
RC22600 (W0210-128) October 22, 2002
Computer Science

IBM Research Report

Combination of classifers for supervised learning: A Survey

Sheng Ma
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Chuanyi Ji
Dept. of ECSE

Rensselaer Polytechnic Institute
Troy, NY 12180

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Pattern Recognition and String Matching

D. Chen and X. Cheng (Eds.) pp. { - {

c2002 Kluwer Academic Publishers

Combination of Classi�ers for Supervised
Learning: A Survey

Sheng Ma
IBM T.J. Watson Research Center

Hawthorne, NY 10532

E-mail: shengma@us.ibm.com

Chuanyi Ji
Dept. of ECSE

Rensselaer Polytechnic Institute

Troy, NY 12180

E-mail: chuanyi@ecse.rpi.edu

Contents

1 Introduction 2

2 Background: Performance and EÆciency 5

2.1 Notation . 5

2.2 Performance . 5

2.3 Performance Issues . 6

2.3.1 Bias and Variance Dilemma 6

2.3.2 Bias-variance and Local Minima 7

3 Combinations of Well-Trained Models 8

3.1 Key Issues . 9

3.2 Obtaining Base Models . 9

3.3 Combination . 10

3.4 Discussion . 10

1

4 Performance and EÆciency: Combinations of Weak Classi�ers 11

4.1 Three Approaches . 11
4.2 Weak Classi�ers . 12

4.2.1 De�nition . 12
4.2.2 The Structure of Weak Classi�ers 12

4.3 Algorithms for Combinations of Weak Classi�ers 13
4.3.1 Generation of a Quali�ed Weak Classi�er 13
4.3.2 Combinations of Quali�ed Weak Classi�ers 14
4.3.3 Adaptively Reweighing and Combining (ARC) 15

5 Empirical results of combination of weak classi�ers 15

5.1 Synthetic Problems . 16
5.1.1 A Perceptron . 16
5.1.2 Two Overlapping Gaussians 17

5.2 Real Applications . 17
5.2.1 Proben1 Data Sets . 17
5.2.2 Hand-written Digit Recognition 19

5.3 E�ects of Parameters . 20
5.4 Training Time . 22
5.5 Discussions of Experimental Results 22

6 Theoretical results: Performance of Combinations of Weak Clas-

si�ers 23

6.1 EÆciency of Combinations of Weak Classi�ers 24
6.1.1 Stochastic Discrimination . 24
6.1.2 Combinations of Weak Perceptrons 25

6.2 Open Issues . 26

7 Conclusion 27

References

1 Introduction

In many important application areas such as signal processing, pattern
recognition, control and communication, nonlinear adaptive systems are
needed to approximate underlying mappings through learning from exam-
ples. In order for approximations to be suÆciently accurate, a good perfor-
mance is required for nonlinear adaptive systems. Meanwhile, many appli-
cations, especially those in emerging areas of wireless communication and
networking [11][20][42][52][50], require the learning to be done in real-time in
order to adapt to a rapidly changing environment. Other applications such

2

as data mining and searching the web need to deal with very large data sets
[19][36][55], and thus the learning time must scale nicely with respect to the
size of data . Since the size of learning machines determines the memory
required for implementation, a learning machine with a compact structure is
also preferred. Therefore, a challenging problem is how to develop a learn-
ing system with a compact structure that can achieve a good performance,
and be adapted in real time rapidly. The goal of this paper is to address
the important issues of performance and real-time learning for nonlinear
adaptive learning machines by �rst reviewing recent work in combinations
of classi�ers, and then detailing some of our work in this area.

In supervised learning, performance addresses the problem of how to
develop a learning machine to achieve optimal performance on examples
that are not included in a training set. EÆciency deals with the complexity
of a learning machine in both space and training time. Speci�cally, the
space-complexity of a classi�er refers to its size, and the time-complexity
characterizes the computational time needed to develop such a classi�er.
These three issues are interrelated.

The performance of a supervised learning system is characterized by
its generalization error, which measures the distance between the output
function of a trained model and an underlying target function. Most of the
existing training methods for classi�ers in supervised learning su�er from
an intrinsic problem in pattern recognition: the bias and variance dilemma
[25][21]. That is, if a classi�er is too large, 1 it may over�t a particular
training set and thereby fail to maintain small generalization error. A small
classi�er, however, may be insuÆcient to approximate an optimal solution.
In addition, one algorithmic problem is how to �nd a good classi�er, which
can learn a complex optimization problem with possibly many local minima.

The size of a learning machine can be characterized by the space-complexity,
which is related to the number of free parameters (for instance, the number
of weights of a neural-network classi�er). A learning machine is consid-
ered to be eÆcient in space if its space-complexity scales as a polynomial
function in terms of the dimension of feature vectors.2 It has been found
that compact classi�ers like multiplayer feedforward neural networks are ef-
�cient approximators of a wide class of smooth functions. They possess a
polynomial space-complexity [5]. Other learning machines, which consist of
localized models such as nearest neighbor classi�ers [13], Parzen windows

1For instance, feedforward neural networks as classi�ers with too many neurons.
2Here the dimension of feature vectors is used as a measure of the complexity of a

problem.

3

[18], and linear combinations of localized basis functions [43][5], may su�er
from the so-called \curse of dimensionality." That is, their space-complexity
scales exponentially with the dimension of the feature vectors [5][45][35].

Learning time can be characterized by the time-complexity as a scal-
ing property with respect to the dimension of feature vectors. An adaptive
learning system is considered eÆcient in time if the time complexity is poly-
nomial. For example, training feedforward neural-network classi�ers is slow,
and in general, NP-complete [7][31]; while training the aforementioned local-
ized classi�ers can be done quickly. For example, nearest-neighbor classi�ers
simply remember all training samples, and therefore do not require training
at all. This presents a dilemma existing between performance, space-, and
time-complexity. These three fundamental issues { performance, eÆciency,
and space complexity { motivate the search for new solutions for adaptive
learning machines, from training an individual model, to recent activities on
combining well-trained models, and of many weak models.

Numerous methods have been developed in training an individual clas-
si�er. However, �nding an optimal sized classi�er is still diÆcult if not im-
possible. To address the performance issue, the combination of well-trained
models has been proposed. The basic idea is to pick a slightly oversized
model as a base for combination. Since the base model is oversized, it has a
low bias but a high variance. The algorithm, therefore, relies on combina-
tions to reduce the overall variance, and thus the generalization error.

Although the combination of well-trained models relaxes the need to op-
timize the size of a classi�er, the learning time increases with the number of
models combined. The combination of weak models is proposed to improve
the eÆciency of the combination of well-trained models while preserving the
nice performance property. In particular, this approach uses the similar
combination scheme but chooses a weak classi�er as a base model. A weak
classi�er has a performance only slightly better than that due to random
guessing, and thus has a large bias but a small variance. From the perfor-
mance perspective, since di�erent weak models are forced to learn di�erent
parts of a problem, combinations of many such weak models can reduce the
overall bias and thus achieve good generalization. From the time-eÆciency
perspective, since the base model performs only slightly better than random
guessing, it can be obtained eÆciently. Furthermore, this approach uses an
incremental learning procedure, and the whole training process can be very
eÆcient.

The goal of this paper is to provide an overview of di�erent approaches in
combining weak classi�ers. We would like to identify a general framework for
various approaches with di�erent grounds. Further, we would like to provide

4

an overview of both theoretical and empirical results that demonstrate the
advantages of combining weak classi�ers in terms of both performance and
eÆciency.

The paper is organized as follows. Section 2 gives the background knowl-
edge on performance and eÆciency. Section 3 reviews the research on com-
bining well-trained models to improve the performance. Section 4 discusses
combinations of weak classi�ers and how combined weak classi�ers trade o�
among performance, time- and space-complexity. Section 5 discusses the
empirical results of combining week classi�ers. Section 6 discusses the the-
oretical results. Section 7 concludes the paper. As there is a large volume
of the related work, we apologize for possible omissions.

2 Background: Performance and EÆciency

2.1 Notation

In a supervised learning environment, letD = fxn; tngNn=1 denote N training
samples pairs, where xn 2 Rd is a d-dimensional feature vector of the n-th
sample and tn is the corresponding target. For simplicity, tn is assumed to
be a scalar in this paper. Furthermore, we assume that there is a function
f(�) so that tn = f(xn).

3 For the function approximation problem, tn is
a real number. For classi�cation, tn indicates which class the n-th sample
belongs to.

2.2 Performance

Let fD(x;w) be a model with a set of parameters w and trained on training
set D. The performance of fD(x;w) can be measured in terms of the dif-
ference between a function f(x) to be approximated and its approximation
fD(x;w) through the squared norm

Z
j f(x)� fD(x;w) j2 p(x)dx; (1)

where p(x) is the probability density function of x. If training samples are
drawn randomly, the expected squared norm is

ED(jj f(x)� fD(x;w) jj2) = ED(

Z
j f(x)� fD(x;w) j2 p(x)dx); (2)

3For simplicity, this paper does not address possible noise terms.

5

where the expectation (E) is done over all possible training sets D of the
same size. The quantity, ED(jj f(x) � fD(x;w) jj2) can be considered as
a measure of the performance. It is also called the generalization error of
fD(x;w), since it measures the average performance of fD(x;w) in approx-
imating the unknown function f(x).

Pattern classi�cation is considered as a special case of nonlinear regres-
sion and its generalization error can be de�ned as probability of incorrect
classi�cation, which is ED(Pr(fD(x;w) 6= t)).

2.3 Performance Issues

Two important issues are related to the performance: the bias and variance
dilemma, and the relation of which to possibly a complex objective function
with many local minima.

The �rst issue is intrinsic, and is independent of algorithms used. The
second issue is algorithm- and problem-dependent.

2.3.1 Bias and Variance Dilemma

The generalization error is a�ected by two factors: Bias and variance. Let
f(x; ŵ) be the best model in the model space. That is, ŵ = argminw

R
x
(f(x)�

f(x;w))2p(x)dx. Note that ŵ does not depend on the training data. The
bias Bias(w) and variance V ar(w) for a model can be de�ned as:

Bias(w) = E(f(x)� f(x; ŵ))2; (3)

where the expectation is on a randomly drawn x, and

V ar(w) = ED(E(fD(x;w)� f(x; ŵ))2): (4)

The inner expectation is on x, and the outer expectation is on randomly
drawn training sets of the same size. Therefore, the generalization error
can be decomposed into, and bounded by, a sum of the bias and variance
[5][21][10]

ED(jj f(x)� fD(x;w) jj2) � 2(Bias(w) +Var(w)): (5)

The �rst term of the right-hand side is the error due to the bias because of
an inappropriate choice of the size of a class of models, when the number of
training samples is assumed to be in�nite. The latter is the error due to the
variance because of the �nite number of training samples4.

4which is equivalent to the space-complexity versus the number of training samples.

6

For the special case when a class of models are chosen to be two-layer
feed-forward neural-network classi�ers with L sigmoid hidden units,5 the
bias and variance were bounded explicitly by Barron [5]. In particular,
O(1

L
) and O(LdlogN

N
) are upper bounds for the bias and variance respec-

tively, where O(z) represents a quantity in the order of z. The fact that
O(1

L
) decreases with the number of hidden units suggests that a large neu-

ral network with many free parameters is less biased. As it has been shown
by Barron [5] that feedforward neural networks are capable of approximat-
ing a wide class of smooth functions when the number of hidden units is
suÆciently large, a larger set of neural networks (with a larger L) certainly
contains a better approximation of f(x) than a smaller set of neural net-
works (with L being smaller). That is why the bias is smaller when L is
larger. However, when the number of training samples is �nite, a network
with an excessively large space-complexity will over�t the training set. This
can be understood from the concept of information capacity of neural net-
works [1][14][6][28][38] in information theory. The information capacity is
the maximum number of training samples that can be memorized by a neu-
ral network given a certain space-complexity. When the space-complexity
exceeds the information capacity, learning machines are so large that they
only memorize training samples. Since there are many such neural networks
with the same space-complexity but di�erent choices of weights which can
memorize training samples, their (generalization) performance varies and
thus leads to a large variance. That is, the average performance can de-
crease as L gets larger. This can be observed from the term O(LdlogN

N
),

which increases with respect to L. Therefore, a trade-o� needs to be made
between bias and variance.

2.3.2 Bias-variance and Local Minima

An issue which needs to be clari�ed is whether the bias and the variance are
related to local minima, or the e�ectiveness of an algorithm at �nding a good
solution. In our view, the bias by de�nition only depends on the structure of
a class of classi�ers but not the choice of values of their parameters (such as
weights of neural-net classi�ers), and is therefore independent of any train-
ing algorithms. To understand how the variance relates to local minima, we
may consider the sample variance. For any given (randomly drawn) training
set D of size N , a classi�er corresponding to fD(x;w) can be found, which
contributes to one sample in the sample variance. The true variance can be

5The number of free parameters is thus approximately L(d+ 1).

7

estimated through a suÆciently large number of such samples. The de�ni-
tion given by Barron [5] assumed that each fD(x;w) corresponded to the
global minimum of the error function, e.g. the best neural-network (clas-
si�er) that can be obtained given a training set. If the variance depended
on a speci�c algorithm or applications, the theoretical result may lose its
generality. This de�nition (given by Barron) simply suggests that the bias
and variance dilemma is intrinsic for nonparametric regression (even if one
had the most powerful algorithm to obtain the globally optimal classi�er).
Therefore, such a de�nition on the variance can also be considered to be
algorithm independent.

In practice, for a given training set and a chosen error function, di�erent
algorithms result in di�erent classi�ers corresponding to di�erent fD(x;w)'s.
If an algorithm is always better at �nding a globally optimal solution, and
another algorithm (e.g. a gradient-descent algorithm) gets stuck at a local
minimum more often, then the former would have a smaller sample variance
than the latter.

3 Combinations of Well-Trained Models

To alleviate the diÆculties in �nding an optimal structure of a single nonlin-
ear classi�er, methods are proposed to combine di�erent models. The main
idea is to train multiple models, such as neural networks, decision trees, or
other classi�ers individually, and then combine them as an ultimate model.
The hope for using a combination to improve the generalization performance
is that if individual models make classi�cation errors di�erently, a combined
model would be able to improve upon the performance of individuals.

Tremendous e�orts have been made to investigate whether a combined
model can indeed improve the performance, and how to combine models
to achieve good performance [49][2]. Speci�cally, combinations of experts
have shown to be able to work at least as well as the best expert in the
pool of experts on predicting binary strings [12][37]. Combinations of neural
networks [44][57] and regressors [9] have also been used for both classi�cation
and function approximation problems. Somewhat similar ideas were also
used for collective agents like the classi�er systems and genetic algorithms
[22][26][27].

As a good review was o�ered by Dietterich [16] on this subject; in this
section, we do not intend to survey all aspects of combinations of well-trained
models. Rather, we focus on the general issues that are relevant to the next
subject we discuss on combinations of weak classi�ers.

8

3.1 Key Issues

A combined model can be represented in a simple form. Let hk(x)'s be a
set of total K models de�ned on a feature vector x 2 Rd, where a hk(x) can
be a neural-network classi�er (or a single neuron). Let wk be the weighting
factor for the k-th model. The combination of these K models can be

represented as

fK(x) =
KX
k=1

wkhk(x): (6)

fK(x) is essentially a linear combination of the so-called base models hk(x)'s.

When a (two-class) classi�cation is considered, the combined model be-
comes a combined classi�er C(x), where

C(x) = I(fK(x)): (7)

I(z) is an indicator function, where I(z) = 1 for z > 0, and I(z) = 0 other-
wise. C(x) is a label assigned to a feature vector x by a combined classi�er.
When hk(x)'s are also classi�ers, C(x) is a combination of classi�ers.

There are two key issues in combinations of models.

(1) How to obtain a set of base models, fhk(x)gKk=1?
(2) Given a set of base models, how to choose an optimal set of weighting

factors fwkgKk=1 so that the generalization error of the combined model is
minimized?

3.2 Obtaining Base Models

Numerous algorithms have been developed to explore the �rst question.
These approaches are distinct in two ways. One type of approaches utilize
base models with di�erent architectures, and/or obtained through di�erent
algorithms. Another type of approaches use di�erent ways to \perturb" the
training process so that the base models obtained can have diverse error
patterns. Having classi�ers with diverse error patterns were shown to be
crucial to e�ectively improving the performance through combinations of
models [34][32]. This can be understood through two (extreme) examples.
At one extreme, if these classi�ers are identical, there will be no gain from
any combination. At the other extreme, if these classi�ers make indepen-
dent errors with a probability less than 0.5, the overall number of errors
made after a combination can decrease exponentially as the number of such
classi�ers increases [32]. However, the \diversity" is not easy to achieve be-
cause all models are trained to do essentially similar tasks, and thus more

9

or less dependent. Therefore, a certain randomness should be introduced to
\perturb" the learning procedure so that models can learn di�erent parts of
a problem, and thereby make errors as di�erently as possible. The common
methods used to perturb training were summarized by Dietterich [17][16].

3.3 Combination

The other important issue for combination is how to determine the weighting
factors. Intuitively, the outputs of base models fhk(x)gKk=1 can be used to
\train" the weighting factors fwkgKk=1. However, the straightforward min-
imization approach often results in over�tting [41][39] and is therefore not
applicable. This is because the base classi�ers are highly correlated since
they are designed to solve similar tasks. One simplest algorithm called ma-
jority vote uses the equal weighting for base models, i.e., wk = 1=K for all
k. Clearly, this scheme is not optimal because it does not take full consid-
eration of di�erences among base models. But majority vote has been used
widely due to its simplicity [30][8][10]. More elaborate algorithms have been
investigated for combination. Wolpert [57] proposed combining base models
through minimizing the squared error using cross-validation. Breiman [9]
later imposed proper constraints on the weights wk's. Freund et al. [24][23]
proposed using the con�dence of a base model as the weight for that model.
Principle component analysis [40] was also investigated to explore and thus
discount correlation among individual base models.

3.4 Discussion

Both theoretical and empirical results [8][10] suggest that combinations of
well-trained models can ease the bias-variance dilemma and improve the per-
formance substantially. That is, we can select a base model with a relatively
large size so that it has a small bias but a large variance. A combination
scheme can be responsible for reducing the overall variance of a combined
model [8][10][44][40]. Therefore, �nding an optimal structure of a model is
no longer important. Very often, however, the price paid for the gain in
performance is a larger space-complexity. In addition, as several models are
combined, each of which may take a long-time to train, an even longer train-
ing time results in for a combination. Since training time is critical for real-
time applications and is more diÆcult to tackle than the space-complexity,
a natural question to ask is whether combinations of models can be used to
improve the time-complexity at a reasonable cost of the space-complexity.
Combining weak models provides a promising answer to this question.

10

4 Performance and EÆciency: Combinations of

Weak Classi�ers

Although individual base models in a combination can be quite general, we
focus on classi�ers as base models in this section.

4.1 Three Approaches

There are three main approaches developed on combinations of

weak classi�ers: the boosting algorithm called Adaboost by Freund and
Shapire [23][24], the stochastic discrimination (SD) by Kleinberg [32][33],
and the combination of weak perceptrons (CWP) by Ji and Ma [15][29][30].

The concept of weak learning was �rst introduced by Kearns and Valiant
as a theoretical question in the context of the probabilistic approximately
correct (PAC) learning theory [6][54]. The question can be informally stated
as \ Does the existence of a weak learner imply the existence of an eÆ-
cient strong learner?" Schapire [51] �rst proved the existence with a \yes"
through a recursive and constructive approach. He showed that if a classi�-
cation problem is solvable in the PAC framework, the problem can be solved
through combinations of weak classi�ers that can do a little better than ran-
dom guessing. Later, Freund [23] showed in theory that a combination of
weak classi�ers through the simple majority vote can combine the weak clas-
si�ers into a strong classi�er. The Adaboost [24] was further proposed as a
practical algorithm for combination. Although this work [23][24] illustrated
that weak classi�ers could be combined to achieve what a strong classi�er
could do, it did not address whether combinations of weak classi�ers had
any advantage in performance or eÆciency compared with either training
an individual (strong) classi�er or combining well-trained individual strong
classi�ers.

In an independent work, Kleinberg [32] proposed stochastic discrimina-
tion and showed that combining a large number of weak classi�ers could im-
prove the (training) performance monotonically. In addition, he also showed
that the time-complexity of combined weak classi�ers was polynomial. The
theory, however, was built on an assumption that weak classi�ers made in-
dependent classi�cation errors. Such an assumption cannot be achieved in
real situations.

Ji and Ma [30][29][15] proposed combinations of weak perceptrons (or
neurons). Through experiments, this work showed that a very simple al-
gorithm for generating and combining weak classi�ers may achieve better
eÆciency and performance than training a strong classi�er or combining

11

well-trained classi�ers. Such a simple procedure is to randomly generate
weak perceptrons as weak classi�ers and combine these weak perceptrons
through a majority vote. Time- and space-complexity of a combined classi-
�er was formally de�ned, and shown to be polynomial for a \special case"
when the strength of weak classi�ers was properly chosen. A trade-o� was
explicitly shown between time-complexity and space-complexity.

In the following, we further review these three algorithms and the cor-
responding results.

4.2 Weak Classi�ers

4.2.1 De�nition

The strength of a classi�er C(x) can be characterized by �, the so-called
weakness factor, where � > 2. Let 1

2 � 1
�
be the required (generalization)

error of classi�er C(x), i.e., Pr(C(x) 6= t) = 1

2
� 1

�
. If � >> 2, the classi�er

is considered to be a weak classi�er because it only performs a little better
than random guessing. The larger the � is, the weaker the weak classi�er.
The time- and space-complexity of C(x) follows the general de�nition given
in Section 2, but should take into account the weakness factor.

If the space- and time-complexity of a combined classi�er scales polyno-
mially with respect to both the dimension of feature vectors and parameters
such as the weakness factor and a desired generalization error, the classi�er
is said to be eÆcient. Otherwise, if an exponential scaling is observed, they
are considered to be ineÆcient.

A set of weak classi�ers should satisfy the following two conditions: (1)
each weak classi�er should do better than random guessing, and (2) the set
of classi�ers should have enough computational power to learn a problem.
The �rst condition ensures that each weak classi�er possesses a minimum
computational power. The second condition suggests that individual weak
classi�ers should learn di�erent parts of a problem so that a collection of
weak classi�ers can learn an entire problem. If all the weak classi�ers in a
collection were to learn the same part of a problem, their combination would
not do better than individual classi�ers.

4.2.2 The Structure of Weak Classi�ers

Both local and non-local classi�ers have been proposed. Kleinberg et al. [33]
proposed using a hyper-sphere as a weak classi�er. Such a weak classi�er
dichotomizes all the samples that fall into the sphere as one class and those
outside as the other class. This classi�er is local because samples close to

12

the center of a sphere are in the same class. This choice of weak classi-
�ers, however, may su�er from the \curse of dimensionality" and thereby is
diÆcult to handle high dimensional problems.

Kleinberg [33] and Freund et al. [24] independently proposed to use a
half-space as a weak classi�er. A half-space classi�er classi�es input fea-
tures based on only one selected dimension (or feature) and ignores other
dimensions. Therefore, the decision boundary of a half-space classi�er is
a hyperplane perpendicular to the selected dimension. Such a classi�er is
global and may be expected to have a nice (polynomial) scaling property
with respect to the dimension of feature vectors, avoiding the curse of di-
mensionality for some cases. As shown by experimental results [24], the
set of half-space weak classi�ers is limited for representing an arbitrary de-
cision boundary. As a result, the performance is not as good as that of
combinations of stronger classi�ers. To increase the representation power
of the half-space classi�ers, the union of two or more half spaces were also
considered.

To generate a global classi�er with a stronger representation power, Ji
and Ma proposed using a perceptron (or a neuron) as a weak classi�er
[15][30]. Similar to a half-space classi�er, the decision boundary of this
classi�er is also a hyperplane, and therefore global. However, the orienta-
tion of the hyperplane can be arbitrary. Therefore, a hyperplane classi�er
is much more exible than a half-space classi�er. In fact, the combination
of these perceptrons (or neurons) forms a two-layer neural network that has
been shown to be able to approximate arbitrary functions [5].

4.3 Algorithms for Combinations of Weak Classi�ers

Once the structure of weak classi�ers is determined, quali�ed weak classi�ers
can be generated and then combined.

4.3.1 Generation of a Quali�ed Weak Classi�er

There are two fundamentally di�erent approaches to generate a quali�ed
weak classi�er. One is to apply a training algorithm to �nd the \best" weak
classi�er. The other is to randomly generate a weak classi�er from the set
of all weak classi�ers until a quali�ed classi�er is obtained.

Freund et al. [24] used the �rst scheme, where a feature is �rst selected
randomly and the best threshold is then obtained through exhaustive search.
Both stochastic discrimination (SD) [33] and combinations of weak classi�ers
[30] generated a weak classi�er through the second approach. The algorithm

13

can be described as follows.

(1) Partition the training data into \cares" and \don't-cares."

(2) Randomly generate a candidate classi�er from the classi�er space,

(3) Test classi�cation error rate of the candidate classi�er on the \cares."

(4) If the error rate on the \cared" samples is less than a threshold
0:5 � 1=�, then keep this classi�er and go to step (1) to generate another
weak classi�er. Otherwise go to step (2), where � is the weakness factor.6

In this algorithm, a random classi�er is �rst chosen as a candidate clas-
si�er. The strength of this candidate classi�er is then tested on a set of
\cares," which refer to those training samples incorrectly classi�ed. If the
candidate passes the threshold, it is accepted and combined with previous
quali�ed classi�er. Otherwise, it is rejected and the procedure is repeated
until a quali�ed candidate is found. Therefore, this approach of generating
a quali�ed classi�er can also be called trial-until-quali�ed (TUQ).

To generate a perceptron classi�er randomly [30], the direction of a hy-
perplane is �rst generated randomly and uniformly. Then a feature vector
is picked randomly to place the hyperplane in the feature space.

Three considerations motivate the choice of a randomized (TUQ) ap-
proach over the training

approach. First, if a quali�ed classi�er is weak enough so that it can
be obtained through only several trials, the TUQ may be computational
cheaper than training a classi�er. Second, the random sampling to obtain a
weak classi�er may reduce over�tting, which is the problem inherent asso-
ciated with any training algorithm. Third, random sampling may facilitate
theoretical analysis as we are to discuss later.

4.3.2 Combinations of Quali�ed Weak Classi�ers

In general, the combination schemes developed to combine well-trained

models can be used to combine weak classi�ers. Speci�cally, Freund
[24] used the weighted majority vote and chose the con�dence of the cor-
responding classi�er as the weighting factors. Both combinations of weak
perceptrons [30] and stochastic discrimination [33] used the the simple ma-
jority vote to combine weak classi�ers.

6A typical value of � used in [30] is between 50 and 200. A typical number of combined
weak classi�ers is from 500 to 5,000.

14

4.3.3 Adaptively Reweighing and Combining (ARC)

Several algorithms for combining either weak or strong models have been
discussed. They are bagging [8], AdaBoost [23], stochastic discrimination
[32][33], and a combination of weak hyperplanes [30][15]. Although these
algorithms result from di�erent theories and serve di�erent purposes, they
share common characteristics. Breiman [10] proposed an adaptively reweigh-
ing and combining (ARC) framework to capture the common characteristics
in these algorithms, where ARC characterizes a combination algorithm as
an iterative three-step procedure (assuming k � 1 (k � 1) classi�ers have
been obtained in the current combination):

(1) Resampling (or reweighing) the original training set to obtain the
k-th training data set.

Bagging algorithm uniformly resamples the original training set. Boost-
ing adaptively resamples the original training set. Stochastic discrimination
and combinations of weak perceptrons resample uniformly on dynamically
chosen \cares."

(2) Generating a quali�ed k-th classi�er based on the k-th training data.

Bagging algorithm was designed to combine well-trained models. In
practice, both neural networks and decision trees (CART) [8] have been used
as base classi�ers. Although Adaboost was originally designed to combine
weak classi�ers, it has been widely used to e�ectively boost the performance
of strong classi�ers [48][10]. SD and CWP all used the trial-until-quali�ed
algorithm to generate randomly either a hyper-sphere or a perceptron but
only keep those which exceed a certain performance threshold.

(3) Determining the weight for voting.

Adaboost uses the con�dence over the performance of a model as the cor-
responding weight for voting. All other algorithms use the simple majority
vote combination scheme.

5 Empirical results of combination of weak classi-

�ers

In this section, empirical results are used to provide quantitative evaluation
of combination of weak classi�ers against other common approaches includ-
ing combination of well-trained classi�ers and single classi�ers. In the latter
cases, we use a neural network as a classi�er.

Two synthetic problems are chosen to test the space- and time-complexity.
Real applications from standard data bases are selected to compare the gen-

15

0 20 40 60 80 100 120
0

5

10

15

20

25

30

Er
ro

r R
ate

 (%
)

d

 −.: CW

 − : k−NN

 I : Variance

Figure 1: Performance on learning a perceptron

eralization performance of combinations of weak classi�ers (CW) with that
of other methods such as K-Nearest-Neighbor classi�ers (K-NN)7, arti�-
cial neural networks (ANN), combinations of neural networks (CNN), and
stochastic discriminations (SD)8.

5.1 Synthetic Problems

Two synthetic problems were designed to test the scaling properties on the
performance of combined classi�ers in terms of the dimension d of feature
vectors.

5.1.1 A Perceptron

This problem is designed to learn an underlying perceptron with a d-dimensional
binary weight vector wo which consists of all (+1)'s. Feature vectors x's are
uniformly distributed in f�1; 1gd. If an x satis�es wT

o x > 0, x belongs to
Class 1 with a label t = 1; otherwise, x belongs to Class 2 with a label
t = 0. Our algorithm is used to learn a set of 2000 randomly-drawn samples
when the dimension d of feature vectors is made to be larger and larger.
That is, the size of the training set is made to be �xed, while the dimension
of feature vectors is increasing. 10 di�erent runs are conducted for each
d, and the resulting classi�ers are tested on another 4000 randomly-drawn

7The best result of di�erent k is reported.
8We always test our method using exact data when compared with other methods.

The details on the results due to other methods can be found in the related references.

16

samples. For comparison, the k-Nearest Neighbor classi�ers also learn the
same data sets. The resulting average generalization error as well as the
standard deviations are given in Figure 1.

As shown in Figure 1, as d increases, the performance of k-NN de-
crease rapidly, thereby indicating the occurrence of the so-called curse-of-
dimensionality as discussed in [45]. The degradation in performance is mod-
erate with combinations of weak classi�ers.

5.1.2 Two Overlapping Gaussians

To further test the scaling properties of combinations of weak classi�ers, a
non-linearly separable problem is chosen from a standard database called
ELENA [3][4]. This database has been used by both neural network and
machine learning communities to test and compare algorithms.

The problem is a two-class classi�cation problem, where the distributions
of samples in both classes are multi-variant Gaussians. Each dimension
of the samples corresponds to an independent Gaussian random variable
with zero mean, but samples in di�erent classes have di�erent standard
deviations: 1 for samples in Class 1, and 2 for samples in Class 2. As shown
in Figure 2 (for d = 2), there is a considerable amount of overlap between
the samples in two classes, therefore the problem is non-linearly separable.
The average generalization error and the standard deviations are given in
Figure 3 for our algorithm based on 20 runs, and for other classi�ers. The
Bayes error is also given to show the theoretical limit 9.

Once again, the results show that the performance of kNN degrades
very quickly. The performance of ANN is better than that of kNN but
still deviates more and more from the Bayes error as d gets large. The
combination of weak classi�ers continues to follow the trend of the Bayes
error.

5.2 Real Applications

5.2.1 Proben1 Data Sets

Three data sets, Card1, Diabetes1 and Gene1 were selected to test our algo-
rithm from Proben1 databases which contain data sets from real applications[46]10.

9The results of ANN and the Bayes error are from what reported in ELENA [4]. For
ANN, a one hidden lay feedforward neural network with 10 or 20 hidden nodes was trained
by Backpropagation algorithm.

10Available by anonymous ftp from ftp.ira.uka.de, as
/pub/papers/techreports/1994/1994-21.ps.z.

17

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

X1

X2

Figure 2: Two overlapping Gaussians

2 3 4 5 6 7 8
5

10

15

20

25

30

d

Er
ro

r R
ate

 (%
)

 −*−: k−NN
.−+−: ANN
.−o−: CW
 − : Bayes
 I : Variance

Figure 3: Performance versus the dimension of the feature vectors

18

Algorithms Card1 Diabetes1 Gene1

(%) Error /� (%) Error /� (%) Error /�

Combined Weak Classi�ers 11.3/ 0.85 22.70 / 0.70 11.80 / 0.52

k Nearest Neighbor 15.67 25.8 22.87

Neural Networks 13.64/ 0.85 23.52/ 0.72 13.47/ 0.44

Combined Neural Networks 13.02/0.33 22.79 /0.57 12.08 / 0.23

Table 1: Performance on Card1, Diabetes1 and Gene1. �: standard devia-
tion

Card1 data set is for a problem on determining whether a credit-card
application from a customer can be approved based on information given
in 51-dimensional feature vectors. 345 out of 690 examples are used for
training and the rest for testing. Diabetes1 data set is for determining
whether diabetes is present based on 8-dimensional input patterns. 384
examples are used for training and the same number of samples for testing.
Gene1 data set is for deciding whether a DNA sequence is from a donor,
an acceptor or neither from 120 dimensional binary feature vectors. 1588
samples out of total of 3175 were used for training, and the rest for testing.

The average generalization error as well as the standard deviations are
reported in Table 1. The results from combinations of weak classi�ers are
based on 25 runs. The results of neural networks and combinations of well-
trained neural networks are from [46][53] 11. As demonstrated by the results,
combinations of weak classi�ers have been able to achieve the generalization
performance comparable to or better than that of combinations of well-
trained neural networks.

5.2.2 Hand-written Digit Recognition

Hand-written digit recognition is chosen to test our algorithm, since one
of the previously developed method on combinations of weak classi�ers
(stochastic discrimination[32]) was applied to this problem. For the pur-
pose of comparison, the same set of data as used in [32](from the NIST data
base) is utilized to train and to test our algorithm. The data set contains
10000 digits written by di�erent people. Each digit is represented by 16 by
16 black and white pixels. The �rst 4997 digits are used to form a training
set, and the rest are for testing. Performance of our algorithm, k-NN, neural

11In [46][53], neural networks with many di�erent architectures were trained by Back-
propagation and several its variations. In [53], 3 to 7 well trained neural networks are
combined by majority vote. Only the best reported results are listed in table 1.

19

Algorithms (%) Error/�

Combined Weak Classi�ers 4.23 / 0.1

k Nearest Neighbor 4.84

Neural Networks 5.33

Stochastic Discriminations 3.92

Table 2: Performance on handwritten digit recognition.

networks, and stochastic discriminations are given in Table 2. The results
for our methods are based on 5 runs, while the results for the other methods
are from [32].

The results show that the performance of our algorithm is slightly worse
(by 0:3%) than that of stochastic discriminations, which uses a di�erent
method for multi-class classi�cation by converting an M -class classi�cation
problem into M(M�1)

2 two-class classi�cation problems[32].

5.3 E�ects of Parameters

There are two parameters used in our algorithm: the threshold � and the
weakness factor �. For most of the experiments described in this work,
good performance can be obtained if � is chosen to satisfy 1

2 � � � 1
2 +

1
�
.

When the data is noisy, a slightly larger � can be chosen to incorporate
more samples into a set of cares. From our experience, the performance of
a combined classi�er is not very sensitive to the choice of � as long as it is
chosen within these guidelines.

The choice of weakness factor �, strongly a�ects the size and train-
ing time of a combined classi�er. Experiments on the problem of two 8-
dimensional overlapping Gaussians given in Section 5:1:2 are done to test
the e�ects of �. The performance and the average training time (CPU-time
on Sun Spac-10) of combined weak classi�ers based on 10 runs are given
for di�erent �'s in Figures 4 and 5, respectively12. The results indicate as
� increases an individual weak classi�er is obtained more quickly, but more
weak classi�ers are needed to achieve good performance.

A record of the parameters used in all the experiments on real appli-
cations are provided in Table 3. The average tries, which are the average
number of times needed to sample the classi�er space to obtain an accept-
able weak classi�er, are also given in the table to characterize the training
time for these problems.

12
� is chosen to be 1

2
+ 1

�
.

20

Parameters Perceptron Gaussians Card1 Diabetes1 Gene1 Digits

1=2 + 1=� 0.51 0.51 0.51 0.51 0.55 0.54

� 0.51 0.51 0.51 0.54 0.54 0.53

2L+1 2000 2000 1000 1000 4000 20000

Average Tries 2�10 2 3 7 4 2

Table 3: Parameters used in our experiments.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

15

20

25

30

35

40

45

Er
ro

r R
at

e
(%

)

Number of weak classifers

−o−: 1/nu=0.005

−x−: 1/nu=0.010

−*−: 1/nu=0.015

−+−: 1/nu=0.020

 −. : 1/nu=0.025

Figure 4: Performance versus the number of weak classi�ers for di�erent �.
nu: �.

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

6

7

8

9

10

CP
U

tim
e

(m
ins

)

Number of weak classifers

−o−: 1/nu=0.005

−x−: 1/nu=0.010

−*−: 1/nu=0.015

−+−: 1/nu=0.020

 −. : 1/nu=0.025

Figure 5: Training time versus the number of weak classi�ers for di�erent
�.

21

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

5

10

15

20

25

30

35

40

45

50

CPU time (mins)

Er
ro

r R
ate

 (%
)

.. : Training curve of BP

−. : Test curve of BP

−−: Training curve of CW

 − : Test curve of CW

I : Variance

Figure 6: Performance versus CPU time

5.4 Training Time

To compare learning time with o�-line BackPropagation (BP)13, feedfor-
ward two layer neural network with 10 sigmoidal hidden units are trained
by gradient-descent to learn the problem on the two 8-dimensional overlap-
ping Gaussians. 2500 training samples are used. The performance versus
CPU time14 are plotted for both our algorithm and BP in Figure 6. For
our algorithm, 2000 weak classi�ers are combined. For BP, 1000 epochs are
used. The �gure shows that our algorithm is much faster than the BP algo-
rithm. Moreover, when several well-trained neural networks are combined to
achieve a better performance, the cost on training time will be even higher.
For instance, in Card1, Diabetes1 and Gene1 problems, seven well trained
neural networks are combined to obtain an almost comparable performance
to that of combinations of weak classi�ers (see Table 1). Then the cost on
training time would be 7 times that spent on training a single neural net-
work. Therefore, compared to combinations of well-trained neural networks,
combining weak classi�ers is computationally much cheaper.

5.5 Discussions of Experimental Results

What have the experimental results shown us? First, we observe that our
algorithm for combinations of weak classi�ers has been able to achieve the

13Since our algorithm requires o�-line learning, o�-line BP is used to make comparison.
However, it should be mentioned that on-line BP can be faster than the o�-line BP.

14Both algorithms are run on a Sun Sparc-10 sun workstation

22

best performance on all the synthetic and real problems except for hand-
written digit recognition problem. More speci�cally, the performance of
the combined weak classi�ers is comparable or even better than combina-
tions of well-trained classi�ers, and out-performs individual neural network
classi�ers and k-Nearest Neighbor classi�ers. In the meantime whereas the
k-nearest neighbor classi�ers su�er from the curse of dimensionality, a nice
scaling property in terms of the dimension of feature vectors has been ob-
served for combined weak classi�ers.

Another important observation obtained from the experiments is that
the weakness factor directly impacts the size of a combined classi�er and
the training time.

As the experimental results provide positive results, they also pose the
following questions for us to answer:

(1) how to characterize the performance and eÆciency of a combined
classi�er?

(2) how to choose the weakness factor �?

Theoretical analysis will be carried out to provide answers to these ques-
tions. The analysis will be based on the same problem of learning a percep-
tron given in Section 5:1:115. The insights gained can shed light on how to
analyze our algorithm for more general problems in the future.

6 Theoretical results: Performance of Combina-

tions of Weak Classi�ers

Since the performance of Adaboost [24] when used to combine a large num-
ber of weak classi�ers were found to be either comparable or somewhat
inferior to combining strong classi�ers, Adaboost algorithms have been used
mostly to combine a small number of well-trained classi�ers [24][10][48].
Through extensive experimental comparison s[10][48][24], Adaboost (adap-
tive boosting algorithm) for combining strong models has been shown to
perform consistently better than training an individual model or a bagging
combination algorithm.

Can combinations of weak classi�ers do better in performance than train-
ing a strong classi�er? Although the independent assumption used in the
theory for stochastic discrimination is diÆcult to satisfy in reality, better
performance has been obtained consistently when a large number of weak

15Since many methods with good performance and eÆciency can be used to learn a
binary perceptron[56], our intention is not to investigate the problem of how to learn a
perceptron itself but to use it as an example for analyzing combinations of weak classi�ers.

23

classi�ers are combined and used in handwritten digit recognition [33]. In
particular, the resulting combined classi�ers were shown to be less sensitive
to over�tting. This means the performance of a combined classi�er was usu-
ally improved when more and more weak classi�ers were combined. Similar
to combinations of well-trained classi�ers, this in fact shows that combi-
nations of weak classi�ers reduce the variance when more and more weak
classi�ers are combined.

Combinations of weak perceptrons [30] were tested extensively on var-
ious synthetic and real data sets. The generalization performance of the
combined weak perceptrons has been shown to be slightly better than com-
binations of well-trained classi�ers, and outperforms individual neural net-
work classi�ers and k-nearest neighbor classi�ers. Meanwhile, as will soon
be shown, interesting phenomena have been observed that a trade-o� can
be made between performance and eÆciency by combinations of weak per-
ceptrons.

6.1 EÆciency of Combinations of Weak Classi�ers

As the performance of combinations of weak classi�ers is comparable to that
of combinations of well-trained classi�ers, what really are the advantages of
using weak classi�ers?

6.1.1 Stochastic Discrimination

Stochastic discrimination [32] �rst suggested that combinations of weak clas-
si�ers can be used to improve the training time. A theory was derived to
show that when weak classi�ers were assumed to make independent classi�-
cation errors, the computational time for selecting a weak classi�er was poly-
nomial in terms of the dimension of feature vectors. As the space-complexity
was also shown to be polynomial, the resulting time-complexity of a com-
bined classi�er was polynomial. Empirically, the training time needed to
obtain a combination of weak classi�ers was shown to be magnitudes faster
than that of conventional training methods such as back-propagation.

Three factors were not included when the time-complexity was derived:
the structure of weak classi�ers, the weakness factor, and the statistical de-
pendence among outputs of weak classi�ers. As discussed in Section 5:2,
the structure of weak classi�ers relates directly to the space-complexity of
a combined classi�er, and thus determine its space eÆciency. The weakness
factor also a�ects the space-complexity of a combined classi�er, since the
weaker the weak classi�ers are, the more weak classi�ers may be needed

24

to learn a problem, and the larger the space-complexity. This may in turn
inuence the time-complexity, since the time-complexity of a combined clas-
si�er can be regarded as the average training time needed to obtain a weak
classi�er multiplied by the space-complexity.16

6.1.2 Combinations of Weak Perceptrons

To shed light on whether and why combinations of weak perceptrons are
eÆcient, theoretical analysis was carried out on a simple example when
combinations of weak classi�ers are used to learn underlying perceptrons
[30].

The generalization error Pr(C2L+1(x)t < 0) of the combined classi�er
C2L+1(x) with 2L+1 weak perceptrons was derived and bounded above by

a quantity in the order of �ln(2L+1)p
2L+1

, i.e.,

Pr(C2L+1(x)t < 0) � O(
�ln(2L+ 1)p

2L+ 1
); (8)

where � is the weakness factor. O(z) stands for a quantity in the order of z.
Such a bound shows that the generalization error decreases at a polyno-

mial rate in terms of the number of weak perceptrons. By setting the upper
bound to be equal to �g, which is a bound on the desired generalization er-
ror, the space-complexity S of a combined classi�er17 can be obtained easily
as

S � O(
(�ln�)2

�2g
): (9)

Therefore, S is polynomial in both the weakness of factor � and �g.
The time-complexity T of a combined classi�er is de�ned as the average

number of samplings needed to obtain a combined classi�er when a desired
generalization error at most �g. Such a time-complexity was shown to satisfy

T = O(
(�ln�)2

�2g

p
de

d

�2); (10)

for d and � large but � � d.
Since the larger the weakness factor �, the larger the space-complexity S,

but the smaller the time-complexity T , a trade-o� can be made between the
space- and time-complexity by �nding an optimal �. Speci�cally, let dT

d�
= 0

16The number of weak classi�ers by de�nition.
17
S is the number of weak classi�ers needed to achieve a certain generalization error.

25

and assume d large, an optimal weakness factor �o can be obtained as �o =

O(
p
d). Therefore, when

q
d
ln d � O(�), the time complexity T is polynomial

in the dimension d of feature vectors; otherwise, T is an exponential function
of d. In the meantime, when this condition is satis�ed, the space-complexity
S = O(dlnd

�2g
), is also polynomial in d. The existence of such a critical value

for the weakness factor suggests that the polynomial time-complexity may
be obtained at a cost of a larger size classi�er compared to that of a well-
trained classi�er with a �xed structure. The cost, however, is theoretically
tolerable, since it scales polynomially in the dimension d of feature vectors.

Discussion

Through analyzing the time-complexity, an intuitive explanation can be
drawn on when and why combinations of randomly selected weak percep-
trons are eÆcient. If weak classi�ers are weak enough, i.e., the weakness
factor � is large enough, there will be many such weak classi�ers. Therefore,
the chance of getting a weak classi�er is high at each sampling. That is, the
number of times needed to sample the classi�er space until a quali�ed weak
classi�er is accepted is small. As soon as weak classi�ers are not too weak
to destroy the polynomial space-complexity, the eÆciency can be achieved
both in time and space for combinations of weak perceptrons.

The theory provides an explicit relationship between performance and
eÆciency but is limited to a special case for learning a linear decision bound-
ary. There are no similar results derived so far on nonlinear classi�cation
problems.

6.2 Open Issues

Due to the intrinsic diÆculties of tackling performance and eÆciency of non-
linear classi�ers, many open issues need to be investigated on combinations
of weak classi�ers. Some of these open questions are

(1) how to show the optimality of a (randomized) algorithm for choosing
and combining weak classi�ers?

Assuming there were an in�nite number of weak classi�ers usable in a
combination, this question essentially asks whether an algorithm is optimal
in approximating a Bayes classi�er. As an elegant analysis showed that
the nearest-neighbor classi�ers [13] are asymptotically Bayesian optimal, it
remains open as to whether or not similar results could be obtained for a
randomized algorithm using weak classi�ers. The diÆculty in obtaining such
a result is that weak classi�ers are statistically dependent.

(2) For what problems do a large number of weak classi�ers exist to
achieve a desired performance?

26

Even when an optimal algorithm is used to obtain a combination of weak
classi�ers, it is not clear whether a large enough number of weak classi�ers
exist so that the combined classi�er can achieve a desired performance for
a given structure (perceptron, for example) and a weakness factor. If the
classi�cation problem is too diÆcult, there may not exist any weak classi-
�er, since a set of weak classi�ers with the chosen structure may not have
enough capacity [13][38][6][28] to do better than random guessing. (3) For
what problems, do a large number of weak classi�ers exist so that the time-
complexity can be polynomial?

Not all problems can be solved in polynomial time (e.g. training non-
linear neural classi�ers is NP-complete). A polynomial complexity for ran-
domly selecting a weak classi�er is obtained based on the assumption that
there exist a large number of weak classi�ers. For example, if there exist
at least a polynomial fraction of classi�ers that can do better than random
guessing, the average number of tries required to get one weak classi�er is
polynomial. Otherwise, choosing one acceptable weak classi�er from an ex-
ponentially small fraction of all classi�ers would take an exponential number
of tries on the average. Since the number of acceptable weak classi�ers de-
pends on the problem, it is important to characterize problems for which a
large number of weak classi�ers do exist. The empirical results, however,
are encouraging. That is, for many classi�cation problems including those
shown in this paper, a suÆciently large number of weak classi�ers exist, and
result in a powerful combined classi�er.

7 Conclusion

We have reviewed several general techniques to improve eÆciency and per-
formance. In particular, we have discussed three di�erent approaches , which
improve the performance through making a trade-o� between the bias and
variance: (1) searching for an optimal structure for a single network. This
was studied mainly for improving the performance of single model; (2) train-
ing several oversized models that have a low bias but a high variance, and
then reducing the overall variance through combining these models. Com-
binations of well-trained models improve the performance through this ap-
proach; (3) training a large set of weak models that have a large bias but a
small variance, and then reducing the overall bias and thus the generaliza-
tion error by combining these weak models. Combinations of weak classi�ers
improve the performance through this scheme.

Combinations of weak classi�ers, which use an incremental combination

27

scheme and a randomized algorithm, have shown the potential to achieve
time-eÆciency as well as a good generalization performance. The cost is
a polynomial space-complexity for benchmark problems, which is theoreti-
cally acceptable. Explicit relationships have been provided to illustrate the
interrelation and the trade-o� between performance and eÆciency through
combinations of weak classi�ers. Randomized algorithms play an important
role for combinations of (weak) classi�ers.

Although much progress has been made in performance and eÆciency of
nonlinear adaptive systems, a lot of problems are still wide open for possible
future research.

Acknowledgment

The authors would like to thank Leo Breiman and Andrew Barron for point-
ing out the issue of the existence of weak classi�ers, and helpful discussions.
The authors would like to thank T.K. Ho, Gene Kleinberg, George Nagy
and Guohua Zhao for relevant references and helpful discussion. The sup-
port from the National Science Foundation (ECS-9312594 and (CAREER)
IRI-95025 18) is gratefully acknowledged.

28

References

[1] Y.S. Abu-Mostafa, \Information theory, complexity and neural net-
works," IEEE Communications Magazine, vol.27, no.11, 25-28, Nov.
1989.

[2] J.A. and P.H. Swain. Consensus theoretic classi�cation methods. IEEE
Transactions on Systems, Man, and Cybernetics, 22:688-704, 1992.

[3] C. Aviles-Cruz, A. Guerin-Dugue, J.L. Voz and D. Van Cap-
pel, \Deliverable R3-B1-P Task B1: Databases", Enhanced Learn-
ing for Evolutive Neural Architecture, ESPRIT-Basic Research
Project Number 6891, June, 1995. Anonymous FTP: /pub/neural-
nets/ELENA/databases/Benchmarks.ps.Z on ftp.dice.ucl.ac.be.

[4] F. Blayo, Y. Cheneval, J. Madrenas, M. Moreno and J.L. Voz,
\Deliverable R3-B4-P Task B4: Benchmarks", Enhanced Learn-
ing for Evolutive Neural Architecture, ESPRIT-Basic Research
Project Number 6891, June, 1995. Anonymous FTP: /pub/neural-
nets/ELENA/databases/Benchmarks.ps.Z on ftp.dice.ucl.ac.be.

[5] A. Barron, \Universal Approximation Bounds for Arti�cial Neural Net-
works," IEEE Trans. on Information Theory, vol. IT-39, 930-944, 1993.

[6] E. Baum and D. Haussler,\What Size Net Gives Valid Generaliza-
tion?"Neural Computation, 1(1), 151-160, 1989.

[7] A.L. Blum and R.L. Rivest, \Training A 3-Node Neural Network Is
NP-Complete," Neural Networks, vol.5, 117-127, 1992.

[8] L. Breiman. Bagging predictors. Machine Learning, 24:132{140, 1996.

[9] L. Breiman. Stacked regressions. Machine Learning, 24:49{64, 1996.

[10] L. Breiman. Arcing classi�ers. Annals of Statistics, 26:801{849, 1998.

[11] T. X Brown, H. Tong, S. Singh, \Optimizing admission control while
ensuring quality of service in multimedia networks via reinforcement
learning," to appear in Advances in Neural Information Processing Sys-
tems, ed. M. Kearns et al., MIT Press, 1999.

[12] N. Cesa-Bianchi, Yoav Freund, D.P. Helmbold, D. Haussler R.E.
Shapire and M.K. Warmuth, \ How to Use Expert Advice," Proceeding
of Foundation of Computer Science, 382-391, 1993.

29

[13] T.M. Cover and P.E. Hart, \Nearest Neighbor Pattern Classi�cation,"
IEEE Trans. Inform. Theory,, IT-13, 21-27, 1967.

[14] T.M. Cover, \Capacity Problems for Linear Machines," in Pattern

Recognition, Thompson Book Co., 1968. ed. by L. Kanal.

[15] H.T. Demiral, S. Ma, and C. Ji. Combined power of weak classi�ers.
In Proceeding of World Congress on Neural Networks, pages 591{595,
1995.

[16] T.G. Dietterich. Machine-learning research. AI Magazine, 18:97{136,
1997.

[17] T.G. Dietterich. Discussion of Arcing classi�ers. Annals of Statistics,
26:838{841, 1998.

[18] R.O. Duda and P.E. Hart, Pattern Classi�cation and Scene Analysis.

Wiley, New York, 1973.

[19] U. Fayyad, G. Piatetsky-Shapiro and P. Smyth, \From Data Mining
to Knowledge Discovery: An Overview, " In Advances in Knowledge

Discovery and Data Mining, Menlo Park, CA: The AAAI Press/The
MIT Press, 1996.

[20] T.L . Fine, S. B. Wicker, T. Berger, and J. Halpern, \Sensor-Assisted
ALOHA for Wireless Networks, " Proc. 1998 IEEE International Sym-

posium on Information Theory, Aug., 1999.

[21] T.L. Fine, Feedforward Neural Network Methodology ,Springer-Verlag,
1999.

[22] S. Forest, \ Emergent Computation: Self-Organizing, Collective, and
Cooperative Phenomena in Natural and Arti�cial Computing Net-
works," Physica D, vol.42, 1-11, 1990.

[23] Y. Freund. Boosting a weak learning algorithm by majority. Informa-
tion and Computation, 121:256{285, 1995.

[24] Y. Freund and R. Schapire. Experiments with a new boosting algo-
rithm. In Machine Learning: Proceedings of the Thirteenth Interna-

tional Conference, pages 148{156, 1996.

[25] S. Geman, E. Bienenstock, and R. Doursat, \Neural Networks and the
Bias/Variance Dilemma," Neural Computation, 4, 1-58, 1992.

30

[26] J.H. Holland, \A Mathematical Framework for Studying Learning Clas-
si�er Systems," Physica, vol. 22D, 307-317, 1986.

[27] J.H. Holland, \Genetic Algorithms," Scienti�c American, vol.267(1),
66-72, 1992.

[28] C. Ji and D. Psaltis, \Capacity of Two-Layer Networks with Binary
Weights," IEEE Trans. Information Theory, Vol. 44, No.1, 256-268,
Jan., 1998.

[29] C. Ji and S. Ma. Combined weak classi�ers. In NIPS, pages 494{500,
1996.

[30] C. Ji and S. Ma. Combinations of weak classi�ers. IEEE Transactions

on Neural Networks, 8:32{42, 1997.

[31] S. Judd, Neural Network Design and The Complexity of Learning, MIT
Press, 1990.

[32] E.M. Kleinberg, \Stochastic Discrimination," Annals of Mathematics

and Arti�cial Intelligence, vol.1, 207-239, 1990.

[33] E.M. Kleinberg and T. Ho, \Pattern Recognition by Stochastic Mod-
eling," Proceeding of Third International Workshop on Frontiers in

Handwriting Recognition, 175-183, Bu�alo, May 1993.

[34] A. Krogh and J. Vedelsby. Neural network ensembles, cross validation,
and active learning. In NIPS, pages 231{238, 1995.

[35] S.R. Kulkarni, G. Lugosi, and S. S. Venkatesh, \Learning pattern
classi�cation-a survey," IEEE Transactions on Information Theory,
Vol.44, No.6, 2178-2206, Oct. 1998.

[36] S. Lawrence, C.L. Giles, \Searching the Web: general and scienti�c in-
formation access," IEEE Communications Magazine, vol.37, no.1, 116-
122, Jan. 1999.

[37] N. Little and M. Warmuth, \The Weighted Majority Algorithm," The
Third Workshop on Computational Learning Theory, 1989.

[38] R.J . McEliece, E.C . Posner, E.R . Rodemich, S.S .Venkatesh, \The
Capacity of the Hop�eld Associative Memory," IEEE Trans. Inform.

Theory, Vol. IT-33, No. 4, 461-482, July 1987.

31

[39] R. Meir. Bias, variance and the combination of least squares estimators.
In NIPS, pages 295{302, 1995.

[40] C. Merz and M.J. Pazzani. Handling redundancy in ensembles of
learned models sing principal components. In Proceedings of the Na-

tional Conference on Arti�cial Intelligence, 1996.

[41] C. Merz and M.J. Pazzani. Combining neural network regression esti-
mates with regularized linear weights. In NIPS, 1997.

[42] U. Mitra and H.V. Poor, \Neural Network Techniques for Adaptive
Multiuser Demodulation," IEEE Journal on Selected Areas in Com-

munications, vol.12, no.9, 1460-1470, Dec. 1994.

[43] J. Moody and C. Darken, \Fast Learning in Networks of Locally-Tuned
Processing Units," Neural Computation, vol.1, 281-294, 1989.

[44] M.P. Perrone and L.N. Cooper, \When Networks Disagree: Ensemble
Method for Neural Networks," Chap 10, Arti�cial Neural Networks for
Speech and Vision, 1993.

[45] D. Psaltis, R.R. Snap and S.S. Venkatesh, \On The Finite Sample Per-
formance of Nearest Neighbor Classi�ers," IEEE Trans. Inform. The-

ory, IT-40, 820-837, May 1994.

[46] L. Prechelt, \PROBN1-A Set of Benchmarks and benchmark-
ing rules for Neural Network Training Algorithms," Techni-

cal Report 21=94, Fakultat fur Informatik, Universitat Karl-

suhe, D-76128 Karlsruhe, Germany, September 1994. Anonymous
FTP:/pub/papers/techreports/1994/1994-21.ps.z on ftp.ira.uka.de.

[47] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-
man, 1993.

[48] J.R. Quinlan. Bagging, boosting, and c4.5. In Proceedings of the Thir-

teenth National Conference on Arti�cial Intelligence, pages 725{730,
1996.

[49] S. Rangarajan, P. Jalote, and S.K. Tripathi. Capacity of voting systems.
IEEE Transactions on Software Engineering, 19:698{705, 1993.

[50] I. Rish, M. Brodie and S. Ma. Accuracy versus eÆciency in probabilistic
diagnosis. to be appeared in AAAI conference, 2002.

32

[51] R. Schapire. The strength of weak learnability. Machine Learning,
5:197{227, 1990.

[52] M. Thottan and C. Ji, \Proactive Anomaly Detection Using Distributed
Intelligent Agents," Special Issue on Network Management-Today and

Tomorrow, IEEE Net work, IEEE Network Magazine, September 1998.

[53] K. Tumer and J. Ghosh. \Theoretical Foundations of linear and Order
Statistics Combiners for Neural Pattern Classi�ers." To be appeared in
IEEE Transactions on Neural Networks, 1995.

[54] L.G. Valient, \A Theory of Learnable," Communications of The ACM,
27(11), 1134-1142, 1984.

[55] R. Vilalta, C. Apte, J.L. Hellerstein, S. Ma and S. Weiss, \Fault Pre-
diction in Computer Networks," IBM System Journal, Special Issue on

AI, August 2002.

[56] S. S. Venkatesh, \Directed Drift - A New Linear Threshold Algorithm
for Learning Binary Weights Online," J. Comput. Sys. 46(2), 198-217,
April, 1993.

[57] D. Wolpert, \Stacked Generalization," Neural Networks, vol. 5(2), 241-
259, 1992.

33

