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ABSTRACT

Media analysis for video indexing is witnessing an increasing inuence of statistical techniques. Examples of
these techniques include the use of generative models as well as discriminant techniques for video structuring,
classi�cation, summarization, indexing and retrieval. Advances in multimedia analysis are related directly to
advances in signal processing, computer vision, pattern recognition, multimedia databases and smart sensors.
This paper highlights the statistical techniques in multimedia retrieval with particular emphasis on semantic
characterization.

Keywords: Multimedia Analysis, Statistical machine learning, Decision theory, Semantic video indexing, prob-
abilistic graphical models. expectation maximization algorithm, factor graphs

1. INTRODUCTION

The task of automatic analysis is to reduce the tremendous volume of multimodal data to concise represen-
tations, that capture the essence of the data. Tools for eÆcient storage, retrieval, transmission, editing, and
analysis of multimedia content are absolutely essential for the utilization of raw content. Such content confronts
us everywhere. Several aspects of our daily interaction with the world are a�ected by the modes of broadcast-
ing, communication, and computing. Video� databases serve as a perfect example of how the acute need for
tools has severely constrained the use of multimedia content. One of the greatest challenges is the mapping
between computational multimedia features and the high-level semantics represented by the media. Multimedia
databases can be better accessed if the index generated contains semantic concepts. EÆcient analysis can enable
applications such as high-level �ltering, automatic rating of Internet sites, restricting access to violent content
better and natural interfaces in human computer interaction very low bit-rate video coding, video skimming,
summarization, and transcoding etc.

This paper analyzes the application of statistical techniques in the advancement of video indexing. The
focus is on statistical techniques for video classi�cation, structuring, summarization, �ltering and browsing.

2. REVIEW

In this section the state of the art in image sequence, audio and video retrieval are briey reviewed.

2.1. Image sequence retrieval

Most techniques for image sequence retrieval support the query by example paradigm.1, 2 These systems
represent video clips using characteristics such as color texture, motion, object trajectories etc. and match
them using similarity measures like Euclidean distance. Most systems use visual shot boundary detection
followed by the grouping of shots to create scenes for easy browsing. Keyframes are extracted to represent
shots.

Statistical models like the hidden Markov models (HMM) have been used for structuring image sequences.3{5

Topical classi�cation of image sequences can provide information about the genres of videos like news, sports,
etc. Examples include.6{8 Extraction of semantics from image-sequences is diÆcult. Recent work dealing with
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video refers to an image sequence and its accompanying audio track.



semantic analysis of image sequences include Naphade et al,9 and Brand et al.10 Naphade et al9 use hidden
Markov models to detect events in image sequences. Brand et al.10 use coupled HMMs to model complex actions
in Tai Chi movies.

2.2. Audio retrieval

Compared to the signi�cant advances in speech recognition and speech processing related technologies, there
has been little progress in terms of retrieval of nonspeech audio data. Most indexing and retrieval schemes
in audio deal with human speech (sitcoms, radio interviews, news) with relatively noise-free environment and
work on a vocabulary of words. Recent examples include.11 Recently, there have been attempts to segment
the sound track in motion pictures12 and television comedies.13 The sound tracks in motion pictures o�er
tremendous untapped potential in terms of capturing the semantics if intelligent systems can make use of their
rich information content. Auditory scene analysis attempts to capture information in the audio track. Two of the
most frequently used classes in auditory scene analysis include speech and music. Recent work in segmentation
and classi�cation of audio streams includes.12{18 Naphade and Huang12 used hidden Markov models to classify
audio streams.

2.3. Video retrieval

While numerous techniques are available for the characterization and retrieval of the individual media mentioned
above, techniques using both the modalities for audiovisual analysis are few. Most techniques, using audiovisual
data perform temporal segmentation on one medium and then analyze the other medium as described earlier. For
example the image sequence is used for temporal segmentation and the audio is then analyzed for classi�cation.
Examples include,11, 19 and the Informedia project20 that uses the visual stream for segmentation and the
audio stream for content classi�cation. Such systems also exist for particular video domains like broadcast
news,21 sports,6, 17, 22 meeting videos23 etc. Wang et al.19 survey a few techniques for analysis using a similar
approach for similar domains. In case of domain-independent retrieval, while existing techniques attempt to
determine what is going on in the speech-audio, most techniques go as far as classifying the genre of the video
using audiovisual features.8 Other techniques for video analysis include the unsupervised clustering of videos.24

Naphade et al.25 have presented an algorithm to support query by audiovisual content. Another popular domain
is the detection and veri�cation of a speaker using speech and an image sequence obtained by a camera looking
at the person.26 This is particularly applicable to the domain of intelligent collaboration and human-computer
interaction. Recent work in semantic video indexing includes Naphade et al.9, 27, 28

2.4. Level of Analysis: Low-level vs. High-level

Most existing systems fall in the category of low level analysis. This includes most systems supporting the
paradigm of query by image/video content through examples or sketches as they use similarity in low-level
feature spaces for retrieval. A major drawback with the QBE paradigm is the need for good examples. Unless
good examples can initiate the search, good results are diÆcult to obtain.

An eÆcient video retrieval system must be able to handle the semantics of the query. It must abstract the
relationship between low-level media features and high-level semantic concepts to allow the user to query in
terms of these concepts rather than in terms of examples. Research in multimedia analysis, has witnessed a
recent shift of interest from syntactic analysis to semantic analysis. This is reected by the attention given to
the semantic description scheme in the emerging MPEG-7 standard.29

Systems for video analysis beyond low-level features aim at one of the following objectives.

� Detecting high-level structures like dialogs and scenes, commercials8 and other such recurring patterns
common to multiple domains.3, 4, 12

� Classifying the genre or the topic of the video clip. Examples include the MoCA system,8 and Kobla et
al.6 Such categorization has its roots in similar approach for topical detection from text.

� Domain-dependent analysis like that of sports video (football30), and news video.20 In such systems, the
knowledge is built manually by the human expert in the form of rules.



� Domain-independent analysis for automatic annotation of video. This remains the �nal frontier in
multimedia analysis for retrieval. This necessitates the detection of semantic concepts in video.9, 31{34

Naphade et al.9, 31 present novel ideas in semantic video indexing by learning probabilistic multimedia
representations of semantic concepts, including semantic events like explosion and waterfall. Semantic
classi�cation schemes include those for images35{37 as well as those for image sequences.8, 9, 34

2.5. Multiple Modalities and Fusion

Using information available from multiple sensors is a challenging fusion problem. Video analysis presents a
challenge in terms of the fusion of audio visual and textual modalities. No single modality is suÆcient to capture
representations especially for semantic concepts. For example, it is diÆcult to recognize (detect) a helicopter
from an image sequence alone. However, detecting the sound of the helicopter may not be as diÆcult in audio.
This example illustrates the importance of going beyond vision or speech to address multimedia content in a
uni�ed fashion. It is not clear how information available from multiple modalities should be fused. Approach
to eÆcient fusion often depends on the nature of audiovisual interaction as well as the desired end-result of the
analysis. The information in these modalities may corroborate or contradict. The degree and type of correlation
between the multiple media streams varies with the concept being conveyed. Of the several techniques referred
to in this paper, only a few can claim to be truly multimodal in terms of joint utilization of audio-visual
data. Examples include.8, 21, 24{27, 31 Most systems supporting query by example support unimodality. The
multimodal QBE system presented by Naphade et al25 for example, is one of the very few QBE systems that
are truly multimodal.

2.6. The Role of the User in the Loop

Since the aim of any retrieval, indexing, �ltering, and browsing system is to aid the human, the involvement of
the human in the process is crucial. Human-centric applications such as multimedia content management can
bene�t largely if the system can �gure out when human intervention is crucial and how it should be optimally
utilized.

Existing systems can thus be di�erentiated based on how the human is involved in the system. A possible
classi�cation is based on the stage at which the human is involved. Systems supporting relevance feedback
and browsing involve the human at a later stage during the retrieval/browsing process. On the other hand
systems can involve the human at an earlier stage for the process of annotation (as in supervised training).
Human intervention is considered costly in most cases. Thus the e�ort of the system is to adapt and minimize
the user's interaction. In systems that need the human for annotation, techniques such as active learning are
being used38 to select those examples that are the most informative if annotated. In relevance feedback systems
where the user is involved in an iterative procedure the main aim is to minimize the number of iterations. Yet
another approach is to use the user annotated examples along with the unlabeled examples to drive the process
of classi�cation.35, 39

3. STATISTICAL METHODS FOR DEFINING SIMILARITY

Probabilistic representation of features implies the use of probability density functions to represent the sta-
tistical properties of features. In the QBE paradigm, similarity in media feature spaces is usually de�ned in
terms of Euclidean or Mahalanobis distance. However if these features are represented as probability density
functions, then measures such as the Kullback Leibler divergence40 can be used to de�ne similarity. Examples
of probabilistic matching include37, 41, 42 etc. Vasconcelos42 compares various statistical measures and their
complexity. Amongst other things, Vasconcelos shows how a query image can be matched with the images in
a database with less computational complexity by using probabilistic representations and statistical distance
measures. Greenspan et al.41 use mixtures of Gaussians to represent dominant regions in images and extend
the model for image sequences.



4. STATISTICAL METHODS FOR SEMANTIC CLASSIFICATION

For automatic semantic video indexing and retrieval, models representing semantics in terms of multimedia
features are needed. This can be viewed as a multimedia pattern recognition problem. Depending on the nature
of the semantic concept, the model and the training algorithm can be chosen. Most of the semantic concepts to
be modeled can be classi�ed either as objects, sites or events. Sites represent static concepts like sky, mountain,
outdoor, cityscape, etc. Examples of events include explosion, gunshot, dancing, helicopter-ying, etc. Events
are those semantic concepts, which evolve temporally. Examples of objects include face, car, animal, building
etc.

This classi�cation of semantic concepts is not rigorous, but helps in choosing models for the three concept
classes. For example, it is clear that sites should be modeled with static pattern recognition techniques with
long-term temporal support only for the sake of visual continuity. Similarly it is evident that events need the
short-term temporal dynamics to be modeled and this is a time-series classi�cation problem. Objects on the
other hand point to de�nitive shape or structure and it is easier to model them if they are associated with
events. For example, it is easier to model a ying helicopter or a moving car than it is to model a static car or
helicopter from shape. The principal diÆculty is imperfect segmentation of object shape from the background.
Another reason for favoring detection of events related to objects over detecting the objects statically, is the
hope to see some characterization in the audio track. This serves as an additional source of information, often
loosely coupled with the visual characterization.

4.1. Supervised Learning and Probabilistic Feature Representation

A component for model-based learning/recognition is necessary in order to develop representations for semantic
concepts. Supervised or partially supervised training then becomes an inherent component for developing
concise representations of semantic concepts that can be used eÆciently for semantic retrieval. A desirable
characteristic of such a learning/recognition component is the ability to account for the uncertainty in the
information in multimedia representation.

Assume that features from audiovisual streams have been computed. Let X be the feature vector. Assume
that the statistical properties of these features are characteristic. For distinct instances of all multijects, fur-
ther assume, that these features are independent identically distributed random variables drawn from known
probability distributions, with unknown deterministic parameters. For the purpose of classi�cation, assume
that the unknown parameters are distinct under di�erent hypotheses and can be estimated. In particular, each
semantic concept is represented by a binary random variable. The two hypotheses associated with each such
variable are denoted by Hi, i 2 f0; 1g, where 0 denotes absence and 1 denotes presence of the concept. Under
each hypothesis, assume that the features are generated by the conditional probability density function Pi(X),
i 2 f0; 1g. In case of site multijects, the feature patterns are static and represent a single frame. In case of
events, with spatiotemporal support, X represents a time series of features over segments of the audiovisual
data. The one-zero loss function is used43 to penalize incorrect detection. This is shown in Equation 1:

�(�ij!j) = 0 i = j (1)

= 1 i 6= j

The risk corresponding to this loss function equals the average probability of error and the conditional risk with
action �i is 1 � P (!ijx). To minimize the average probability of error, that class !i must be chosen, which
corresponds to the maximum a posteriori probability P (!ijx). This is the minimum probability of error (MPE)
rule.

In the special case of binary classi�cation, this can be expressed as deciding in favor of !1 if

p(xj!1)

p(xj!2)
>

(�12 � �22)P (!2)

(�21 � �11)P (!1)
(2)

The term p(xj!j) is the likelihood of !j and the test based on the ratio in Equation (2) is called the likelihood
ratio test .43, 44



Recent work in modeling concepts include the framework of multijects by Naphade et al.,9, 27, 32, 35 classi�-
cation of vacation images by Vailaya et al.,37 semantic visual templates by Chang et al.,2 classi�cation of video
captured by a wearable camera by Clarkson and Pentland,24 and classi�cation of soundtrack into meaningful
classes such as speech, music.12, 14, 17

In the multijects framework (see Naphade et al9) a video shot can be explained as an object or an event
occurring at a site or location.

A multiject represents a semantic concept that is supported by multiple media features at various levels
(low level, intermediate level, high level) through a structure that is probabilistic.9 Multijects belong to one of
the three categories: objects (car, man, helicopter), sites (outdoor, beach), or events (explosion, man-walking,
ball-game). Figure 1 illustrates the concepts of a multiject.

Outdoor

Audio Features Closed-caption/Text Features
Visual Features

Other multijects

P(Outdoor=Present|Multimedia features, other multijects)=0.7

P(Outdoor=Absent|Multimedia features, other multijects)=0.3

Figure 1. A probabilistic multimedia object (multiject).

A multiject is a exible, open-ended semantic representation. It draws its support from low-level features
of multiple media including audio, image, text, and closed caption.9 It can also be supported by intermediate-
level features, including semantic templates.2 It can also use specially developed high-level feature detectors
like face detectors or other multijects. A multiject can be developed for a semantic concept if there is some
correlation between low-level multimedia features and high-level semantics. In the absence of such correlation,
a suÆciently invariant representation cannot be learnt. Fortunately many semantic concepts are correlated to
some multimedia features, and so the framework has the potential to scale.

4.1.1. Site multijects based on image sequences

In case of sites the feature vector is modeled as a Gaussian mixture model (GMM). The temporal ow is not
taken into consideration. The expectation maximization (EM) algorithm45 is used to estimate the means and
covariance matrices of the GMMs. Sites may be supported by blobs or regions, or they may be supported
by the whole frame. Several regional site multijects have been modeled rocky-terrain, sky, snow, water-body,
forest/greenery, outdoor46 etc. .

4.1.2. Event multijects based on audio

Interesting semantic events in audio include speech, music, explosion, gunshots, etc. Recent work in statistical
audio modeling includes.12{16, 18 Naphade and Huang12 used hidden Markov models (HMMs) for representing
the probability density functions of auditory features computed over a time series. An audio event is modeled
using a set of states with a Markovian state transition and a Gaussian mixture observation density in each state.
Continuous density models can be used in which each observation probability distribution is represented by a
mixture density. For state j the probability bj(ot) of generating observation ot is given by Equation (3):

bj(ot) =

MjX

m=1

cjmN (ot;�jm;�jm) (3)



where Mj is the number of mixture components in state j, cjm is the weight of the mth component, and
N (o;�;�) is the multivariate Gaussian with mean � and covariance matrix �. The parameters to be estimated
are the transition matrix A, the mixing proportions c, and the observation densities b. The Baum-Welch
reestimation procedure47, 48 is used to train the model and estimate the set of parameters. Once the parameters
are estimated using the training data, the trained models can then be used for classi�cation as well as state
sequence decoding.47, 48 Some of the multijects developed include human-speech, music12, 49 and helicopter-
ying .27

The audio stream in motion picture soundtrack is of a composite nature. This corresponds to the mixing
of sounds from di�erent sources. Speech in foreground and music in background are common examples. The
coexistence of multiple individual audio sources forces us to model such events explicitly. If suÆcient data for
training is available, HMM models (based on audio alone) that represent concurrent occurrence of multiple
multijects12 can be estimated.

4.1.3. Event multijects based on video

Most probabilistic techniques for modeling features from modalities having temporal support are based on
Markov models. Examples include the HMM48 and its several variants for fusing multiple modalities like the
coupled HMM,10 factorial HMM,50 etc. Fusion of multimodal feature streams (especially audio and visual
feature streams) has been applied to problems like bimodal speech,51 summarization of video,21 query by
audiovisual content,25 and event detection in movies.9 These models are characterized by the stage at which
the features from the di�erent modalities are merged. Examples of audiovisual events include explosions,
human-talking, etc.

Assuming synchronization, the two main categories of fusion models are those that favor early integration of
features as against those that favor late integration. Models for early integration include the coupled HMM,10

the factorial HMM50 etc. The audio and visual streams in a movie or a news clip appear to be loosely coupled.
Late integration includes schemes, which use independent models for multiple feature streams and then combine
the weighted decisions. Naphade et al9 have developed a hierarchical HMM (HHMM) that combines features
with temporal support from multiple modalities and performs late integration. Under each hypothesis it is
assumed that each feature stream is generated by an HMM.48 The parameters of the HMM under each
hypothesis for each feature stream are estimated using the EM algorithm45, 48 and a labeled training set. The
best state sequence and hypothesis for the test set is then evaluated through maximum-likelihood detection.
Once the state sequence for each feature stream is obtained, these intermediate-level decisions are used as
features for a supervisor HMM,9 that combines these intermediate level decisions for all feature streams.

Figures 2 shows an HHMM with audio and image sequence features forming the two media observations
streams.

Each state in the media HMMs represents a stationary distribution and by using the Viterbi decoder over
each feature stream, features are clustered spatiotemporally and quantized through state identities.9 The
optimal state sequences obtained using the Viterbi algorithm48 in the video and audio are now treated as
the observations of the supervisor HMM. The supervisor HMM encodes the correlation of states in the two
modalities. This is a hierarchical, fast, greedy bottom-up algorithm.

4.1.4. Complex action recognition using coupled HMMs

Brand et al.10 present a coupled HMM for detecting complex actions in Tai Chi movies. The multiple sensors
in this situation are the location and movement of the two arms of the performer. Brand et al.10 argue that
these movements are not independent for Tai Chi actions and model the interaction through inter-dependence
of state sequences of two hidden Markov models. This coupling leads to an improvement in performance over
linked HMMs and individual HMMs. In a coupled HMM, there are as many hidden state chains as number of
feature streams and at each time instance in each chain, transition to a state depends on the identity of the
previous state of the same chain as well as the previous state in other chains. The 3D hand tracking data is
obtained by using a self-calibrated stereo blob tracker.



A1 A2 A3 A4

V1 V2 V3 V4

V1 V2 V3 V4
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Video HMM

Audio HMM
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Figure 2. Hierarchical HMM: The state sequence within the dotted lines represents the supervisor HMM sequence.
Nodes V O1; : : : ; V Om denote video observations. Nodes AO1; : : : ; AOm denote audio observations. Nodes V1; : : : ; Vm
denote the decoded state sequence for the video HMM. Nodes A1; : : : ; Am denote the decoded state sequence for the
audio HMM. Nodes Q1; : : : ; Qm denote the state sequence for the supervisor HMM.

4.1.5. Genre Detection

A popular application of statistical techniques has been for detection of genres in videos. Examples include6{8, 52

etc. Popular classes include sports, news, commercials, television shows etc. Detailed classi�cation of sports
into baseball, football etc. has also been studied.

5. STATISTICAL METHODS FOR REPRESENTATION OF KNOWLEDGE AND
CONTEXT

Humans analyze multimedia content and its associated semantics using the audiovisual sensory information as
well as knowledge learnt over an extended length. The knowledge base is used for reasoning and inference.
It is obvious that semantics is meaningful only in context and not in vacuum. This fact has been used in
information retrieval in the text domain by WordNet.53 WordNet is a text-retrieval system built manually over
several years that encodes relationships of di�erent kinds between the words supported in the system. In speech
recognition and natural language processing stochastic grammars have been proposed to improve the detection
performance.

To incorporate domain knowledge we need to inuence the decisions by context, grammar and other high-
level information. This information may be domain dependent. The constraints may be represented by rules
heuristics or association. The emerging MPEG-7 standard on multimedia content description, attempts to
de�ne a language for semantic description29 to describe interactions that are possible between a pair of semantic
concepts.

Ideally, we would like to learn the context from data rather than having to build it manually into the
system. Neural nets, expert systems, fuzzy logic, decision trees, static and dynamic Bayesian networks, factor
graphs, Markov random �elds, etc. are popular mechanisms for storing and enforcing high-level information.
For example the high-level analysis may use classi�ers of sky, rocks, snow, water-body, forestry, etc. to infer that
the scene is an outdoor scene.54 The enforcement of constraints due to grammar has been shown to improve
detection performance in automatic speech recognition.

Recent work in computational models for contextual relations between semantic concepts included a prob-
abilistic graphical framework (multinet).9, 55 The multinet framework9, 55 is one of the earliest framework for
learning computational models of contextual association and constraints between several semantic concepts from



an annotated training data. A multinet is a network of distributed semantic concepts, linked through edges
which denote the nature and the strength of the spatio-temporal interaction between these semantic concepts.

Semantic concepts do not occur independently or in isolation from each other. In fact signi�cant information
lies in their co-occurrence. Intuitively, it is clear that the presence of certain semantic concepts suggests a high
possibility of presence of certain others. Similarly, some concepts are less likely to occur in the presence of others.
For example, a ying helicopter is mostly shown against sky as the background. Thus sky and helicopter share
a positive relation. Similarly, beach, sand, sky and water share a positive relation. Explosion and gunshots
similarly share a positive relation with violence. Concepts also tend to share negative relations. For example
sky and snow rarely co-occur with indoor. There also are spatiotemporal relations. For example sky must occur
above water. When a person speaks, the mouth movements must be synchronous with speech.

The multinet reects the dependencies, relationships, and co-occurrence between semantic concepts at var-
ious hierarchical levels. A multinet provides a robust framework for supporting four aspects of constructing
semantic indices:

� Enhancing detection: The use of mutual information can enhance detection of multijects.

� Support inference: Some multijects may not provide the required degree of invariance in feature spaces.
To detect such multijects, the multinet can support inference based on the interaction of these multijects
with other multijects (which can be detected with greater ease).

� Imposing prior knowledge: The multinet can provide the mechanism for imposing time-varying or time-
invariant prior knowledge of multiple modalities and enforce context-changes on the structure. For ex-
ample, knowledge, that a movie is an action movie, may be used to increase the prior probabilities of
gunshots and explosion.

� Combining classi�ers: The multinet can combine classi�ers and fuse multiple modalities.

A graphical representation of a multinet is shown in Figure 3 with the positive signs indicating a positive
interaction and negative signs indicating a negative interaction.
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Figure 3. A conceptual �gure of a multinet. Signs indicate positive or negative interaction between concepts.

Contextual constraints can change with time and with domain. Dynamic multinets, that can take care of such
changes are therefore necessary. Naphade et al46, 55 presented a probabilistic graphical network architectures
as a computational model of the multinet. The backbone of this computational model is the factor graph
framework.55{57 Using the sum-product algorithm, we are able to propagate evidence in factor graphs and
perform learning as well as inference. For details see Naphade et al.55



Applying the theory of multijects and multinet, a system for semantic �ltering was developed for a small set
of concepts.55 An example of the semantic �ltering system for movie clips is shown in Figure 4.

Figure 4. Key frames from a movie and the corresponding con�dence measures for various semantic labels.

6. STATISTICAL METHODS FOR SEGMENTATION STRUCTURING AND
GROUPING

Probabilistic models like the hidden Markov model and its variants have been popularly used for the tempo-
ral segmentation, clustering and grouping of videos. Examples include segmentation and structuring such as
detection of dialogs58 and scenes, and other such recurring patterns common to multiple domains.3, 4, 12

Clarkson and Pentland24 analyze the audio-visual signals from a wearable camera and a microphone. The
system captures video while accompanying a person in daily activities. Depending on the audiovisual features,
the attempt is to group the data into clusters, which may represent types of activities. Since the approach is
unsupervised, this may not always correspond to distinct semantic activities. The unsupervised clustering is
then evaluated using a baseline classi�cation system. The baseline system is trained in a supervised fashion as
the wearer of the camera and microphone labels the locations while the data is obtained. The di�erent kinds of
events for which the models are trained including entering and leaving an oÆce location, a kitchen and a black
couch area.

Liu et al.52 use an ergodic hidden Markov model to cluster audio and then use this information to drive a
supervised training scheme for the classi�cation of videos. Naphade and Huang5 use hierarchical model with
non-ergodic hidden Markov models embedded within a long term model which is ergodic. Application of this
framework to the discovery of recurring patterns in movies leads to the automatic clustering and detection of
events in video such as explosion. Application to programs such as talk shows leads to the automatic detection
of events such as monologue, laughter, applause, music etc.

7. STATISTICAL METHODS FOR USER INTERACTION

From the application view point, user interaction comes into picture in video indexing and retrieval systems
in one of the two scenarios. In the �rst, a user annotates and adds value to a video. In the second, the user
changes the parameters of the system to enhance performance according to the user's preference. In the former
scenario, the onus is on the system to minimize the input from the user as this interaction is costly and time
consuming. In the latter scenario, the biggest problem is the user's impatience in persisting with feedback over
long periods of time.

The aim in either case is to minimize the number of inputs from the user while maximizing the accuracy
of automatic propagation based on the learnt representations. Two aspects that need to be learnt are the
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Figure 5. Imposing Structure using several non ergodic hidden Markov models embedded in a hierarchical ergodic
con�guration.5 States labeled D are dummy states that do not emit any observations. Each branch is a non ergodic
HMM.

Figure 6. A System for Video Annotation that uses active sample selection to minimize user interaction.

model that can be used to represent the user's inputs and the model that can be used to represent the user's
preferences. Again this categorization is purely driven by applications.

Annotation can be assisted through intelligent modeling of the user inputs and through propagation and
sample selection procedures. Naphade et al38 demonstrate that the number of samples that need to be annotated
can be cut down by a factor of 10 if the samples to be annotated by the user are actively selected. A support
vector machine based active learner is incorporated for the sample selection.

Figure 6 shows a visual interface for the video annotation.38

A di�erent approach to reducing the e�ort of the user that can be coupled with the above active learning



based annotation is the use of unlabeled samples along with the labeled samples to improve the performance
of automatic propagation of annotations. Naphade et al.35 use an EM algorithm and show improvement in
performance if sample selection precedes the labeled-unlabaled learning step.

The application of learning in the retrieval step to assist the user and minimize the iterations of feedback
has also been studied. Most notably Tong and Chang59 show substantially improved performance using support
vector machine based active learning as a feedback mechanism in image retrieval.

8. CONCLUDING REMARKS AND FUTURE DIRECTIONS

Statistical techniques are increasingly popular in video data management. In particular these techniques are
applied in problems like semantic video classi�cation, genre detection, segmentation, summarization, clustering,
browsing, structuring and retrieval. In case of semantic analysis, the diÆculty lies in bridging the gap between
low-level media features and representations that can be computed and the high-level semantic labels. Statistical
machine learning techniques play an important role in modeling semantic concepts, knowledge and context,
segmentation and grouping, and user interaction.

While the problem of small sample statistics limits the use of traditional techniques, innovations such as
labeled and unlabeled learning, active learning and discriminant techniques have made it more feasible to use
statistical models for various video indexing problems. The main challenge in future is to attain performance
that is considered useful by the end users of the systems.
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