
RC22594 (W0210-103) October 17, 2002
Computer Science

IBM Research Report

Investigating Early-Stage Design of Multi-Device Web
Applications

James Lin1 , Lawrence D. Bergman2 , Guruduth Banavar2 ,
Danny Soroker2 , Richard J. Cardone2

1Group for User Interface Research
Computer Science Division

University of California
Berkeley, CA 94720-1776, USA

2IBM T.J. Watson Research Center
19 Skyline Drive

Hawthorne, NY 10532, USA

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Investigating Early-Stage Design of
Multi-Device Web Applications

James Lin 1, Lawrence D. Bergman 2, Guruduth Banavar 2,
Danny Soroker 2, Richard J. Cardone 2

1 Group for User Interface Research

Computer Science Division
University of California

Berkeley, CA 94720-1776, USA
jimlin@cs.berkeley.edu

2 IBM T.J. Watson Research Center

19 Skyline Drive
Hawthorne, NY 10532, USA
{bergmanl, banavar, soroker,

richcar}@us.ibm.com

ABSTRACT
Designers increasingly need to create web applications that
can run on multiple types of devices, such as desktop PCs,
handhelds, and mobile phones. However, the ability of
designers to explore design ideas is hampered by the lack
of tools for early-stage design of multi-device UIs. To
address this problem, we designed and prototyped an early-
stage, multi-device web application design tool. Our system
allows a designer to sketch a web user interface design for
a single device and then generates designs for other devices.
The designer can subsequently modify the generated user
interface.

We informally evaluated the prototype with six user
interface designers. Although our tool is in the early stages
of development, we were still able to gain insight into the
features that a multi-device web design tool should support.
These insights include the need to give designers more
control over the retargeting process and the need to support
a tight relationship between designs of the same user
interface targeted at different devices.
INTRODUCTION
Designers of web applications face a computing world that
is becoming increasingly complex. Users are more
frequently augmenting traditional desktop computer usage
with mobile devices such as handheld computers and
mobile phones. This allows users to access web
applications in many more locations and situations than
they can with a PC, but it also increases the burden on
designers. Designers cannot simply deploy a desktop user
interface on different types of devices; they must tailor the
user interface to match the characteristics of each
individual device.

Currently, designers either create a user interface for each
device from scratch, which is time consuming, or they rely

on programs that take an existing user interface for one
device and automatically generate versions for other
devices on the fly, which often produces undesirable results.
We believe that a hybrid approach is the most useful: a tool
that allows designers to design a user interface for one
device, and then generates UI designs for other devices. We
call this retargeting. The tool would then allow the
designer to tweak the generated UIs to create the finished
device-specific interfaces. The main advantage of this
approach is that designers can quickly design basic web
applications for multiple devices.

We want to determine how useful such a tool would be to
designers, especially in the early stages of design when
ideas are most fluid. Will the designers find these generated
user interfaces useful or will the generated artifacts just get
in the way? How will the generated user interfaces be used?
What characteristics should the generation process have to
make such a tool useful?

In order to explore these questions, we created a prototype
tool that allows a designer to sketch a rough design for a
device-specific user interface, typically for a desktop web
browser. Using this initial specification, the tool generates a
design sketch for a user interface specific to another device.
The designer can then hand-customize the generated design.

Our informal evaluation of the prototype with UI designers
suggests that a tool similar to our prototype can be useful
and that a critical element in the design of any such tool is
the control designers are given over retargeting. Designers
want to guide the retargeting process, before the actual
retargeting takes place. They would like a tight connection
between device-specific UIs, so that changes in any one of
the device-specific UIs are quickly, if not immediately,
reflected in the others. The tool should also support
different design practices, especially since multi-device
design is new and design practices are still evolving.

The rest of the paper is organized as follows. First, we
describe the user interface of the tool and how designers
use it. Next, we discuss the tool’s architecture. We then
describe how we conducted our evaluation and the

 2

feedback we received from designers. Finally, we discuss
related work and conclude.
USING THE PROTOTYPE
We decided to use a sketch-based interface for the user
interface of our prototype because designers usually sketch
on paper during the early stages of design [14]. The user
interface is based on an existing sketch-based tool for
early-stage web design called DENIM [10]. DENIM supports
three different representations of sketched-web design
input—site maps, storyboards, and pages—and it unifies
these representations through zooming.

DENIM has one window (see Figure 2) with three main areas.
The center area is a canvas where the user creates web
pages, sketches the contents of those pages, and draws
arrows between pages to represent their relationship to one
another. On the left is a slider that is used to set the current
zoom level. The bottom area is a toolbox that holds tools

for drawing, panning, erasing, and creating and inserting
reusable components.

Instead of pull-down menus, DENIM uses techniques geared
towards pen interaction. For example, pie menus [4] are
used for executing commands. Alternatively, pen gestures
can be used for quickly executing the most common
commands, such as copying, pasting, and panning.

Designers test the interaction of their designs in DENIM’s
Run mode. Opening a pie menu over a page and selecting
File→Run launches a separate DENIM browser window with
the page loaded. The designer can navigate through the site
design exactly like in a web browser, clicking on links and
using the Back and Forward buttons.

DENIM designs consist of pages and arrows. Pages
represent the web pages in a site. A page consists of two
parts: a label describing the page, and a sketch representing
the physical appearance of the web page (see Figure 3a). A
designer can sketch or type in a page.

An arrow between two pages represents a relationship
between those pages (see Figure 3b). To create a
relationship, the designer draws an arrow between two
pages. If the arrow starts from a particular item in a page,
such as a word, image, or button, then the source of the
arrow becomes a hyperlink, and is marked in blue. In Run
mode the user can click on the hyperlink to transition to the
destination page.

We augmented DENIM to allow designers to insert radio
buttons, check boxes, buttons, and drop-down boxes, which
are commonly used in web applications, directly into their
designs (see Figure 1a).

Figure 3. a) A DENIM page with the label “Home” b) An arrow,

whose source is a blue hyperlink, “Business.”

Figure 2. DENIM showing a typical design.

Figure 1. a) Top: Web form widgets within a DENIM page.

b) Bottom: Two groups within a DENIM page.

 3

We also added the ability for designers to group elements
together to indicate that the elements are related. For
example, a designer can group a text box and a Search
button together to show that they should be treated as one
unit (see Figure 1b). Groups also affect the behavior of any
radio buttons: Within a group, only one radio button may
be selected at a time.

Currently, our tool focuses on design for PCs and for Palm
handheld devices. To retarget a PC design to the Palm, the
designer presses a Retarget button. The tool takes the
design, resizes the pages to fit the Palm’s screen, and if
needed, splits pages to minimize scrolling on the Palm.
Elements within a retargeted page, such as handwriting and
sketched images, are not resized or otherwise altered.
Figure 4 shows a design for the PC and the results of
retargeting the design to a Palm handheld.
ARCHITECTURE OF THE TOOL
Figure 5 shows the overall architecture of our prototype.
When designers press the Retarget button, the system takes
the design file and feeds it to a desketcher, which translates
(or desketches) it into a generic model. The model is based
on XHTML [21] for general content elements and XForms

[22] for form elements such as radio buttons and check
boxes. One XHTML+XForms page in the model represents
one page in the original DENIM file.

The model is then fed through a specializer, which
transforms it into a markup language for a target device.
This process can result in one XHTML+XForms page being
split up into several pages, depending on the characteristics
of the target device. The specializer creates pages that fit
within a target device’s screen, or are a little longer,
allowing a bit of scrolling. The specializer tries to keep
elements that have been grouped together on the same page,
although this is not always possible.

The resulting markup pages are then fed into a geometry
extractor, which renders the markup using the
characteristics of the target device and determines the
positions of elements in the markup.

Finally, a resketcher takes the markup, the extracted
geometry, and handwritten elements from the original
DENIM file, and creates a sketch-based version of the
markup to be presented to the designer.

Figure 5. The architecture of the prototype.

Figure 4. Left: A DENIM design for the PC. Right: The design retargeted for the Palm handheld.

Geometry
extractor

Device
profile

DENIM

Resketcher

2nd device-
specific
markup

Specializer
DENIM

file
1st device

Desketcher

Location
info

DENIM
file

2nd device

Generic
app

model

 4

EVALUATION
To evaluate our tool, we performed an informal task-based,
usability test. The participants were introduced to our tool
and then asked to create elements of a simple e-commerce
site.
Participants
Six designers participated in the usability study, four men
and two women. All six designers are employed at user
interface design or information architecture firms, have
experience designing for desktop web, and have at least
some experience designing for mobile devices. Four of the
designers have worked on multi-device user interfaces,
although such interfaces are not the focus of their current
work. Table 1 summarizes the characteristics of the
participants.
Methodology
The usability tests were performed on an IBM ThinkPad
laptop with a Wacom Graphire tablet. First, we gave the
designers a warm-up task to get used to the tablet. Next, we
demonstrated the prototype system and had the designers
do some basic tasks, such as creating pages, adding
elements to pages, and running the designs. Then, we asked
the designers to create an online music store application for
a desktop browser. We retargeted these desktop
applications to Palm devices; the designers were then able
to modify the generated results. About sixty minutes were
available for the complete design task, including creating
the desktop application and editing the Palm version.

Finally, we debriefed the designers and had them fill out a
questionnaire. We were looking for comments addressing
two general themes:

• Were the tool and the generated user interfaces useful?
Would the answer change depending on the number of
devices being targeted?

• How can the tool be enhanced to better support the
design of multi-device applications?

Results
We found that our prototype tool had implementation flaws
that made it difficult for designers to perform some tasks.
In particular, the retargeting process was not sufficiently
robust and mature to handle all the designers’ sketches,
which led to pages being split and elements within the
pages being laid out in unexpected ways.

We also found that because the designers only had about
30–40 minutes to design for the desktop, their desktop
designs were not very large. Consequently, some designers
said that it would have been easier to simply resketch their
small designs from scratch instead of starting from our
generated user interfaces. Some of them were also slowed
down by their lack of familiarity with the Wacom tablet.

Given the maturity of our tool and the time constraints of
the evaluation, most designers concluded that using our
tool was no faster than using paper and pencil for

retargeting the designs that they had created. On the other
hand, five of the six designers saw potential benefits of the
tool within a broader context:

1. Two of the designers, Designers #4 and #5, thought that
for large designs, a design tool that can retarget could
potentially save them a lot of time.

2. Three of the designers also found value in the generated
sketches, even though they were not ideal. Two of the
designers, Designers #1 and #2, thought that the
generated sketches still provided a useful starting point
to design for the second device. Designer #2 said that by
starting from the generated sketches, he would not
forget to implement features in the PC version for the
Palm version. Thus, if a feature was not present in the
Palm version, it was because he explicitly deleted it
from the generated design, not because he forgot to
copy it from the PC version.

3. Designer #1 said that the generated sketches were useful
to show to clients, to demonstrate to them how
unwieldy a Palm web site would be if it had all of the
functionality of the PC web site.

4. Another designer, Designer #6, said that he could
imagine that a more robust version of the tool would
generate sketches that would help him “see potential
pitfalls (or opportunities)” in the design for the target
device.

Participant Characteristics
1 UI designer

Graphic design background
Uses Photoshop and Illustrator
Has worked on > 20 multi-device projects

2 Interaction designer
Liberal arts background
Uses Photoshop, Fireworks, and Dream-
weaver
Has worked on < 5 multi-device projects

3 Information architect
Programming and business background
Uses Photoshop, Visio, and Flash
Has not worked on any multi-device projects

4 Information architect
Media (TV, photography) background
Uses Visio and Photoshop
Has worked on < 5 multi-device projects

5 UI designer and usability engineer
Computer science background
Uses Illustrator and Dreamweaver
Has not worked on any multi-device projects

6 UI designer
Graphic design background
Uses Fireworks and Visio
Has worked on < 5 multi-device projects

Table 1. Summary of study participants.

 5

When we asked the designers the minimum number of
target devices that would be required for a retargeting tool
such as our prototype to be useful, all but one of the
designers said two devices. One of them said that the tool
would probably be most useful if the two devices were the
same general type, such as from one cell phone to another,
as opposed to from desktop PC to cell phone.

However, when we asked the designers how likely they
were to use a commercial-strength retargeting tool for
early-stage design, the reaction was more mixed. Three
designers were likely to use one, one designer was neutral,
and two said they were unlikely. One of the designers who
was likely to use a retargeting tool said he would do so only
if it were not sketch-based. This is because he would only
use sketch-based tools for conceptual design, not for
designing layouts for specific devices.

Finally, the designers gave us several suggestions that
would make a retargeting tool more useful to them, which
we describe in the next section.
DESIGN CONSIDERATIONS FOR A SKETCH-BASED
RETARGETING SYSTEM
The designers described a number of ways in which they
believe a tool for retargeting designs could be more useful.
Most of the suggestions are related to the theme of letting
designers better understand, guide, and control the
retargeting process. Each of the following suggestions was
made by at least one of the designers. While these
suggestions are not necessarily representative of the design
community as a whole, we believe each suggestion has
merit.

Control over retargeting. Four of the designers mentioned
that they would like to guide the retargeting process
directly. They would like to be able to explicitly tag which
sections of a page should be carried over to the target-
device design, and which sections should be omitted,
before the retargeting process takes place. One designer
said he would like to make the tags conditional on what the
target device is.

Another designer said that, when targeting the Palm, the
tool should not split pages automatically, since the Palm
handheld has scroll buttons. Instead, the tool should create
pages that would scroll and that allow designers to split the
pages themselves. This shows that information about the
devices’ characteristics must be taken into account
throughout the retargeting tool for the tool to be effective.

Iterative design. Other designers wanted to better
understand the retargeting process. For example, some said
they would prefer a more iterative approach than the study
permitted. Due to time and tool constraints, all of the
designers went through the retargeting process only once.
These designers would rather design a little bit for one
device, retarget, look at the results, design a bit more for
the first device, and so on. One designer specifically
mentioned that he would like to see the design for the target

device modified in real time while he worked on the design
for the initial device.

There should also be a tighter relationship between designs
of the same user interface on different devices. With our
tool, a retargeted design has no relationship to the original
design once it has been generated. Ideally, the tool should
be able to propagate changes made in a generated device-
specific design back to the original, a concept called round-
tripping. However, not all changes should be propagated. A
designer may want to remove an element in a mobile phone
version because it is unnecessary, but keep it in the desktop
version because it aids navigation. How to support such
intelligent round-tripping remains an open question.

Templates and content replication. Another theme was the
ability to intelligently replicate content. For example,
several designers mentioned that if they wanted a search
box in the upper right-hand corner of every page, they
would like to create a template that contains the search box,
and apply that template to all of the pages in the site.

They also mentioned that if a page is split during
retargeting, some elements in the original page, such as
search or navigation aids, should be replicated on each of
the resulting pages. Designers would need a way to specify
which elements should be replicated, since it would be
difficult to make such decisions automatically. The
challenge is to provide means for specifying which
elements to replicate without burdening the designer or
cluttering the design.

Support for alternative design processes. The tool should
be flexible enough to support a variety of design practices,
especially since multi-device design is a new discipline and
design practices are still evolving. For example, our tool
was designed to go from a user interface for a large display,
like a desktop PC, and retarget it to a device with a smaller
display, like a Palm handheld. One designer said it was
easier for him to add to a design than subtract from a design,
so he would prefer to do the opposite of our tool: take a
Palm user interface and merge its pages to form a desktop
PC version.

Improved page splitting. All of the designers said that the
algorithms for rearranging and splitting up content could be
improved. One designer said that any handwriting and
images should be shrunk to fit the dimensions of the
handheld. Similarly, one designer mentioned that since
Palm handhelds can scroll, groups should never be split
between two or more pages. Instead, the tool should create
a scrolling page that would keep all of the items of a group
together.

Sketch-based interface. Some designers found the sketch-
based interface appealing. Designer #1 said it took “napkin
sketching to a new experiential level without making it
beautiful,” and that it allows him to focus on whether his
ideas are valid. Designer #2 simply said that “it’s a good
way to work.”

 6

Others did not find it as compelling. Designer #4 wanted
additional shape and alignment capabilities, such as
provided by Visio or other diagramming tools. Designer #2
liked sketching, but said he uses sketching only for
conceptual design. For layout design, he would prefer to
use a more structured interface.

Designer #1 suggested that the contents of the pages could
contain a coarse grid similar to graph paper. This would
help, but not force, designers to draw neater sketches, and
would indirectly help the retargeting algorithms, since they
work better when elements are aligned.

Familiar interaction. Some designers expressed reluctance to
learn a new tool interface, and would like DENIM’S user
interface to be more similar to the tools they already use.
The most commonly mentioned tools were Adobe
Photoshop and Microsoft Visio.

Handling different classes of devices. There was some
skepticism that our tool would be really useful for
designing user interfaces to be run on different classes of
devices, such as PCs and mobile phones. Designers #1, #2,
and #3 said that the interaction flow is very different among
different classes of devices, and that there is insufficient
support in our tool to handle those differences.

A multi-device design tool should be able to support the
design of applications whose user interfaces have very
different interaction flows depending on the device. Our
prototype does not handle such design activities because it
only transforms at the page and widget level. Higher levels
of abstraction within the design are needed to support
disparate interaction flows. Design patterns may be one
such abstraction [9].
RELATED WORK
Our work is closely related to the concept of model-based
user interfaces, designing user interfaces based on an
abstract model of the interface rather than visual
appearance [7]. The model describes the interface at a
higher level of abstraction than the actual widgets. For
example, instead of describing a dialog box as having three
radio buttons and two check boxes, an abstract model
would describe it as having one part where the user can
select one of three items, and two other on-off selections.
This level of abstraction allows for rendering of the user
interface in multiple ways, such as using a drop-down list
or presenting a voice menu instead of radio buttons.

While model-based user interfaces offer the possibility of
creating flexible interfaces that can adapt to their
environment, they have not been widely adopted in the
commercial software development world, which has
instead gravitated towards visual interface builders. We
believe one reason for the lack of acceptance is the fact that
many model-based user interface tools do not match or
augment the work practices of designers. They often force
designers to think at a high level of abstraction too early in
the design process, by making them design in terms of

abstract widgets (e.g., [18, 20, 24]), or by specifying a task
model which is then transformed into a concrete user
interface (e.g., [7, 17]). Designers are accustomed to
thinking about concrete interfaces at the beginning. In
addition, specifying models often requires the designer to
deal with preconditions, postconditions, and conditionals.
This starts to look like programming, at which most
designers are not skilled, so specifying models impedes
their main task of designing user interfaces.

The philosophy of most model-based user interface
research is that the model-based tools would be the primary
way to create the finished user interface, although many
tools expect the user interface to be modified somewhat by
the designer. In contrast, our tool is targeted towards
prototyping. We do not expect the designer to use our
system to create the final user interface, nor do we expect
its generated user interfaces to be used without
modification. Since we are targeting the creation of
prototypes, the generated user interface does not need to be
ideal—in the early stages of design, the designer is
concerned more with the user’s interaction flow than with
the details of the interface [23].

User Interface Transformation Tools. There has been much
work on automatically transforming interfaces meant for
one device or modality to another. Many of these projects
have focused on transforming existing, finished desktop
web interfaces to handheld interfaces at run-time [3, 8, 11].
Unfortunately, shrinking interfaces from large desktop
displays to small handheld displays often results in
awkward interaction. Others have worked on converting
graphical user interfaces to audio interfaces [13, 16],
mostly to benefit the blind and visually impaired. With
most of these tools, designers cannot modify the results of
the interface transformation process. Since our tool is not
meant for the final implementation of user interfaces,
designers are free to modify the generated user interface
design.

Ultraman [19] provides a way for designers to control the
transformations, but it assumes they are comfortable with
the concept of trees, grammars, and writing code in Java.
Our tool is targeting a different audience at a different point
in the design cycle: designers with little or no programming
experience, who are working at an early stage of design
before any interface is completely specified.

There are several model-based projects that specifically
address the issue of creating user interfaces targeted at
multiple devices. Eisenstein, Vanderdonckt, and Puerta [6]
describe using MIMIC [17] to create models which describe
multi-device user interfaces. Their methodology involves
mapping common tasks in a task model to presentation
models optimized for the task. Ali et al [1] discuss
designing a multi-device user interface using four types of
models: a task model, an abstract logical model, physical
family models, and platform-specific user interface

 7

descriptions in UIML. In contrast, our tool avoids directly
exposing models to the user interface designer.

PIMA [2] and Microsoft’s Mobile Internet Toolkit [12] are
tools for designing multi-device web applications. A
designer using either of them describes the application’s
user interface in an abstract representation, by laying out
abstract widgets linearly in a constrained Visual Basic-like
form designer. The representation is then converted into
concrete device-specific UIs. However, these tools are not
appropriate for early-stage design, because designers tend
to think about concrete user interfaces, not abstract
representations.

Calvary, Coutaz, and Thevenin [5] discuss a process
framework for developing plastic interfaces, which can
adapt to different devices. In addition to the typical model-
based approach, in which a designer creates a series of
models from top-level abstract models to a concrete
interface, the framework also covers translations between
platforms, which may happen at any model abstraction
level. This framework provides a useful way of thinking
about how to develop multi-device UIs. In our tool,
however, top-level abstract models are not directly exposed,
so such a framework is not directly applicable.

There are several projects that specify platforms for
creating universal remote controls (e.g., [15, 25]). These
platforms use high-level descriptions of a remote control’s
user interface which can then be realized on a variety of
hardware devices, such as PDAs or Braille readers. The
target domain of universal remote controls is narrower
(remote controls for appliances vs. web interaction), but the
user interfaces that are rendered from the abstract remote
control description must be appealing and useful
immediately, without additional tweaking. Our work, on
the other hand, is targeting a broader set of user interfaces
(e.g., general web-style interaction on PCs), but the
interfaces that are generated will most likely be modified
by the user interface designers before being released.
CONCLUSION
When designing multi-device web applications, the level of
automation can be thought of as a continuum. At one end,
designers can separately design a user interface for each
device. This approach results in interfaces appropriate for
the target device, but is impractical if many devices are
being targeted. At the other end, designers can use a tool to
automatically generate user interfaces for each desired
device, but the generated interfaces are often awkward to
use.

We are exploring the middle ground: creating a tool that
automates the mundane aspects of multi-device
development, but which also lets designers modify the
resulting interfaces to fit the particular devices’
characteristics. Our evaluation suggests that such a tool is
potentially useful, but that the tool needs to give the
designer a high-degree of control over the retargeting

process. Simply letting designers modify the generated
interfaces is not sufficient. Designers should be able to
annotate their designs so that the tool is more intelligent in
its retargeting process, and the tool should be flexible
enough to allow for highly iterative design and a variety of
design processes.
ACKNOWLEDGMENTS
We would like to thank John Karat, Noi Sukaviriya, and
Tracee Wolf for helping us with the design of our study and
questionnaire, and to Pauline Ores and Kate Swann for
helping us recruit participants for our user study. We would
also like to thank Frederique Giraud, Ashish Kundu, Yves
Gaeremynck, and Vianney Chevalier for their contributions
to the implementation of our tool.
REFERENCES
1. Ali, M.F. and M.A. Pérez-Quiñones. Using Task

Models to Generate Multi-Platform User Interfaces
while Ensuring Usability. In Proceedings of Human
Factors in Computing Systems: CHI 2002 Extended
Abstracts. Minneapolis, MN. pp. 670-671, April 20-25,
2002.

2. Bergman, L.D., G. Banavar, D. Soroker, and J.
Sussman. Combining Handcrafting and Automatic
Generation of User-Interfaces for Pervasive Devices.
In Proceedings of 2002 International Workshop of
Computer-Aided Design of User Interfaces:
CADUI'2002. Valenciennes, France: May 15-17, 2002.

3. Buyukkokten, O., H. Garcia-Molina, A. Paepcke, and
T. Winograd, Power Browser: Efficient Web Browsing
for PDAs. CHI Letters: Proceedings of Human
Factors in Computing Systems: CHI 2000, 2000. 2(1):
pp. 430-437.

4. Callahan, J., D. Hopkins, M. Weiser, and B.
Shneiderman. An Empirical Comparison of Pie vs.
Linear Menus. In Proceedings of Human Factors in
Computing Systems. pp. 95-100, 1988.

5. Calvary, G., J. Coutaz, and D. Thevenin. A Unifying
Reference Framework for the Development of Plastic
User Interfaces. In Proceedings of Engineering for
Human-Computer Interaction: EHCI 2001. Toronto,
ON, Canada: Springer-Verlag. pp. 173-192, May 11-
13, 2001.

6. Eisenstein, J., J. Vanderdonckt, and A. Puerta.
Applying Model-Based Techniques to the
Development of UIs for Mobile Computers. In
Proceedings of International Conference on Intelligent
User Interfaces: IUI 2001. Santa Fe, NM: ACM Press.
pp. 69-76, January 14-17, 2001.

7. Foley, J.D. and P.N. Sukaviriya. History, Results and
Bibliography of the User Interface Design
Environment (UIDE), an Early Model-Based System
for User Interface Design and Implementation. In
Proceedings of Design, Specification and Verification
of Interactive Systems: DSV-IS'94. Carrara, Italy. pp.
3-14, June 8-10, 1994.

 8

8. Fox, A., I. Goldberg, S.D. Gribble, D.C. Lee, A. Polito,
and E.A. Brewer. Experience With Top Gun Wingman:
A Proxy-Based Graphical Web Browser for the 3Com
PalmPilot. In Proceedings of IFIP International
Conference on Distributed Systems Platforms and
Open Distributed Processing: Middleware '98. Lake
District, UK, September 15-18, 1998.

9. Lin, J. and J.A. Landay. Damask: A Tool for Early-
Stage Design and Prototyping of Multi-Device User
Interfaces. To be published in Proceedings of 2002
International Conference of Distributed Multimedia
Systems. Redwood City, CA, Sept. 26-28, 2002.

10. Lin, J., M.W. Newman, J.I. Hong, and J.A. Landay,
DENIM: Finding a Tighter Fit Between Tools and
Practice for Web Site Design. CHI Letters:
Proceedings of Human Factors in Computing Systems:
CHI 2000, 2000. 2(1): pp. 510-517.

11. Lopez, J.F. and P. Szekely, Web Page Adaptation for
Universal Access, in Universal Access in HCI:
Towards and Information Society for All (Proceedings
of 1st International Conference on Universal Access in
Human-Computer Interaction, New Orleans, LA,
August 8-10, 2001), C. Stephanidis, Editor. Lawrence
Erlbaum Associates: Mahwah, NJ. p. 690-694, 2001.

12. Microsoft, Mobile Internet Toolkit. Microsoft
Corporation: Redmond, WA.

 http://msdn.microsoft.com/vstudio/device/mitdefault.asp
13. Mynatt, E.D. and W.K. Edwards. An Architecture for

Transforming Graphical Interfaces. In Proceedings of
ACM Symposium on User Interface Software and
Technology: UIST '94. Marina del Rey, California. pp.
39-47, November 2-4, 1994.

14. Newman, M.W. and J.A. Landay. Sitemaps,
Storyboards, and Specifications: A Sketch of Web Site
Design Practice. In Proceedings of DIS 2000:
Designing Interactive Systems. New York, New York.
pp. 263-274, August, 2000.

15. Nichols, J. Informing Automatic Generation of Remote
Control Interfaces with Human Designs. In
Proceedings of Human Factors in Computing Systems:
CHI 2002 Extended Abstracts. Minneapolis, MN. pp.
864-865, April 20-25, 2002.

16. Olsen, D.R., S.E. Hudson, R.C.-M. Tam, G. Conaty, M.
Phelps, and J.M. Heiner. Speech Interaction with
Graphical User Interfaces. In Proceedings of IFIP
TC.13 Conference on Human Computer Interaction:
INTERACT2001. Tokyo, Japan: IOS Press, 2001.

17. Puerta, A. The Mecano Project: Comprehensive and
Integrated Support for Model-Based Interface
Development. In Proceedings of 1996 International
Workshop of Computer-Aided Design of User
Interfaces: CADUI '96. Namur, Belgium: Namur
University Press. pp. 19-36, June 5-7, 1996.

18. Schreiber, S. Specification and Generation of User
Interfaces with the BOSS-System. In Proceedings of
East-West International Conference on Human-

Computer Interaction: EWHCI'94. St. Petersburg,
Russia: Springer-Verlag. pp. 107-120, August 2-6,
1994.

19. Smith, I., Support for Multi-Viewed Interfaces,
Unpublished Ph.D. Dissertation, Georgia Institute of
Technology, Atlanta, GA, 1998.

20. Szekely, P., P. Luo, and R. Neches. Beyond Interface
Builders: Model-Based Interface Tools. In Proceedings
of Human Factors in Computing Systems: INTERCHI
'93. Amsterdam, The Netherlands: ACM Press. pp.
383-390, April 24-29, 1993.

21. W3C HTML Working Group, XHTML™ 1.0: The
Extensible HyperText Markup Language (Second
Edition), 2002. http://www.w3.org/TR/xhtml1/

22. W3C XForms Working Group, XForms 1.0: W3C
Working Draft, 2002. http://www.w3.org/TR/xforms/

23. Wagner, A., Prototyping: A Day in the Life of an
Interface Designer, in The Art of Human-Computer
Interface Design, B. Laurel, Editor. Addison-Wesley:
Reading, MA. p. 79-84, 1990.

24. Wiecha, C., W. Bennett, S. Boies, J. Gould, and S.
Greene, ITS: A Tool for Rapidly Developing
Interactive Applications. ACM Transactions on
Information Systems, 1990. 8(3): pp. 204-236.

25. Zimmermann, G., G. Vanderheiden, and A. Gilman.
Prototype Implementations for a Universal Remote
Console Specification. In Proceedings of Human
Factors in Computing Systems: CHI 2002 Extended
Abstracts. Minneapolis, MN. pp. 510-511, April 20-25,
2002.

