, it follows that fS(D, n) =
f̄S(D, n) ≤ f(D, n) = f̄(D, n), and f dirS (D, n) = fdirS (D, n) ≤ fdir(D, n) = f̄dir(D, n).

4.2 Lower Bounds

4.2.1 Undirected Graphs

The following example shows that for 0 < δ < 1 there is no fixed D = D(δ) such that for any
undirected n-vertex graph G there exists a D-preserver G′ with O(n1+δ) edges. Consider a clique
of n1/2+δ/2 vertices (in this extended abstract we ignore the issue of a possible non-integrality
of different quantities; anyway this affects only the lower order terms), with a path of length
D = n1/2−δ/2 attached to every vertex. Denote this graph by G0 = (V0, E0).

Lemma 4.4 f(D, n) = f̄(D, n) = Ω(n2/D2).

Proof: Let W = {w1, w2, . . . , wn/D} be the set of the vertices of the clique, and U = {u1, u2, . . . , un/D}
be the set of the endpoints of the paths that do not belong to the clique. Assume also that wi’s
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and ui’s are ordered in such a way that for any i = 1, 2, . . . , n/D, wi and ui are two endpoints of
the same path of length D.

Note that |E0| = Θ(n1+δ) = Θ(n2/D2). Also, observe that no strict subgraph of G0 may serve
as a D-preserver for G0. This is because removing an edge from one of the paths makes the graph
disconnected. In particular, in this case the distance between the non-clique endpoint of the path
from which the edge was removed, and an endpoint of some other path, becomes infinity, and it is
2D − 1 ≥ D in G0. Also, removal of some sclique edge (wi, wj), i �= j, i, j = 1, 2, . . . , n/D results
in increasing the distance between ui and uj. Note that dG0(ui, uj) ≥ 2D. Hence, f̄(D, n) =
Ω(n2/D2). Therefore, by Lemma 4.3, f(D, n) = Ω(n2/D2).

Note that f(D, n) = Ω(n2/D2) and f(D, n) = O(n1+δ) implies D = Ω(n1/2−δ/2). In other
words, for any 0 < δ < 1, there are n-vertex graphs for which any subgraph with O(n1+δ) edges is
not a D-preserver, for any D = o(n1/2−δ/2).

Note, however, that the graph G0 does admit a Steiner 1-preserver of linear size. In this Steiner
graph V ′

0 = V0 ∪ {s}, and the clique of size n/D in G0 is replaced in G′
0 by a star rooted in the

new vertex s. All the edges of this star are of weight 1/2. The paths remain unchanged.
Next, we show that

f̄S(D, n) ≥ n2/4D . (8)

This improves the lower bound of Lemma 4.4 in two respects. First, this lower bound applies to
Steiner D-preservers, while the lower bound of Lemma 4.4 applies only to subgraph D-preservers.
Second, this lower bound is stronger by a factor of Θ(D) than that of Lemma 4.4.

Consider the following example. Let G1 = (V1, E1) be an n/2×n/2D complete bipartite graph
between the vertex sets X = {x1, x2, . . . , xn/2} and Y = {y1, y2, . . . , yn/2D} with paths of length
(D − 1) attached to each yi, that connect yi with zi for i = 1, 2, . . . , n/2D. It is easy to see that
the only subgraph D-preserver of G1 is G1 itself. As the graph contains |E| ≥ n2/4D edges, a

lower bound of f(D, n) = f̄(D, n) ≥ n2/4D follows. Let /G1 be the digraph obtained by replacing

every edge of G1 by two arcs, one in each direction. As the only subgraph D-preserver of /G1 is
/G1, a lower bound on fdir(D, n) follows:

fdir(D, n) = f̄dir(D, n) ≥ n2/2D . (9)

However, the analogous lower bound for Steiner D-preservers applies only to the undirected case
and requires a more delicate treatment (it is easy to see that /G1 admits a directed Steiner 1-
preserver with linear number of edges).

Consider an (undirected) Steiner D-preserver G′
1 = (V ′

1 , E
′
1, ω) of G1. Assume, without loss

of generality, that ω(e) > 0 for an edge e ∈ E ′. (Recall that by the definition of a Steiner
graph, ω(e) ≥ 0.) Indeed, consider an edge e = (u, w) such that ω(e) = 0. First, note that either
u ∈ V ′

1\V1 or w ∈ V ′
1\V1 (or both of them). This is because if u, w ∈ V1 then dG′

1
(u, w) ≥ dG1(u, w),

by definition of Steiner graph. Therefore, the edge (u, w) can be contracted (and if one of the
vertices belongs to V1, then the other one is eliminated) without changing the distances between
the pairs of vertices s, t ∈ V1.

In addition, for every pair (i, j) ∈ {1, 2, . . . , n/2}×{1, 2, . . . , n/2D}, let us associate a shortest
path Pi,j between xi and zj.

Next, we describe Procedure Extract that will be used later on in the proof of inequality (8).
The procedure accepts as input a graph G′, and returns nothing. However, throughout the proof
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we will refer to the values of different variables in different stages of the execution of the procedure.
The input graph of the procedure will be a Steiner D-preserver G′

1 of G1. The procedure initializes
the set UE of unused edges to contain the entire edgeset E ′ of G′. It also initializes the set UP
of uncovered pairs to contain all possible pairs {(i, j) | i = 1, 2, . . . , n/2, j = 1, 2, . . . , n/2D}. The
sets of used edges, CE, and covered pairs, CP , are both initialized to be empty sets. The main
loop of the procedure runs while there is at least one uncovered pair (i, j). Inside the main loop,
the procedure initializes the set of edges covered in this iteration, CE0, to be an empty set, picks
an uncovered pair (i, j), removes it from the set of uncovered pairs UP , inserts it into the set
of covered pairs CP , removes the edgeset of Pi,j from the set of unused edges UE and inserts it
into the set CE0. Then throughout the internal loop, the procedure looks for pairs (i′, j′) such
that edgesets of Pi′,j′ share at least one edge with CE0, that is, with one of the other paths that
were picked through the same iteration of the main loop. Upon finding such a pair, the procedure
inserts it into CP , removes it from UP , inserts its edgeset into CE0 and removes it from UE. The
procedure leaves the internal loop whenever all the paths Pi′,j′ that correspond to uncovered pairs
(i′, j′) share no edge with CE0. The main loop continues while not all the pairs are covered.

The idea of the proof is to associate with each pair (i, j) an edge e′ ∈ E ′ of the Steiner D-
preserver G′ via an injective mapping that is defined implicitly by Procedure Extract . It will follow
that |E ′| ≥ |{1, 2, . . . , n/2} × {1, 2, . . . , n/2D}| = n2/4D. The formal description of Procedure
Extract follows.

Procedure Extract

1. UE ← E ′; UP ← {(i, j) | i = 1, 2, . . . , n/2, j = 1, 2, . . . , n/2D}; CE,CP,CE0 ← ∅;

2. While ((UP �= ∅) and (UE �= ∅)) do
begin (steps 3-5)

3. Pick (i, j) ∈ UP ; set UP ← UP\{(i, j)}; CP ← CP∪{(i, j)}; CE0 ← CE0∪E ′(Pi,j); UE ←
UE \ E ′(Pi,j);

4. While ∃(i′, j′) ∈ UP s.t. CE0 ∩E ′(Pi′,j′) �= ∅ do
CP ← CP ∪{(i′, j′)}; UP ← UP \{(i′, j′)}; CE0 ← CE0∪E ′(Pi′,j′); UE ← UE \E ′(Pi′,j′);

5. CE ← CE ∪ CE0; CE0 ← ∅;
end

Consider an execution of an invocation Extract(G ′) for some Steiner D-preserver G′ of G1. Let
k be the number of iterations of the main loop during the invocation. Note that k is finite as in
every iteration of the main loop at least one pair (i, j) is eliminated from UP . For l = 1, 2, . . . , k
let UPl, CPl, UEl and CEl be the values of the variables UP , CP , UE and CE at the beginning
of the lth iteration. Also, let UPk+1, CPk+1, UEk+1 and CEk+1 be the values of these variables at

the end of kth iteration. In addition, let ĈP l = CPl+1 \ CPl and ĈEl = CEl+1 \ CEl.
Consider some fixed execution of an invocation Extract(G ′). This execution can be divided

into disjoint time periods, one time period for each step of the execution. Let t1, t2, t3, . . . be points
on the axis of time, where after tp time units p steps of the execution were already completed,
and (p+ 1)st step still did not start. Let UP (p), CP (p), UE(p), CE(p) and CE0(p) be the values
of the variables UP , CP , UE, CE and CE0 after tp time units. For l = 1, 2, . . . , k, let jl be
the index such that the lth iteration of the main loop starts after tjl time units. In particular,

10



UPl = UP (tjl), CPl = CP (tjl), UEl = UE(tjl) and CEl = CE(tjl), for l = 1, 2, . . . , k. The next
lemmas illustrate some properties of these quantities.

Lemma 4.5 For p = 1, 2, . . .,

UP (p) ∪ CP (p) = {(i, j) | i = 1, 2, . . . , n/2, j = 1, 2, . . . , n/2D} , (10)

UE(p) ∪ CE(p) ∪ CE0(p) = E ′ . (11)

Proof: By induction on p. The induction base (p = 1) follows from Step 1.
For the induction step, assume (10) and (11) for some p = 1, 2, ... If during the interval

[tp, tp+1], the step that was executed affected no variable among UP , CP , UE, CE and CE0 then
the assertion follows from the induction hypothesis. Hence, it remains to consider the steps 3, 4
and 5. In the steps 3 and 4 whatever is inserted into CE0 is removed from UE, and whatever is
inserted into CP is removed from UP . In step 5 whatever is inserted into CE is removed from
CE0. Hence, the assertion follows from the induction hypothesis.

Lemma 4.6 For any l = 1, 2, . . ., and any pair (i, j) ∈ UPl, E ′(Pi,j) ⊆ UEl.

Proof: Suppose for contradiction that there exists a pair (i, j) ∈ UPl such that E ′(Pi,j) �⊆ UEl.
By Lemma 4.5, and as in the beginning of every iteration CE0 = ∅, it follows that E ′(Pi,j) ⊆
UEl ∪ CEl = E ′. Hence, E ′(Pi,j) ∩ CEl �= ∅. Let e be an edge in E ′(Pi,j) ∩ CEl. Observe that as
CE1 = ∅,

CEl = CEl−1 ∪ ĈEl−1 = CEl−2 ∪ ĈEl−2 ∪ ĈEl−1

= CE1 ∪
l−1⋃
k=1

ĈEk =
l−1⋃
k=1

ĈEk .

Hence, there exists an index k = 1, 2, . . . , l− 1 such that e ∈ ĈEk. Hence, e was inserted into CE
on the kth iteration of the main loop of the invocation Extract(G ′). This could happen only on
step 5. Hence e was inserted into CE0 before the execution left the internal while loop (step 4)
on the kth iteration of the main loop. Note also that (i, j) ∈ UP (p), for any step p ∈ [tjk , tjk+1−1].
Hence, on the step when the execution left the internal while loop on the kth iteration of the
main loop, the edge e was in CE, the pair (i, j) was in UP . Recall also that e ∈ E ′(Pi,j). But
this contradicts the exit condition of the internal while loop. Hence, for any pair (i, j) ∈ UPl,
E ′(Pi,j) ⊆ UEl.

Corollary 4.7 For any two distinct indices l1, l2 = 1, 2, . . . , k, l1 �= l2, ĈP l1 ∩ ĈP l2 = ∅. ĈEl1 ∩
ĈEl2 = ∅.

Proof: The first assertion of the corollary follows directly from the fact that all pairs that are
inserted into CP are drawn out of UP (i.e., belong to UP at the time of insertion into CP , and
are removed from UP at the same time as they are inserted into CP ). For the second assertion,
note that by Lemma 4.6, all edges that are inserted into CE are drawn out of UE (i.e., belong to
UE at the time of insertion into CE).

The next next lemma shows that ĈEl has a very convenient structure.

11



Lemma 4.8 Let G′ = (V ′, E ′, ω) be a Steiner D-preserver of G and let l = 1, 2, . . . , k. Then

ĈEl =
⋃

P∈Π E ′(P ), where Π = {Pi1,j, Pi2,j, . . . , Pir,j}, {i1, i2, . . . , ir} is an r-subset of {1, 2, . . . , n/2},
and j ∈ {1, 2, . . . , n/2D}.

Proof: First, note that ĈEl =
⋃

P∈Π E ′(P ) for Π ⊆ {Pi,j | (i, j) ∈ {1, 2, . . . , n/2}×{1, 2, . . . , n/2D}}.
It remains to prove that for every pair of paths Pi,j, Pi′,j′ ∈ Π, j = j′. Consider a subset ĈE ⊆ ĈEl

that was formed on the lthe iteration of the main loop after p = 0, 1, 2, . . . executions of the inter-
nal loop were completed (this is the value of the variable CE0 after p iterations of the internal loop

on the lth iteration of the main loop). Observe that ĈE =
⋃

P∈Π̂ E ′(P ) for some subset Π̂ ⊆ Π.

Let us show by induction on p that for any Pi,j, Pi′,j′ ∈ Π̂, the indices j and j′ are equal. To

start the induction, note that whenever p = 0, the set Π̂ contains a single path. For the induction
step, assume the induction hypothesis for some p. Let Pi′,j′ be the path whose edgeset is added into

ĈEl in the (p+1)st iteration of the internal loop. Let ĈE
′
be the value of the variable CE after the

pth iteration of the internal loop. By the exit condition of the internal loop, ĈE ∩ E ′(Pi′,j′) �= ∅.
Hence there exists a path Pi,j ∈ Π̂′, where ĈE

′
=
⋃

P∈Π̂′ E ′(P ), such that E ′(Pi,j)∩E ′(Pi′,j′) �= ∅.
Note that ĈE =

⋃
P∈Π̂ E ′(P ), Π̂ = Π̂′ ∪ {(i′, j′)}, and by the induction hypothesis, for every path

Pi′′,j′′ ∈ Π̂′, j′′ = j. Let e ∈ E ′(Pi,j) ∩ E ′(Pi′,j′). Let w be the closer endpoint of e = (u, w) to zj .
Then, as G′ is a D-preserver of G1, and dG1(xi, zj) = D, and ω(e) > 0,

dG′(zj , w) ≤ dG′(xi, zj)− ω(e) = dG1(xi, zj)− ω(e) = D − ω(e) < D .

Furthermore,

dG′(zj , zj′) ≤ dG′(zj, w) + dG′(w, zj′) < D + dG′(w, zj′) ≤ 2D .

(The last inequality is because w lies on Pi′,j′, which is the shortest path in G′ between xi′ and
zj′; note also that dG′(xi′ , zj′) = dG(xi′ , zj′) = D.) Hence, dG′(zj , zj′) < 2D. It follows that j = j′,
as otherwise dG′(zj , zj′) < dG(zj, zj′) = 2D.

This structure of ĈEl enables to derive the following inequality.

Lemma 4.9 Consider a Steiner D-preserver G′ = (V ′, E ′, ω) of G1. Let l = 1, 2, . . . , k, and

ĈEl =
⋃

P∈Π E ′(P ). Then |ĈEl| ≥ |Π|.

Proof: By induction on |Π|. The induction base is |Π| = 1. Let Π = {Pi,j}. Then ĈEl = E ′(Pi,j).
As Pi,j is a path between two different vertices xi and zj, it follows that |E ′(Pi,j)| ≥ 1, completing
the proof of the induction base.

For the induction step, recall that by Lemma 4.8, Π = {Pi1,j, Pi2,j , . . . , Pir ,j}. By the induction
hypothesis, |

⋃r−1
p=1 E

′(Pip,j)| ≥ r − 1. Recall that Pir ,j is a path between xir and zj . Note that
xir �∈ {xi1 , xi2 , . . . , xir−1}. Also, xir is not an internal vertex of Pip,j for some p = 1, 2, . . . , r − 1.
Indeed, otherwise dG′(xir , zj) < dG′(xip , zj), but G′ is a D-preserver of G, and so dG(xir , zj) =

dG(xip , zj) = D = dG′(xir , zj) = dG′(xip, zj). This is a contradiction. Hence xir �∈
⋃r−1

p=1 V
′(Pip,j).

But xir , zj ∈ V ′(Pir ,j).
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Let u be the closest vertex to xir that belongs to the set
(⋃r−1

j=1 V ′(Pip,j)
)
∩ V ′(Pir,j). Note

that xir �= u, because xir �∈
⋃r−1

j=1 V ′(Pip,j). Let P denote the subpath of Pir,j between xir and u.
Observe that

E ′(P ) ∩
(
r−1⋃
j=1

E ′(Pip,j)

)
= ∅ .

Also,|E ′(P )| ≥ 1. Hence

|
r⋃

p=1

E ′(Pip,r)| ≥ |
r−1⋃
p=1

E ′(Pip,r) ∪ E ′(P )| = |
r−1⋃
p=1

E ′(Pip,r)|+ |E ′(P )| ≥ |
r−1⋃
p=1

E ′(Pip,r)|+ 1 .

By induction hypothesis, |
⋃r−1

p=1 E
′(Pip,r)| ≥ r − 1. Hence, |

⋃r
p=1 E

′(Pip,r)| ≥ (r − 1) + 1 = r.

Corollary 4.10 For any l = 1, 2, . . . , k, |ĈEl| ≥ |ĈP l|.

Proof: Note that whenever ĈEl =
⋃

P∈Π E ′(P ), ĈP l = {(i, j) | Pi,j ∈ Π}. Hence, |ĈP l| = |Π|.
Now the assertion follows from Lemma 4.9.

Suppose for contradiction that |E ′| < n2/4D. The following lemma holds under this assump-
tion.

Lemma 4.11 For a Steiner D-preserver G′ = (V ′, E ′, ω) with |E ′| < n2/4D, and l = 1, 2, . . . , k,
|UPl| > |UEl|.
Proof: By induction on l. For the induction base note that

|UP1| = |{(i, j) | i = 1, 2, . . . , n/2, j = 1, 2, . . . , n/2D}| = n2/4D > |E ′| = |UE1| .
For the induction step, assume for some l = 1, 2, . . . , k − 1 that |UPl| > |UEl|. Note that

UPl = UP1 \
⋃l−1

j=1 ĈP j , and ĈP l ∩ (
⋃l−1

j=1 ĈP j) = ∅. As ĈP l ⊆ UP1, it follows that ĈP l ⊆ UPl,

and so |UPl+1| = |UPl \ ĈP l| = |UPl| − |ĈP l|. Analogous consideration using Corollary 4.10

for ĈE implies that |UEl+1| = |UEl \ ĈEl| = |UEl| − |ĈEl|.
By the induction hypothesis, |UPl| > |UEl|, and by Corollary 4.10, |ĈP l| ≤ |ĈEl|. Hence,

|UPl+1| = |UPl| − |ĈP l| > |UEl| − |ĈEl| = |UEl+1|.
To summarize,

Theorem 4.12 For any n = 2, 3, . . . and D = 1, 2, . . . , n− 1, fS(D, n) = f̄S(D, n) ≥ n2/4D.

Proof: Recall that UPk+1 and UEk+1 are the values of the variables UP and UE, respectively,
at the time of leaving the main loop of the invocation Extract(G ′). Note that either UPk+1 = ∅
or UEk+1 = ∅. As by Lemma 4.11, |UPk+1| > |UEk+1|, it follows that UEk+1 = ∅ and UPk+1 �= ∅.
Recall that ∅ = UEk+1 = UEk \ ĈEk = UEk−1 \ (ĈEk ∪ ĈEk−1) = . . . = UE1 \

⋃k
l=1 ĈEl.

Hence E ′ = UE1 =
⋃k

l=1 ĈEl. Let (i, j) ∈ UPk+1. Note that E ′(Pi,j) ⊆ E ′ =
⋃k

l=1 ĈEl. Hence

there exists an index l = 1, 2, . . . , k such that E ′(Pi,j) ∩ ĈEl �= ∅. However, this contradicts the
assumption that the invocation Extract(G ′) left the internal loop (step 4) on the lth iteration of
the main loop. This is a contradiction to the assumption that |UE1| = |E ′| < n2/4D = |UP1|.
Therefore, in any Steiner D-preserver G′ = (V ′, E ′, ω) of the n-vertex graph G1 = (V1, E1),
|E ′| ≥ n2/4D.
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4.2.2 Directed Graphs and Distance-Preserving Labeling Schemes

We next turn to proving a lower bound on f̄dirS (D, n) = fdirS (D, n).

Consider again the digraph /G1 mentioned in Section 4.2.1. Recall that the only subgraph D-
preserver of /G1 = (V1, /E1) is the digraph itself (see inequality (9) and, also, any undirected Steiner
D-preserver of this graph requires Ω(n2/D) edges. However, as we mentioned, this digraph does
admit a directed Steiner 1-preserver G′

1 = (V ′
1 , E

′
1, ω) with linear number of edges. Specifically,

V ′
1 = V1 ∪ {sl, sr}. Every vertex x ∈ X ⊆ V1 is connected via an outgoing arc 〈x, sl〉 to sl, and

via an incoming arc 〈sr, x〉 to sr. Also, every vertex y ∈ Y ⊆ V1 is connected via an incoming
arc 〈sl, y〉 to to sl, and via an outgoing arc 〈y, sr〉 to sr. All these arcs are of weight 1/2. The
paths between yi and zi for i = 1, 2, . . . , n/2D are not modified. It is easy to see that for every
pair of vertices u, w ∈ V1, dG′

1
(u, w) = d �G1

(u, w). Also, |E ′
1| ≤ 3/2n + n/D. Hence, the digraph

/G1 cannot serve as an example that shows that f dirS (D, n) = Ω(n2/D). Furthermore, we will show

in Section 4.3 that this claim is not true, and f dirS (D, n) = O(n
2 logD
D logn

). In particular, it will follow

that for D = O(1), for any digraph there is a directed Steiner, referred later on as a diSteiner,
D-preserver with O(n2/ log n) arcs, where all the arcs are of weight 1 or 1/2. This separates the
directed case from the undirected one, as fS(D, n) = Ω(n2/D) (see Theorem 4.12). Generalizing
this upper bound, it will be shown there that for any digraph with O(n2/2logγ n) arcs, 0 < γ < 1,

a factor of Θ( log1−γ n
log logn

) can be “saved” using a diSteiner 1-preserver. Furthermore, some constant

factor can be “saved” all the way to n3/2. We next argue that there are n-vertex graphs G with
m = Ω(n3/2) arcs such that any diSteiner 1-preserver of G contains at least m arcs.

Let G = (U,W,E) be a bipartite graph with girth greater than 4. In other words, G contains
no subgraph isomorphic to K2,2.

We next argue that every diSteiner 1-preserver of G contains at least |E| arcs.

Lemma 4.13 Let G′ = (V ′, E ′, ω) be a diSteiner 1-preserver of G. Then |E ′| ≥ |E|.

Proof: Let G′ be a diSteiner 1-preserver of the bipartite graph G = (U,W,E). It follows that
for any edge e = (u, w) ∈ E there exists a path Pe = Pu,w in G′ of length 1. Associate such a path
Pe with every edge e ∈ E (if there are several such paths, pick one of them arbitrarily). We next
argue that

|
⋃
e∈E

E ′(Pe)| ≥ |E| .

This would imply |E ′| ≥ |E|, as |E ′| ≥ |
⋃

e∈E E ′(Pe)|.
Consider an arbitrary ordering (e1, e2, . . . , e|E|) of the edges of E. Let Ek =

⋃k
i=1 E

′(Pei
).

Lemma 4.14 |Ek| ≥ k, for k = 1, 2, . . . , |E|.

Proof: The proof is by induction on k. For the induction base (k = 1), note that |E1| =
|E ′(Pe1)| ≥ 1.

Assume the induction hypothesis for some k = 1, 2, . . . , |E| − 1. It remains to argue that
|Ek+1 \ Ek| ≥ 1. Let ek+1 = (u, w). Let E(u, w) = {(u′, w′) ∈ Ek | E ′(Pu′,w′) ∩ E ′(Pu,w) �= ∅}.
Observe that for any edge (u′, w′) ∈ E(u, w), either u = u′ or w = w′. Indeed, otherwise let
s ∈ V ′(Pu,w)∩V ′(Pu′,w′). Denote by Pu,s (resp., Pu′,s) the subsegment of Pu,w (resp., Pu′,w′) from u
(resp., u′) to s, and by Ps,w (resp., Ps,w′) the subsegment of Pu,w (resp., Pu′,w′) from s to w (resp.,
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w′). Note that 1 = |Pu,w| = |Pu,s| + |Ps,w| = |Pu′,w′| = |Pu′,s| + |Ps,w′|. Suppose for contradiction
that |Pu,s| < |Pu′,s|. But then d′G(u, w′) ≤ |Pu,s|+|Ps,w′| < |Pu′,s|+|Ps,w′| = |Pu′,w′| = 1 ≤ dG(u, w′),
i.e., dG′(u, w′) < dG(u, w′), contradiction. The assumption |Pu′,s| < |Pu,s| yields a constradiction
in an analogous way. Hence, |Pu′,s| = |Pu,s|.

It follows that dG′(u, w) = dG′(u′, w′) = dG′(u, w′) = dG′(u′, w) = 1 = dG(u, w) = dG(u′, w′) =
dG(u, w′) = dG(u′, w). I.e., (u, w), (u′, w′), (u, w′), (u′, w) ∈ E, contradicting the assumption that
no K2,2 is contained in G.

So, for any edge (u′, w′) ∈ E(u, w) either u = u′ or w = w′. Note also that as (u, w) �∈Ek, it
follows that (u, w) �∈E(u, w), and thus either u �= u′ or w �= w′. Let Eu(u, w) = {(u′, w′) ∈ E(u, w) |
u = u′} and Ew(u, w) = {(u′, w′) ∈ E(u, w) | w = w′}. As we argued E(u, w) = Eu(u, w)∪Ew(u, w),
and, Eu(u, w) ∩ Ew(u, w) = ∅.

We next define a total order relation ≤v of the vertices of V ′(Pu,w) as follows. For a pair of
vertices x, y ∈ V ′(Pu,w), x ≤v y if and only if dG′(u, x) ≤ dG′(u, y).

Observe that for any edge (u, w′) ∈ Eu(u, w), its corresponding path Pu,w′ “branches out” of
the path Pu,w at some point. Let s(w′) be the biggest vertex in V ′(Pu,w)∩V ′(Pu,w′) with respect to
the order relation ≤v. We also define a total order relation ≤e on the edges of Eu(u, w) as follows.
For a pair of edges (u, w1), (u, w2) ∈ Eu(u, w), (u, w1) ≤e (u, w2) if and only if s(w1) ≤v s(w2).

Analogously, for any edge (u′, w′) ∈ Ew(u, w), let s(u′) be the smallest vertex of V ′(Pu,w) ∩
V ′(Pu′,w) with respect to the order relation≤e. The total order relation ≤e on the edges of Ew(u, w)
is defined in an analogous way.

Let (u, w′) be the biggest edge in Eu(u, w), and (u′, w) be the smallest edge in Ew(u, w) (both
with respect to the order relation ≤e; if there are several biggest edges, pick arbitrarily one of
them).

Observe that by definition of Eu(u, w) and Ew(u, w), u, u′, w, w′ are distinct vertices of V (G).
Let s(w′) be the biggest vertex of V ′(Pu,w)∩V ′(Pu,w′), and s(u′) be the smallest vertex of V ′(Pu,w)∩
V ′(Pu′,w). It follows that s(u′) >v s(w′), as otherwise it would follow that the vertices u, u′, w
and w′ form K2,2 in G, and this is a contradiction. Let Ps(w′),s(u′) denote the subsegment of Pu,w

between s(w′) and s(u′). It remains to argue that

E ′(Ps(w′),s(u′)) ∩
⋃
e∈Ek

E ′(Pe) = ∅ . (12)

Indeed, suppose for contradiction that there exists an edge e ∈ Ek such that E ′(Pe)∩E ′(Ps(w′),s(u′)) �=
∅. It follows that e ∈ E(u, w) = Eu(u, w) ∪ Ew(u, w). Recall that Eu(u, w) ∩ Ew(u, w) = ∅. Hence
e ∈ Eu(u, w) or e ∈ Ew(u, w).

Consider the case e ∈ Eu(u, w) (the case is e ∈ Ew(u, w) is analogous). Then e = (u, w′′) for
some w′′ ∈W . Observe that as E ′(Pe) ∩E ′(Ps(w′),s(u′)) �= ∅, s(u′), s(w′) ∈ V ′(Pe) ∩ V ′(Ps(w′),s(u′)),
and so there exists a vertex z �= s(w′) such that z ∈ V ′(Pe)∩V ′(Ps(w′),s(u′)). Note that z ∈ V ′(Pe),
and s(w′) <v z. Observe also that z ≤v s(w′′). It follows that s(w′) <v s(w′′), and so (u, w′) <e

(u, w′′), contradicting the assumption that the edge (u, w′) is the biggest in Eu(u, w) with respect
to the total order ≤e. Now (12) follows.

This completes the proof of Lemma 4.13.

Corollary 4.15 There are n-vertex digraphs G with m ≥ (1/2 + o(1))n3/2 edges such that any
diSteiner 1-preserver of G contains at least m arcs.
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Proof: As demonstrated in [6], there are bipartite graphs G0 with (1/2 + o(1))n3/2 edges with
girth(G0) > 4. The corollary follows by orienting all its arcs consistently from one bipartition to
another, and using Lemma 4.13.

In what follows we show that f̄dirS (D, n) = fdirS (D, n) = Ω(n
2 logD
D logn

).
Let G be the family of graphs with a common vertex set V . The vertex set V is comprised of

X = {x1, x2, . . . , xn/2}, Y = {y1, y2, . . . , yn/(4D)}, Z = {z1, z2, . . . , zn/4D} and vertices of the paths
connecting yj to zj for every j = 1, 2, . . . , n/4D, 2D − 2 vertices apart of yj and zj in each path.
For every graph G ∈ G, its edgeset contains the paths of length 2D − 1 from yj to zj for every
j = 1, 2, . . . , n/4D. For every j = 1, 2, . . . , n/4D and l = 1, 2, . . . , 2D− 1, let y0

j denote yj, and ylj
denote the vertex that is on distance l from yj, and is located on the path connecting yj and zj .
(In particular, y2D−1

j = zj .) In addition, for every i = 1, 2, . . . , n/2, j = 1, 2, . . . , n/4D, G contains

precisely one arc from xi to ylj, for some l = 0, 1, . . . , D − 1. All the arcs are unit-weight. The
family G consists of all the digraphs G that can be constructed this way.

It follows that

|G| = Dn/2·n/4D = 2
n2 log D

8D . (13)

We need the following definition.

Definition 4.16 The graph G′ is a (D, g)-preserver of G = (V,E) if for every pair of vertices
u, w ∈ V such that dG(u, w) ≥ D, dG(u, w) ≤ dG′(u, w) ≤ dG(u, w) + g.

Lemma 4.17 Let G′
1 and G′

2 be Steiner (D, 1/3n)-preservers of two distinct n-vertex graphs
G1, G2 ∈ G. Then G′

1 �= G′
2.

Proof: As G1 �= G2, there exists a pair (i, j) ∈ {1, 2, . . . , n/2} × {1, 2, . . . , n/4D} such that
〈xi, yl1j 〉 ∈ E(G1), 〈xi, yl2j 〉 ∈ E(G2), and l1 �= l2. For these i and j, |dG1(xi, zj)− dG2(xi, zj)| ≥ 1.
Observe also that as l1, l2 ≤ D−1, it follows that dG1(xi, zj), dG2(xi, zj) ≥ (2D−1)−(D−1)+1 =
D+1. It follows that |dG′

1
(xi, zj)−dG′

2
(xi, zj)| ≥ |dG1(xi, zj)−dG2(xi, zj)|−2/3n = 1−2/3n > 0,

for any n = 1, 2, . . .. Hence, dG′
1
(xi, zj) �= dG′

2
(xi, zj). It follows that G′

1 �= G′
2.

Fix n, and consider the family G of n-vertex digraphs discussed above. Let V = (v1, v2, . . . , vn)
be the vertex be an arbitrary ordering of the (common to all graphs of G) vertex set V . For a
distance labeling scheme (M,D), and a graph G ∈ G, let M(G) = M(G, v1) · M(G, v2) · . . . ·
M(G, vn), where “·” stands for concatenation.

Lemma 4.18 Let (M,D) be a distance-labelling D-preserving scheme and G1, G2 ∈ G, G1 �= G2.
Then M(G1) �=M(G2).

Proof: Similarly to the proof of Lemma 4.17, since G1 �= G2, there exists a pair of vertices
xi, zj ∈ V such that dG1(xi, zj), dG2(xi, zj) ≥ D, and dG1(xi, zj) �= dG2(xi, zj).

As (M,D) is a D-preserving scheme, it follows that D(M(G1, xi),M(G1, zj)) = dG1(xi, zj)
and D(M(G2, xi),M(G2, zj)) = dG2(xi, zj). Hence,
D(M(G1, xi),M(G1, zj)) �= D(M(G2, xi),M(G2, zj)). Hence, either M(G1, xi) �= M(G2, xi) or
M(G1, zj) �=M(G2, zj) (or both). In either case, M(G1) �=M(G2).

Let ϕ be an arbitrary representation function of the Steiner (D, 1/3n)-preservers of graphs
from the family G. Specifically, with each graph G ∈ G, ϕ associates a bit string of length k, that
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determines uniquely some specific Steiner (D, 1/3n)-preserver G′ of G. Note that by Lemma 4.17,
ϕ is injective. Indeed, if G′ = ϕ(G1) = ϕ(G2) then G′ is a Steiner (D, 1/3n)-preserver of both G1

and G2, and so, by Lemma 4.17, G1 = G2. Hence, by (13),

Corollary 4.19 For every representation function of the Steiner (D, 1/3n)-preservers of G there

exists a graph G ∈ G such that |ϕ(G)| ≥ log |{ϕ(G) | G ∈ G}| = log |G| = n2 logD
8D

.

Analogously, Lemma 4.18 implies a lower bound on D-preserving distance labeling schemes.
Note that all the lower bounds in this section apply both to the directed and undirected graphs.
However, for undirected Steiner graphs stronger lower bounds were shown in Section 4.2.1. This
is not the case for the distance labeling schemes, where the lower bound below is the strongest
that we are able to prove.

Corollary 4.20 Every distance labeling D-preserving scheme requires labels of size Ω(n logD
D

) bits.

Intuitively, the last stage of the proof of the lower bound f dirS (D, n) = Ω(n
2 logD
D logn

) is proving

that using non-rational (or even rational but having very large denominator) weights cannot help
saving arcs of the diSteiner D-preservers. This is done in the next theorem. The technique of
getting rid of the non-rational weights in a Steiner graph, that is used in the proof, is adapted
from [1], where Steiner spanners with a multiplicative approximation of distances are studied.

Theorem 4.21 For n = 2, 3, . . ., the family of n-vertex digraphs G defined above, and D =
1, 2, . . . , n − 1, let ρ : G → G ′ be a function assigning to every digraph G ∈ G a diSteiner D-
preserver G′. Then there exists a digraph G ∈ G such that G′ = ρ(G) contains Ω(n

2 logD
D logn

) arcs.

Proof: Consider a mapping ρ′ : G′ → G′′ that given a digraph G′ = (V ′, E ′, ω) constructs a
digraph G′′ = (V ′, E ′, ω′), where for every arc e ∈ E ′, ω(e) is defined to be the closest rational
number with denominator 1/3n3. Let ρ′′ : G → G′′ be the composition of ρ and ρ′.

Suppose for contradiction that for any digraph G ∈ G, its diSteiner D-preserver G′ = ρ(G)

contains less than n2 logD
6·(8D logn)

arcs. In particular, it follows that for any digraph G ∈ G, its diSteiner

D-preserver G′ = (V ′, E ′, ω) has at most n2 vertices. Hence for any pair of vertices u, w ∈ V ′,
any simple path from u to w in G′ contains no more than n2 arcs. As for every arc e ∈ E ′,
|ω(e)− ω′(e)| ≤ 1/3n3, it follows that for any simple path P from u to w in G′, |ω(P )− ω(P ′)| ≤
n2/3n3 = 1/3n.

As G′ is a diSteiner D-preserver of G, it follows that ρ′(G′) = G′′ is a diSteiner (D, 1/3n)-
preserver of G. Observe also that for any G ∈ G, the digraphs G′ = ρ(G) and G′′ = ρ′′(G) have
the same arcset. By our assumption, for every digraph G ∈ G, G′ = ρ(G) contains less than
n2 logD

6·(8D logn)
arcs. It follows that for every digraph G ∈ G, G′′ = ρ′′(G) contains less than n2 logD

6·(8D logn)

arcs. Observe also that for any arc e ∈ E(G′′), its weight in G′′ is rational number. As all the
distances in G are no greater than n − 1, and G′′ is a diSteiner (D, 1/3n)-preserver, we assume,
without loss of generality, that all the arcs in G′′ have weight that is no greater than n. Hence,
every arc e ∈ E(G′′) can be represented by a bit string α(e) of length 6 log n, by writing down the
identities of its endpoints (2 logn bits), and the numerator of its weight (at most logn4 = 4 log n
bits).
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The representation function ϕ is now formed out of ρ by concatenating in an arbitrary but
fixed order the strings α(e) for different arcs e ∈ E(G′′). Observe that for any digraph G ∈ G,
ϕ(G) determines uniquely a diSteiner (D, 1/3n)-preserver G′′ of G, and |varphi(G)| contains
n2 logD

6·(8D logn)
6 log n = n2 logD

8D logn
bits. However, this contradicts Corollary 4.19.

Hence there is a digraph G ∈ G such that its diSteiner D-preserver ρ(G) = G′ contains at least
n2 logD
48D logn

arcs.

4.2.3 (D, g)-Preservers

To facilitate the discussion about (D, g)-preservers, we generalize Definition 4.2 in the following
way.

Definition 4.22 For n = 2, 3, . . ., and D, g = 1, 2, . . . , n−1, let f(D, g, n) be the minimal number
such that for any n-vertex graph there exists a (D, g)-preserver with at most f(D, g, n) edges, and
let f̄(D, g, n) be the maximal number of edges in an n-vertex graph whose only subgraph (D, g)-
preserver is the graph itself.

The following “weak duality” follows directly from the definition.

Lemma 4.23 For n = 2, 3, . . ., and D, g = 1, 2, . . . , n− 1, we have f(D, g, n) ≥ f̄(D, g, n).

However, unlike the case with no additive error, no upper bound on f(D, g, n) in terms of
f̄(D, g, n) is known to the authors.

We next show a lower bound on f̄(D, g, n), which serves, consequently, as a lower bound on
f(D, g, n).

Theorem 4.24 For D, g = 1, 2, . . ., and n sufficiently large, f(D, g, n) ≥ f̄(D, g, n) ≥ n1+c0/(g+2)

2g·Dc0/(g+2) ,

where c0 is some constant 1 ≤ c0 ≤ 2.

Remark: (The lower bound on the size of an extremal n-vertex graph of girth g stands currently
on Ω(n1+c0/(g−1)) [5], for c0 = 4/3. Erdős conjectured that c0 = 2.)

Proof: Set L = !n/2D". L = n/2D. There exists a constant 1 ≤ c0 ≤ 2 such that there exists
an L-vertex graph G0 = (V0, E0) with girth(G0) ≥ g + 2 and |E0| ≥ L1+c0/(g+2) (cf. [19], p.166).
Denote the vertices of G0 by the numbers 1, 2, . . . , L. (I.e., V0 = {1, 2, . . . , L}.)

To build the graph G(D,g), we begin with L paths of length D: vertices vij, i = 1, 2, . . . , L,
j = 1, 2, . . . , D, and edges (vij, vi,j+1), i = 1, 2, . . . , L, j = 1, 2, . . . , D − 1.

Add L ·D/(g/2) vertices wij, i = 1, 2, . . . , L, j = 1, 2, . . . , D/(g/2), and for any i = 1, 2, . . . , L,
j = 1, 2, . . . , D/(g/2) connect vi1 to wij by a path of length g/2.

For each j, j = 1, 2, . . . , D/(g/2), construct an isomorphic copy of G0 using the vertices
{wij}Li=1. Specifically, for each j, j = 1, 2, . . . , D/(g/2), for every i, h = 1, 2, . . . , L, add the edge
(wij, whj) if and only if (i, j) ∈ E0.

The number of vertices is L · (D + g/2 ·D/(g/2)) = 2LD ≤ 2D!n/(2D)" ≤ n; add n − 2DL
vertices to one of the paths to absorb the slack, giving G(D,g) exactly n vertices (i.e., |V (D,g)| = n).
L · (D + g/2 ·D/(g/2)) = 2LD = n.
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The number of the edges is

|E(D,g)| ≥ L · (D − 1) + (L ·D/(g/2)) · g/2 + n− 2DL + !n/2D"1+c0/(g+2) ·D/(g/2)

≥ n− !n/2D"+
n1+c0/(g+2) · 2D

21+c0/(g+2)Dc0/(g+2)g
≥ n1+c0/(g+2)

2gDc0/(g+2)
.

Let us argue that G(D,g) is the only (D, g)-preserver of itself.
Indeed, removing a path edge e = (vij, vi+1,j) for some i = 1, 2, . . . , D − 1, j = 1, 2, . . . , L

makes the graph disconnected, and, in particular, dG(wij′, viD) ≥ D, and dGe(wij′, viD) = ∞, for
any j′ = 1, 2, . . . , D/(g/2).

Removing an edge from a path that connects vi1 with wij for some i = 1, 2, . . . , L, j =
1, 2, . . . , D/(g/2) increases the distance between wij and viD by at least g + 1.

Finally, removing an edge (wij, whj) increases the distance from whj to viD by at least g + 1,
since for any j = 1, 2, . . . , D/(g/2), the graph G(D,g)({wij | i = 1, 2, . . . , L}) has girth equal to
g + 2.

4.3 Upper bounds

4.3.1 Distance Preservers

We start with presenting an almost matching (up to a constant factor of 4) upper bound on the
size of possible distance D-preservers.

Lemma 4.25 For n = 2, 3, . . . and D = 1, 2, . . . , n− 1,

fdir(D, n) = f̄dir(D, n) ≤ 2n(n− 1)/(D + 1) , f(D, n) = f̄(D, n) ≤ n(n− 1)/(D + 1) .

Proof: Suppose that for any arc e ∈ E, the path P (e) = P (e,D) exists.
Consider some vertex v ∈ V . We next argue that for any two arcs that are outgoing from v,

e1 = 〈v, z1〉, e2 = 〈v, z2〉,

V (suffix (P(e1 ), e1 )) ∩ V (suffix(P(e2 ), e2 )) = ∅ .

V (suffix(P(e1 ), e1 )) ∩V (suffix (P(e2 ), e2 )) = ∅.
Suppose for contradiction that some vertex w ∈ V (suffix (P(e1 ), e1 )) ∩ V (suffix(P(e2 ), e2 )). By
(2),
Then, dGe1

(head(P(e1 )), tail(P(e1 ))) > dG(head(P(e1 )), tail(P(e1 ))), and
dGe2

(head(P(e2 )), tail(P(e2 ))) > dG(head(P(e2 )), tail(P(e2 ))).
For i = 1, 2, let P ′

i , P ′′
i and P ′′′

i be the segments of P (ei) from head(P(ei)) to v, from v to w,
and from w to tail(P(ei)), respectively. See Figure 1.

Note that since P (e1) is the shortest path between head(P(e1 )) and tail(P(e1 )) in G,
dG(head(P(e1 )), tail(P(e1 ))) = |P ′

1 |+ |P ′′
1 |+ |P ′′′

1 | .
Consider the walk P12 = P ′

1 · P ′′
2 · P ′′′

1 . Note that P12 is a walk between head(P1 ) and tail(P1 )
in E \ {e1}. Hence,

|P ′
1|+ |P ′′

2 |+ |P ′′′
1 | ≥ dGe1

(head(P(e1 )), tail(P(e1 )))

> dG(head(P(e1 )), tail(P(e1 ))) = |P ′
1 |+ |P ′′

1 |+ |P ′′′
1 | .
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Figure 1: The subpaths of P (e1) and P (e2).

Hence |P ′′
2 | > |P ′′

1 |. However, analogously, it follows that |P ′′
1 | > |P ′′

2 |, contradiction.
Therefore, the set Pout(v) = {suffix (P(〈v , z 〉), 〈v , z 〉) | 〈v , z 〉 ∈ E} consists of vertex-disjoint

paths.
Analogously, it follows that the set Pin(v) = {prefix(P(〈z , v〉), 〈z , v〉) | 〈z , v〉 ∈ E} consists of

vertex-disjoint paths.
Note that for every vertex v ∈ V and path P ∈ Pin(v) ∪ Pout(v), the node v does not belong

to V (P ). Thus, ∑
P∈Pout(v)

|V (P )|,
∑

P∈Pin(v)

|V (P )| ≤ |V \ {v}| = n− 1 .

Thus, ∑
v∈V

 ∑
P∈Pin(v)

|V (P )|+
∑

P∈Pout(v)

|V (P )|

 ≤ 2n(n− 1) .

∑
v∈V

(∑
P∈Pin(v) |V (P )|+

∑
P∈Pout(v)

|V (P )|
)
≤ 2n(n− 1) .

Also, since for any arc e ∈ E, |P (e)| ≥ D,

∑
v∈V

 ∑
P∈Pin(v)

|V (P )|+
∑

P∈Pout(v)

|V (P )|


=

∑
v∈V

 ∑
〈z,v〉∈E

|V (prefix(P(〈z , v〉), 〈z , v〉))|+
∑

〈v ,z〉∈E

|V (suffix (P(〈v , z 〉), 〈v , z 〉))|


=

∑
〈v,z〉∈E

(|V (prefix(P(〈v , z 〉), 〈v , z 〉))|+ |V (suffix (P(〈v , z 〉), 〈v , z 〉))|)

=
∑

〈v,z〉∈E

(|prefix(P(〈v , z 〉), 〈v , z 〉)|+ 1 + |suffix (P(〈v , z 〉), 〈v , z 〉)|+ 1 )

=
∑

〈v,z〉∈E

(|P (〈v, z〉)|+ 1) =
∑

〈v,z〉∈E

|P (〈v, z〉)|+ |E| ≥ |E| ·D + |E| .

Thus, |E| · (D + 1) ≤ 2n(n− 1).
For an undirected graph G = (V,E), the analogous argument provides an upper bound which

is smaller by a factor of 2.
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Note that the inequalities in Lemma 4.25 are tight for D = 1, since there is a graph (n-vertex
clique Kn) with n · (n− 1)/(D + 1) = n · (n− 1)/2 edges, in which removal of any edge results in
increasing the distance between some pair of vertices that are already at distance at least D = 1.
Also, there is a digraph (complete n-vertex digraph) with 2n · (n− 1)/(D + 1) = n · (n− 1) arcs,
with the same property.

The next theorem indicates that the product D · f(D, n) is independent of D and equal to
Θ(n2).

Theorem 4.26 (Distance×Size Preservation)
For n = 2, 3, . . . and D = 1, 2, . . . , n− 1,

n2/4D ≤ fS(D, n) ≤ f(D, n) ≤ n(n− 1)/(D + 1) , (14)

n2/2D ≤ fdir(D, n) ≤ 2n(n− 1)/(D + 1) . (15)

Proof: Both upper bounds follow from Lemma 4.25. The lower bound of inequality (14) follows
from Theorem 4.12. The lower bound of inequality (15) follows from (9). f dir(D, n) = f̄dir(D, n) ≥
n2/2D.

We next prove a tight up to a constant factor upper bound on f dirS (D, n).
Consider an n-vertex digraph G = (V,E) with m = Ω(n3/2) arcs. Suppose V = {1, 2, . . . , n}.

The digraph G can be represented by its n × n adjacency matrix M(G), whose entry (i, j) is 1
if and only if 〈i, j〉 ∈ E, and 0 otherwise. Suppose, without loss of generality, that the digraph
contains no loops (that is, arcs 〈i, i〉 for some i ∈ V ) as the latter can be removed from the digraph
with no affect on the distances. Set c′′ = 1+ν1 for some arbitrarily small positive constant ν1 > 0.
Denote p = m/(c′′n2).

Lemma 4.27 M(G) contains an a×a submatrix containing all 1’s with a = !c′ log n/ log(1/p)",
for c′ = 1− ν2 for some arbitrarily small positive constant ν2 > 0.

Remark: Such a matrix corresponds to Ka,a, that is, complete bipartite subgraph of size a× a
with all arcs oriented consistently from one bipartition of the subgraph to another.
Proof: Following Zarankiewicz, let us denote by ka(n) the least number m such that any n-vertex
digraph G with at least m arcs contains a Ka,a. The assertion of the lemma is a corollary of the
following result from [18], chapter 5.

Theorem 4.28 [18] If n
(
m/n
a

)
≥ (a− 1)

(
n
a

)
then ka(n) ≤ m.

To show that the assumption of Theorem 4.28 is satisfied, it is enough to argue that

n ·
(

m/n

n
· m/n− 1

n− 1
· . . . · m/n− a + 1

n− a + 1

)
≥ a .

As m/n = Ω(
√

n) and a = O(log n), it follows that for any sufficieanly large n and any i =
1, 2, . . . , a− 1,

m/n− i

n− i
≥ m/(c′′n)

n
.
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Hence, it is sufficient to argue that n(m/(c′′n))a = n · pa ≥ a. Substituting a = c′ log n/ log(1/p)
implies n1−c′ ≥ a, and the latter is true for sufficiently large n (as a = O(log n)). Theorem 4.28
implies ka(n) ≤ m. The assertion of the lemma now follows from the definition of ka(n).

Let m0 = m = n2/D for some D be the number of arcs in G0 = G, and p0 = p = m0/(c′′n2) be
the “density” of the arcs. Set ε = logD

logn
(i.e., D = 2ε logn). Set also S0 = 0 to be the number of arcs

inserted into the diSteiner graph so far. By Lemma 4.27, G contains a subgraph isomorphic to
Ka0,a0 with a0 = c′ log n/(log 1/p0). Pick such a subgraph and represent it with a diSteiner vertex
s (in addition to 2a0 original vertices) and 2a0 appropriately oriented arcs of weight 1/2 each
connecting s with the original vertices. The orientation of these arcs is the following: all the arcs
between s and “left-hand” vertices (those that had only outgoing arcs in the chosen subgraph) are
incoming into s, and all the other arcs are out-going from s. The constructed structure is inserted
into the diSteiner graph, and the charge S is updated from S0 = 0 to S1 = S0 + 2a0 = 2a0. Delete
the arcs of chosen subgraph from G0, and denote the obtained digraph G1. The density p changes

according to p1 = p0 − a2
0/(c′′n2). If the number of arcs in G1 is still greater than µ · n2(logD+log e)

D·logn
for some arbitrarily small constant µ > 0, repeat this procedure with a1 = c′ log n/(log 1/p1).
Observe that the condition on the number of arcs implies that a1 ≥ 1, and so in a finite number

r of iterations we are left with a digraph Gr with at most µ · n2(logD+log e)
D·logn arcs. When the number

of arcs left is at most µ · n2(logD+log e)
D·logn , these arcs are inserted into the diSteiner graph G′.

Lemma 4.29 The constructed digraph G′ is a diSteiner 1-preserver of G.

Proof: Consider some arc 〈u, w〉 ∈ E. Either at one of the iterations e was replaced by two
arcs 〈u, s〉, 〈s, w〉 of weight 1/2 each, for some new vertex s, or the arc e was inserted into G′.
In either case dG′(u, w) = dG(u, w) = 1. It follows that for any pair of vertices x, y ∈ V (G),
dG′(x, y) ≤ dG(x, y).

Also, it can be shown by induction on r that for any x, y ∈ V (G), dG(x, y) ≤ dG′(x, y). Intu-
itively, this is because whenever an isomorphic to a Ka,a between x1, x2, . . . , xa and y1, y2, . . . , ya
is replaced by a star of arcs
〈x1, s〉, 〈x2, s〉, . . . , 〈xa, s〉, 〈s, y1〉, 〈s, y2〉, . . . , 〈s, ya〉, no paths between xi and xj or yi and yj are
formed. This is unlike the undirected case, where such a replacement could cause dG′(xi, xj) <
dG(xi, xj). This is, however, quite natural, as in the undirected case there are graphs for which
any Steiner 1-preserver contains Ω(n2) edges (see Theorem 4.26, inequality (14)).

It follows that G′ is a diSteiner 1-preserver of G.

Next, we calculate the number of arcs in G′.

Lemma 4.30 If n is sufficiently large then

Sr ≤
2c′′

c′ − ε
· n

2

D
· log D + log e

log n
. (16)

Proof: Observe that Sr = S0 +2
∑r−1

i=0 ai = 2
∑r−1

i=0 ai. Denote ∆pi = pi+1−pi for i = 0, 1, . . . , r−
1. Note that ∆pi > 0 for i = 0, 1, . . . , r−1. Then Sr/2 =

∑r−1
i=0

ai

∆pi
∆pi. Observe that ∆pi = pi+1−

pi =
a2

i

c′′n2 . Hence ai

∆pi
= c′′n2/ai. By Lemma 4.27, ai ≥ c′( logn

log 1/pi
−1/c′). Substituting pi ≥ µ logD

c′′D logn
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and D = 2ε logn implies that log 1/pi ≤ ε log n − log µε. Hence logn
log 1/pi

− 1/c′ ≥ (1 − ε/c′) logn
log 1/pi

.

Therefore, ai/∆pi ≤ c′′

c′
1

1−ε/c′
n2 log 1/pi

logn
= c′′

c′−ε ·
n2 log 1/pi

logn
. Hence

Sr/2 ≤ c′′ · 1

c′ − ε
n2/ log n

r−1∑
i=0

log 1/pi∆pi . (17)

Observe that as p0 > p1 > . . . pr−1 > pr > 0, it follows that
∑r−1

i=0 log 1/pi∆pi is a

Riemann sum of
∫ p0
0

(log 1/p)dp. Furthermore, ∆pi = a2
i /(2n2) ≤ log2 n

n2 . Hence ∆pi tends to 0
when n grows, for any i = 0, 1, 2, . . . , r− 1. Hence for any δ > 0 there exists a sufficiently large n
such that

r−1∑
i=0

log 1/pi∆pi ≤
∫ p0

0

(log 1/p)dp + δ ≤ p0(log 1/p0 + 1) + δ .

Now, the lemma follows from (17).

Corollary 4.31 For every n-vertex (di)graph with m edges (resp., arcs) the following statements
hold.

1. There exists a diSteiner 1-preserver with O(n2/ log n) arcs.

2. If m ≤ n2/ logc n for some c > 0 then there exists a diSteiner 1-preserver with O( c·n
2 log logn
logc n

)
arcs.

3. If m ≤ n1+α, 0 < α < 1, then there exists a diSteiner 1-preserver with at most 2+µ
α

(1−α) ·m
arcs for any arbitrarily small constant µ.

4. There exists a diSteiner D-preserver with O(n
2 logD
D logn

) arcs. I.e.,

f̄dirS (D, n) = fdirS (D, n) = Θ(
n2 log D

D log n
) .

The weights of arcs in the aforementioned diSteiner graphs may be restricted to be either 1 or 1/2.

Proof: For assertion (1), substitute ε = 0 to Lemma 4.30. It follows that Sr ≤ ((2 + ν)n2/ log n,
for some arbitrarily small constant ν > 0. The assertion follows as the number of arcs in the
diSteiner 1-preserver is

Sr + µ · n
2 · log D

D · log n
= (2 + µ)n2/ log n

for an arbitrarily small constant µ > 0.
The assertion (2) follows analogously, by substituting ε = c log log n/ log n.
For assertion (3), note that D = n2/n1+α = n1−α. I.e., ε = 1 − α. Now the assertion follows

from Lemma 4.30.
For assertion (4), recall that by Theorem 4.26, for any n-vertex (di)graph there exists a sub-

graph D-preserver with O(n2/D) edges (resp., arcs). If D = Ω(nε) for some constant ε > 0 then

O(n2/D) = O(n
2 logD
D logn

). Otherwise, if D = 2ε(n)·logn for some ε(n) such that limn→∞ ε(n) = 0,
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then the assertion follows from Lemma 4.30, and from the observation that a 1-preserver of a
D-preserver of a graph G is a D-preserver of G.

Finally, the lower bound

f̄dirS (D, n) = fdirS (D, n) = Ω

(
n2 log D

D log n

)
follows from Theorem 4.21.

Note that by Corollary 4.31, for any graph with at least m = n5/3+δ edges (for any δ >
0) there exists a diSteiner 1-preserver with strictly less than m arcs. This statement can be
generalized to m ≥ c · n3/2, for some small constant c > 1, by extracting subgraphs isomorphic
to Ks,2 for different decreasing values of s whenever no K3,3 can be extracted. Note that the
latter cannot be generalized much further, as by Corollary 4.15 there exist n-vertex graphs with
m = (1/2 + o(1))n3/2 edges for which any diSteiner 1-preserver contains at least m arcs.

4.3.2 Algorithmic Aspects

In this section we address some algorithmic aspects of our results concerning distance D-preservers.
In particular, we devise a distance labeling D-preserving scheme with labels of size O((n2/D) ·
log2 n). Recall that by Corollary 4.20 labels of size O((n2/D) · log D) are required.

Theorem 4.32 For n = 2, 3, . . ., D = 1, 2, . . . , n− 1, and an n-vertex graph (resp., digraph) with
m edges (resp., arcs), there exists a constructible in O(m3n) time subgraph D-preserver with at
most n(n− 1)/(D + 1) edges (resp., 2n(n− 1)/(D + 1) arcs).

Proof: We prove the assertion for a digraph G; the proof of the slightly stronger statement for
the undirected graphs is analogous.

The proof is by induction on the number of arcs in G, |E| = m. The induction base is

|E| ≤ 2n·(n−1)
D+1

. In this case G′ = (V,H) with H = E is the subgraph with the desired properties.

For the induction step, suppose that for any digraph G with |E| = m ≥ 2n·(n−1)
D+1

arcs exists a
subgraph G′ = (V,H), H ⊆ E with the desired properties.

Consider a graph Ḡ = (V̄ , Ē) with |Ē| = m+1 arcs. Since m+1 > 2n·(n−1)
D+1

≥ f̄dir(D, n), there

exists an arc e ∈ Ē such that for any pair of vertices u, w ∈ V̄ with dḠ(u, w) ≥ D,

dḠe
(u, w) = dḠ(u, w) . (18)

Note that the cardinality of the set of arcs of Ḡe is |Ē \ {e}| = |Ē| − 1 = m, and so the induction
hypothesis is applicable to Ḡe. In other words, there exists a subgraph G′ = (V̄ , H) of Ḡe,
H ⊆ Ē \ {e} ⊆ Ē, with |H| ≤ 2n(n− 1)/(D + 1), such that for any pair of vertices u, w ∈ V̄ such
that dḠe

(u, w) ≥ D,
dG′(u, w) = dḠe

(u, w) . (19)

Note that, by (18), dḠe
(u, w) ≥ D implies dḠ(u, w) = dḠe

(u, w) ≥ D, and so, it follows that
G′ = (V̄ , H) is a subgraph of Ḡ = (V̄ , Ē), H ⊆ Ē, with |H| ≤ 2n(n − 1)/(D + 1), such that for
any pair of vertices u, w ∈ V with dḠ(u, w) = dḠe

(u, w) ≥ D, dG′(u, w) = dḠe
(u, w) = dḠ(u, w).

The last two equalities are by (18) and (19).
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Note that the edge e as above can be found in polynomial time, by computing all the distances in
Ḡe for every e ∈ Ē, and testing whether there is a pair of vertices u, w ∈ V̄ such that dḠ(u, w) ≥ D
and dḠe

(u, w) > dḠ(u, w).
Therefore, the entire computation of the subgraph G′, that satisfies the assertion of the theorem,

can be completed in polynomial time (specifically, in O(|E|3 · n) time).

We remark that after inequalities (14) and (15) were communicated to Mikkel Thorup, he
devised [23] a more efficient randomized procedure for computing a subgraph D-preserver of size
O(n2 log n/D) (greater than optimal by a logarithmic factor). This more efficient procedure uses
some techniques of [26] from the area of dynamic algorithms. The efficiency of the procedure of
[23] makes it more suitable for algorithmic applications such as (and this is, indeed, the motivation
of [23]) computing shortest paths between pairs of vertices that are at distance at least D one from
another. We next use a similar idea to prove the existence of a distance labeling D-preserving
scheme with labels of size O((n/D) · log2 n). This is tight up to a factor of O(log2 n/ log D), in
view of Corollary 4.20.

Theorem 4.33 For D = 1, 2, . . . there exists a distance labeling D-preserving scheme (M,D) for
a family of all (possibly directed) n-vertex unweighted graphs with labels of size O((n/D) · log2 n).

Proof: Fix 2 < c < 3 be some real constant. Consider a labeling procedure that given an
n-vertex graph G = (V,E) starts with choosing a random subset R ⊆ V of vertices. Every v ∈ V
is chosen into R independently at random with probability p = min{c log n/D, 1}.

Next, the procedure fixes an arbitrary ordering (u1, u2, . . . , u|R|) of the vertices of R. Then, for
every pair of vertices v ∈ V , u ∈ R, the procedure forms a string αv(u) to be the concatenation of
the bit strings dG(v, u) and dG(u, v) (if the graph G is undirected, α(u) is the bit string representing
dG(v, u) = dG(u, v)).

Finally, for every vertex v ∈ V , the procedure forms its label M(G, v) to be αv(u1) · αv(u2) ·
. . . · αv(u|R|), where “·” stands for concatenation.

Observe that |IE (R) | = p · n ≤ c log n · n/D. Hence, for every vertex v ∈ V , |M(G, v)| ≤
c log n · n2/D. The query-answering procedure accepts as input two labels M(G, v1) = αv1(u1) ·
αv1(u2) · . . . ·αv1(u|R|) andM(G, v2) = αv2(u1) ·αv2(u2) · . . . ·αv2(u|R|), and returns min{dG(v1, u)+
dG(u, v2) | u ∈ R}. Observe that for every u ∈ R, dG(vi, u) can be computed given M(G, vi),
i = 1, 2.

By Markov inequality,
IP(|R| ≤ 2c log n · n/D) ≥ 1/2 . (20)

For every pair of vertices (v1, v2), fix some shortest path Pv1,v2 from v1 to v2 in G. (In an
undirected graph Pv1,v2 coincides with Pv2,v1 .) Observe that for v1, v2 such that dG(v1, v2) ≥ D,
|V (Pv1,v2)| ≥ D + 1. Note that for a vertex z ∈ V (Pv1,v2), IP(z ∈ R) = c log n/D. Hence

IP(V (Pv1,v2) ∩ R = ∅) = (1− c log n/D)D+1 ≤ 1/nc .

Hence,

IP(∃v1, v2 ∈ V s.t. dG(v1, v2) ≥ D and V (Pv1,v2) ∩R = ∅) ≤ n2/nc = 1/nc−2 .

I.e.,
IP(∀v1, v2 ∈ V s.t. dG(v1, v2) ≥ D, V (Pv1,v2) ∩ R �= ∅) ≥ 1− 1/nc−2 .
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Together with (20), this implies that

IP(|R| ≤ 2c log n · n/D and ∀v1, v2 ∈ V s.t. dG(v1, v2) ≥ D, V (Pv1,v2)∩R �= ∅) ≥ 1/2− 1/nc−2 .

Finally, note that the event (∀v ∈ V, |M(G, v)| ≤ 2c log2 n · n/D) contains the event (|R| ≤
2c log n · n/D), and for every pair of vertices v1, v2 ∈ V the event (V (Pv1,v2)∩R �= ∅) contains the
event (D(M(G, v1),M(G, v2)) = dG(v1, v2). Hence,

IP(∀v ∈ V, |M(G, v)| ≤ 2c log2 n · n/D, and ∀v1, v2 ∈ V s.t. dG(v1, v2) ≥ D,

D(M(G, v1),M(G, v2)) = dG(v1, v2)) ≥ 1/2− 1/nc−2 > 0 ,

for sufficiently large n.
Hence, there exists a D-preserving distance labeling scheme with labels of size O(log2 n ·n/D).

Next, we devise a polynomial time algorithm for constructing a diSteiner 1-preserver with
O(n2/ log n) arcs for an arbitrary graph. In conjunction with Theorem 4.32, this yields a polyno-

mial time algorithm for constructing a diSteiner D-preserver with O(n
2 logD
D logn

) arcs for an arbitrary
graph.

We remark that the main obstacle towards converting the proof of Corollary 4.31 into an
efficient algorithm is the existential nature of the proof of Theorem 4.28. Next theorem is a
constructive proof version of Theorem 4.28, Lemma 4.27. that is, an efficient algorithm for ex-
tracting a subgraph isomorphic to Ks,t from a sufficiently dense graph. Another algorithm with
a similar running time for extracting Ks,t was devised by [16], and our algorithm is provided for
completeness.

For any vertex y ∈ V , let d(y) denote the degree of y.

Theorem 4.34 [16] Let G be a graph of order n, W ⊆ V (G), and 1 ≤ s, t. Suppose∑
y∈W

(
d(y)

t

)
> (s− 1)

(
n

t

)
. (21)

Then G contains a Ks,t with the ‘s part’ contained in W , i.e., there are (necessarily disjoint) sets
S ⊂ W and T ⊂ V , |S| = s, |T | = t, such that every vertex of S is joined to every vertex of T .
The Ks,t can be computed in O(n2 · t) time.

Proof: We shall do considerably more than claimed by the theorem: we shall give an algorithm
that finds a ‘large’ set S ⊂W all whose vertices are joined to all vertices of a set T with t vertices.
Our condition (21) will imply that the set S constructed by the algorithm will have at least s
vertices.

In our description of the algorithm, we shall say that a triple (G,W, t), with W ⊂ V (G), is
s-large, if condition (21) is satisfied.

Here is then our plan. Starting with the triple (G,W, t), we perform the t-step of the algorithm
to construct a vertex x1 and a triple (G1,W1, t − 1), where G1 = G − x1, W1 ⊂ W \ {x1}, the
vertex x1 is joined to all vertices in W1, and the triple (G1,W1, t − 1) is s-large, then perform
the (t − 1)-step of the algorithm to obtain a vertex x2 ∈ V (G1) and a triple (G2,W2, t − 2)
with G2 = G1 − x2 and W2 ⊂ W1 \ {x2}, such that x2 is joined to every vertex in W2, and
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the triple (G2,W2, t − 2) is s-large, and so on. Finally, after the 1-step of the algorithm, we get
a vertex xt and a triple (Gt,Wt, 1). This completes the algorithm: our sets are S = Wt and
T = {x1, x2, . . . , xt}. By construction, G contains all edges from S to T and, as (Gt,Wt, 1) is
s-large, from (21)

∑
y∈W

(
d(y)
t

)
> (s− 1)

(
n
t

)
we shall find that |S| ≥ s.

To complete our proof, here is then the t-step of the algorithm. For x ∈ V (G), let the (t,W )-
weight of x be

w(x) = wt,W (x) =
∑

(x,y)∈E, y∈W

(
d(y)− 1

t− 1

)
.

Since ∑
x∈V

w(x) =
∑
y∈W

d(y)

(
d(y)− 1

t− 1

)
=
∑
y∈W

t

(
d(y)

t

)
> t(s− 1)

(
n

t

)
= (s− 1)n

(
n− 1

t− 1

)
,

there is a vertex x1 ∈ V such that∑
y∈W1

(
d(y)− 1

t− 1

)
> (s− 1)

(
n− 1

t− 1

)
, (22)

where W1 = {y ∈ W : (x, y) ∈ E(G)}. Indeed, any vertex whose (W, t)-weight is at least the
average will do for x1; a vertex of maximal (W, t)-weight will certainly do. Set G1 = G − x1.
Condition (22) means precisely that the triple (G1,W1, t − 1) is s-large (as for any y ∈ W1, its
degree in G1 is d(y) − 1). Hence we can apply the (t − 1)-step of our algorithm to the triple
(G1,W1, t− 1), and so on, until we get to an s-large triple (Gt,Wt, 1). Since

|Wt| =
∑
y∈Wt

(
d(y)− 1

0

)
> (s− 1)

(
n− 1

0

)
= s− 1,

we find that |Wt| ≥ s. By construction, the graph G contains all edges from S = Wt to T =
{x1, x2, . . . , xt}.

A straightforward implementation of this algorithm requires O(n2 · t) operations. Indeed,
there are t iterations. On each iteration the algorithm chooses a vertex of minimal weight. It
takes O(|E|) operations to recompute the degrees, and O(n) operations per vertex to compute its
weight, summing up to an overall O(n2 + |E|) = O(n2) operations per iteration.

Corollary 4.35 Let G be a graph of order n and size nd/2, i.e., average degree d. If 1 ≤ t ≤ s
and

n

(
d

t

)
> (s− 1)

(
n

t

)
, (23)

then G contains a Ks,t subgraph. Furthermore, the algorithm described in the proof of Theorem
4.34 (starting with W = V ) finds a Ks,t subgraph.

Proof: Let G have degree sequence (di)
n
1 . Then by the convexity of the binomial coefficient,

n∑
i=1

(
di
t

)
≥ n

(
d

t

)
> (s− 1)

(
n

t

)
.
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Hence, the result follows from Theorem 4.34.

Remark: In applying Corollary 4.35, we should always assume that s ≥ t since if (refdegcond3)
holds for s ≤ t, then it also holds when s and t are interchanged.

Corollary 4.36 Let G be a bipartite graph with bipartition (W,U), where |U | = n. If∑
y∈W

(
d(y)

t

)
> (s− 1)

(
n

t

)
,

∑
y∈W

(
d(y)
t

)
> (s− 1)

(
n
t

)
, then G contains a Ks,t subgraph, with s vertices in W and t in U .

Next corollary is a constructive analogue of Lemma 4.27.

Corollary 4.37 There is an algorithm that given an n-vertex graph G = (V,E) computes an
isomorphic to Ka,a subgraph of G with a = Ω( logn

logn2/|E|) in O(n2 · logn
logn2/|E|) time.

Next theorem addresses the question of constructibility of sparse diSteiner 1-preservers for
arbitrary graphs.

Theorem 4.38 For every n-vertex (di)graph, a diSteiner 1-preserver with O(n2/ log n) arcs of

weight 1 or 1/2 can be constructed in O(n4 (log logn)2

logn
) time.

Proof: To construct a diSteiner 1-preserver with at most O(n2/ log n) arcs for an arbitrary
(di)graph, one needs to invoke the procedure of extracting Ka,a at most O(n2 log log n/ log2 n)
times. Indeed, in a graph with m = Ω(n2/ log n) edges, a = Ω(log n/ log(n2/m)) = Ω(log n/ log log n),
and so a single extraction of Ka,a results in eliminating Ω(log2 n/(log log n)2) edges from the graph.

As we start with O(n2) edges, after O(n
2(log logn)2

log2 n
) extractions, the number of edges left in the graph

is O(n2/ log n). By Corollary 4.37, each extraction can be completed in O(n2 · log n) time, and so,
the assertion of the theorem follows.

We remark that any improvement of a factor of Ω(n) of the running time in Theorem 4.38 to
o(|E| · n) would have some interesting applications to efficient computation of distances in dense
graphs (by computing their diSteiner 1-preserver, and performing distance computations on the
1-preserver, assuming that the later is sparser than the original graph).

Next, observe that a polynomial time algorithm for constructing diSteiner D-preserver for an
arbitrary (di)graph can be obtained by composing the results of Theorems 4.32 and 4.38.

Corollary 4.39 For any n-vertex (di)graph G = (V,E) and any D = 1, 2, . . ., a diSteiner D-
preserver with O(n2/ log n) arcs of weight 1 or 1/2 can be constructed in O(|E|3 · n) time.
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4.3.3 (D, g)-Preservers

Next, we present an upper bound on f̄(D, g, n), that is, the size of the n-vertex extremal graph
whose only (D, g)-preserver is the graph itself.

Recall that our upper bound on f(D, n), that is, the minimal value such that any n-vertex
graph has a D-preserver with at most f(D, n) edges, was derived through the analysis of the size
of the extremal graph G whose only subgraph D-preserver is G itself, i.e., f̄(D, n). This was
possible due to the duality f(D, n) = f̄(D, n) (Lemma 4.3). In the case of (D, g)-preservers we
are not aware of any upper bound on f(D, g, n) in terms of f̄(D, g, n). However, we believe that
the bounds on f̄(D, g, n) are of independent interest, and may also serve as a first step towards a
better understanding the behavior of f(D, g, n).

The following observation can be derived from the definition of (D, g)-preserver.

Lemma 4.40 Every graph G = (V,E) whose only (D, g)-preserver is G itself satisfies girth(G) ≥
g + 2.

Proof: Suppose for contradiction that girth(G) ≤ g + 1.
Then there exists an edge e = (u, w) such that dGe(u, w) ≤ g. Since Geis not a (D, g)-preserver

of G there exists a pair of vertices x, y ∈ V such that dG(x, y) ≥ D, and

dGe(x, y) ≥ dG(x, y) + g . (24)

Let P be one of the shortest paths from x to y in G. Obviously, the edge e belongs to P .
I.e., without loss of generality P = (x = v0, . . . , vt = u, vt+1 = w, . . . , vs = y), for |P | = s,
t = 0, 1, . . . , s − 1. Let P1 be one of the shortest paths from u to w in Ge. Note that |P1| =
dGe(u, w) ≤ g. Let Px,u denote the path (x = v0, v1, . . . , vt = u), and Pw,y denote the path
(vt+1 = w, vt+2, . . . , vs = y).

Consider the walk P2 = Px,u · P1 · Pw,y. Also,
|P2| = |Px,u|+ |P1|+ |Pw,y| ≤ t+ g + s− (t+ 1) = s+ g−1 = |P |+ g−1 = dG(x, y) + g−1 .
Note that P2 ⊆ E \ {e} is a path between x and y. Thus, dG(x, y) + g − 1 ≥ |P2| ≥ dGe(x, y).
However, this contradicts (24).

Recall that for any integer r ≥ 3, any n-vertex graph G = (V,E) has at most (n1+1/r−2 + n)
edges (cf. [19], p. 166). Therefore, Lemma 4.40 implies that f̄(D, g, n) ≤ n1+2/g + n. We next
establish another upper bound on f̄(D, g, n), which is tighter whenever D = Ω(

√
n).

Theorem 4.41 For D, g = 2, 3, . . . and n sufficiently large, f̄(D, g, n) ≤ 4n1+1/�g/4�/D1/�g/4�.

Proof: For every edge e = (u, w) ∈ E, let P (e) be one of the shortest paths between endpoint(P(e), e, u)
and endpoint(P(e), e,w) in G such that
dG(endpoint(P(e), e, u), endpoint(P(e), e,w)) ≥ D , but
dGe(endpoint(P(e), e, u), endpoint(P(e), e,w)) > dG(endpoint(P(e), e, u), endpoint(P(e), e,w))+
g .

Note that |subpath(P(e), e, u)| + |subpath(P(e), e,w)| ≥ D − 1 .
Let long subpath(P(e), e = (u,w)) denote the longer path among subpath(P(e), e, u) and

subpath(P(e), e,w) (if they are equal choose one of them arbitrarily).
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Note that for any edge e ∈ E,

|long subpath(P(e), e)| ≥ &(D − 1 )/2 ' ≥ D/2 − 1 . (25)

For a vertex v ∈ V , let

S(v) = {e = (v, z) ∈ E | long subpath(P(e), e) = subpath(P(e), e, z )} .

Consider some vertex u ∈ Γ̂�g/4�−1(v,G). Let
S(u, v) = {e = (u, z) ∈ E | dG(v, z) = dG(v, u) + 1, long subpath(P(e), e) = subpath(P(e), e, z )}.

Note that S(v) = S(v, v). Note also that since girth(G) ≥ g + 2, and dG(v, u) ≤ !g/4" − 1, it
follows that for any edge (u, z) ∈ S(u, v), the only shortest path from v to z in G passes through
u.

Let Ŝ(v) denote the set
⋃

u∈Γ̂�g/4�(v,G) S(u, v). Let P̂ (v) denote the set

P̂ (v) = {long subpath(P(e), e) | e ∈ Ŝ (v)} . (26)

Next, we argue that for any two paths P1, P2 ∈ P̂ (v), V (P1) ∩ V (P2) = ∅.
Denote x1 = endpoint(P1 , (u1 , z1 ), u1 ), x2 = endpoint(P2 , (u2 , z2 ), u2 ),

y1 = endpoint(P1 , (u1 , z1 ), z1 ), y2 = endpoint(P2 , (u2 , z2 ), z2 ).
Suppose for contradiction that there exists a vertex w such that w ∈ V (P1) ∩ V (P2).
Denote the segments of P1 (resp., P2) from x1 (resp., x2) to u1 (resp., u2), from u1 (resp., u2)

to w, and from w to y1 (resp., y2), by P ′
1, P ′′

1 and P ′′′
1 (resp., P ′

2, P ′′
2 and P ′′′

2 ), respectively.
Next, we show that

dG(u2, w)− (g/2− 2) ≤ dG(u1, w) ≤ dG(u2, w) + (g/2− 2) . (27)

Indeed, suppose for contradiction that dG(u1, w) < dG(u2, w)− (g/2− 2) (the case of
dG(u1, w) > dG(u2, w) + (g/2− 2) is symmetrical).

Thus,
dG(u1, w) + (g/2− 2) < dG(u2, w) . (28)

Then consider the path Pu2,w = Pu2,v · Pv,u1 · P ′′
1 , where Pu2,v is the shortest path from u2 to v

in G, and Pv,u1 is the shortest path from v to u1 in G.
Note that

|Pu2,w| = |Pu2,v|+ |Pv,u1|+ |P ′′
1 |

≤ 2(g/4− 1) + dG(u1, w) = dG(u1, w) + g/2− 2 < dG(u2, w)

(the last inequality is by (28)).
This is a contradiction, since Pu2,w is a path from u2 to w. Hence, (27) follows.
Note that Pu2,v, Pv,u1 ⊆ E \ {e1}. Consider the path P12 = P ′

1 ·Pu1,v ·Pv,u2 ·P ′′
2 ·P ′′′

1 . Note that
P12 is a path between x1 and y1 in Ge1 . Since G satisfies the large-error property,

|P12| = |P ′
1|+ |Pu1,v|+ |Pv,u2 |+ |P ′′

2 |+ |P ′′′
1 |

≥ dGe1
(x1, y1) ≥ dG(x1, y1) + g = |P ′

1|+ |P ′′
1 |+ |P ′′′

1 |+ g .

I.e., |Pu1,v|+ |Pv,u2|+ |P ′′
2 | ≥ |P ′′

1 |+ g.
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Recall that |Pu1,v|+ |Pv,u2| ≤ g/2− 2. Thus,

|P ′′
2 |+ (g/2− 2) ≥ |Pu1,v|+ |Pv,u2 |+ |P ′′

2 | ≥ |P ′′
1 |+ g .

I.e., |P ′′
2 | ≥ |P ′′

1 |+ (g/2 + 2). In other words, dG(u2, w) ≥ dG(u1, w) + (g/2 + 2), contradicting (27).
Thus, V (P1) ∩ V (P2) = ∅. I.e., the set P̂ (v), defined by (26), consists of vertex-disjoint paths.
Thus, for any vertex v ∈ V ,∑

e∈Ŝ(v)

|V (long subpath(P(e), e))| ≤ n .

Hence, ∑
v∈V

∑
e∈Ŝ(v)

|V (long subpath(P(e), e))| ≤ n2 .

Using (25) it follows that ∑
v∈V
|Ŝ(v)| ≤ 2n2/D . (29)

Consider a digraph Ĝ = (V, Ê) with the same vertex set V as the graph G, but

Ê = {〈u, w〉 | (u, w) ∈ E, long subpath(P((u,w)), (u,w)) = subpath(P((u,w)), (u,w),w)} .

In other words, every edge e of the graph G is oriented towards the endpoint w from which the
subpath subpath(P(e), e,w) is longer.

Observe that
Ŝ(v) = {e = (u, z) | 〈u, z〉 ∈ Ê, dGe(v, u) ≤ !g/4" − 1} .

Let a0 = 2|E|/n be the average degree in G. Set C = !a0/4" = !|E|/2n". We construct a
graph G′ = (V ′, E ′) in the following way. While there is a vertex v ∈ V with degG(v) ≤ C, remove
v from V and all its incident edges.

Note that at most C · n ≤ |E|/2 edges are removed. I.e., |E ′| ≥ |E|/2. Also, for any vertex
v ∈ V ′, degG′(v) ≥ C + 1 ≥ |E|/2n. Also, girth(G′) ≥ girth(G) ≥ g + 2.

Consider,

Ŝ ′(v) = {e = (u, z) ∈ E ′ | 〈u, z〉 ∈ Ê, dG′
e
(v, u) ≤ !g/4" − 1} .

Note that for any vertex v ∈ V ′, Ŝ ′(v) ⊆ Ŝ(v). Hence
∑

v∈V ′ |Ŝ ′(v)| ≤ 2n2/D.

Note that for any edge e = (u, z) ∈ E ′ either 〈u, z〉 ∈ Ê or 〈z, u〉 ∈ Ê. For any edge
e = (u, z) ∈ E ′, denote

far endpoint(e) =

{
u, 〈u, z〉 ∈ Ê,

z, 〈z, u〉 ∈ Ê.

Note that ∑
v∈V ′

|Ŝ ′(v)| =
∑
e∈E′

|Γ̂�g/4�−1(far endpoint(e),G ′
e)| .

Note that since the minimal degree in G′
e is at least |E|/2n, and girth(G′

e) ≥ g + 2, it follows that
for any edge e ∈ E ′,

Γ̂�g/4�−1(far endpoint(e),G ′
e) ≥ (|E |/2n − 1 )�g/4�−1 .
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Therefore, ∑
v∈V ′

|Ŝ ′(v)| =
∑
e∈E′

|Γ̂�g/4�−1(far endpoint(e),G ′
e)

≥ |E ′| · (|E|/2n− 1)�g/4�−1

By Theorem 4.24, we can assume that |E| ≥ 4n. Hence,∑
v∈V ′

|Ŝ ′(v)| ≥ |E|/2 · |E|�g/4�−1

n�g/4�−1 · 4�g/4�−1
≥ |E|�g/4�

n�g/4�−1 · 2 · 4�g/4�−1
.

Hence, by (29),
2n2

D
≥ |E|�g/4�

n�g/4�−1 · 2 · 4�g/4�−1
.

Hence, |E|�g/4�D ≤ 4�g/4� · n�g/4�+1 . Thus, |E| ·D1/�g/4� ≤ 4 · n1+1/�g/4� .

5 Additive Spanners Revisited

Using Distance×Size preservation Theorem (thm. 4.26) in conjunction with Lemma 3.4, it is
possible to improve the results of Corollary 3.5 concerning Steiner spanners as follows.

Theorem 5.1 For any n = 2, 3, . . ., any Ω(1/ log n) = δ ≤ 1/2, for any n-vertex undirected
graph G = (V,E) there exists Steiner additive O(n(1−δ)(1−1/ log 1/δ)(log 1/δ)1−1/ log 1/δ)-spanner with
O(n1+δ) edges.

Proof: By Theorem 4.26, all the distances greater or equal than t = n1−δ can be preserved by a
subgraph of size O(n1+δ). Substituting t = n1−δ to Lemma 3.4 yields the assertion of this theorem.

When trying to get an analogous result concerning subgraph (versus Steiner) spanners by
substituting t = n1−δ and using Lemma 3.4, one obtains an upper bound of roughly O(n1−δ/2) on
the additive error of a spanner with O(n1+δ) edges. This is, however, weaker than an upper bound
of O(n1−δ) that follows directly from Theorem 3.1 in conjunction with Theorem 4.26.

Using distance preservers it is possible to improve this bound to an additive error of roughly
O(n1−2δ) for a spanner of size O(n1+δ). This improvement is achieved by digging deeper into the
proof of Theorem 3.1 instead of using it as a blackbox. Digging deeper into the proof of Theorem
3.1 instead of using it as a blackbox makes it possible to improve this bound to an additive error
of roughly O(n1−2δ) for a spanner of size O(n1+δ). Next, we sketch the proof of this improved
bound.

First, let us sketch the construction of [15]. It starts with forming a ground partition G, that
is a partition of the entire vertex set of the graph into disjoint subsets of small diameter, called
clusters. Consider the supergraph G̃ = (Ṽ , Ẽ) induced by the partition G of the graph G. Its
vertex set Ṽ is the set of clusters of G, and its edgeset Ẽ is defined as {(C1, C2) | dG(C1, C2) = 1}.
One of the properties of the ground partition is that |Ẽ| = O(n1+δ).

After forming the ground partition G, BFS spanning trees of all the clusters of the ground
partition G are inserted into the edgeset H , that is constructed through the algorithm. In addition,
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for any pair of neighboring clusters C1, C2 such that (C1, C2) ∈ Ẽ, one edge (v1, v2) ∈ E∩(C1×C2)
is inserted into the edgeset H . Note that so far only O(n1+δ) edges were inserted into H .

Then the algorithm iteratively gets rid of small clusters by unifying them into bigger ones (later
on called superclusters, ) and interconnecting the pairs of close small clusters that cannot be unified
into a supercluster. The clusters are considered close if the distance between them is at most a
certain threshold. The value of this threshold determines the diameters of the superclusters that
are constructed. This value must always be significantly greater than the maximal diameter of the
small clusters treated on the specific iteration. Since the constructed superclusters act as small
clusters on the next iteration of the algorithm, the value of the threshold increases correspondingly.
Since this value is a lower bound on the additive error of the spanner constructed by the algorithm,
the algorithm of [15] uses constant (but growing) values of the threshold on all the iterations. A
supercluster is called active, if it was just formed by merging other superclusters, and is going to
take part in the next iteration. All the other superclusters, that is, those that were merged into
bigger ones, or those that were connected to all the nearby superclusters, become inactive and
disappear from the execution (in particular, never become active again).

The rate of the growth of the superclusters is determined by the number of still active super-
clusters. That is, in the beginning, when all the (super)clusters are of size Ω(nδ), there are at most
O(n1−δ) active superclusters. Hence, every supercluster that has at least Ω(n1+δ/n1−δ) = Ω(n2δ)
nearby superclusters initiates forming a bigger supercluster around it. This next-generation su-
percluster will be of size Ω(n3δ). In the next stage there are O(n1−3δ) active superclusters, and
every supercluster that has Ω(n1+δ/n1−3δ) = Ω(n4δ) nearby superclusters initiates forming a bigger
supercluster around it. Hence, it follows that the rate of the growth of the superclusters in the
algorithm of [15] is exponential in the number of iterations.

Our algorithm, unlike the one of [15], has to use distance thresholds that depend polynomially
on n. This is because using constant distance thresholds yields a multiplicative error of (1 + Ω(1))
(specifically, 1+ ε for arbitrarily small but constant ε), which, in turn, results in increasing original
distances dG(u, w) by an additive term of Ω(dG(u, w)). Loosely speaking, increasing the distance
thresholds in different iterations to nν some ν > 0 leads to a multiplicative error of 1 +O(1/nh(ν))
for some function h(ν), which, in turn, results in decreasing one of the terms of the additive error
to O(dG(u, w)/nh(ν)). Note that the distance×size preservation theorem enables to “get rid” of all
the pairs of vertices u, w that are at distance Ω(n1−δ) one from another. This implies a bound of
O(n1−δ−h(ν)) on this term of the additive error.

However, the additive error is also no smaller than the largest distance threshold (recall that
the distance threshold grows from one iteration to another), as the latter determines the diameters
of the superclusters that are constructed during the algorithm. Another problem with using high
values of distance thresholds is that they start affecting the rate of the growth of the superclusters.
To exemplify this point, suppose we use a distance threshold of nδ. When having at most n1−δ

superclusters, each having no more than n2δ nearby superclusters (located at distance no greater
than the distance threshold nδ), interconnecting every pair of nearby superclusters by the shortest
paths will require O(n1−δn2δ · nδ) = O(n1+2δ) edges, which is, however, exceeds the allowed size
O(n1+δ). (Note that this problem is not present when considering Steiner spanners, and this is
exactly the reason for better upper bounds for them.) It follows that (in this example) at most
O(nδ) clusters can be merged into a supercluster, and each supercluster of new generation will be
of size O(n2δ) (instead of O(n3δ)), and the rate of the growth of the superclusters becomes at most
linear (instead of the exponential) in the number of iterations. This, in turn, results in increasing
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the number of iterations required to treat all the clusters, and, therefore, in an increase of the
additive error.

Calibrating the distance threshold and other parameters of the construction to achieve the
smallest additive error is the main technical problem of this section. The main result is given by
the following theorem.

Theorem 5.2 For every n-vertex graph G = (V,E) and for every fixed 0 < δ < 1 there exists

an additive O(21/δn(1−δ) �1/δ�−2
�1/δ�−1 )-spanner, constructible in polynomial time, H ⊆ E of size |H| =

O(n1+δ/δ).

The formal proof of this theorem will be described in full elsewhere.
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