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Abstract

We conduct experiments in which humans repeatedly play one of two games against a
computer decision maker that follows either a reinforcement learning or an Experience
Weighted Attraction algorithm. Our experiments show these learning algorithms more
sensitively detect exploitable opportunities than humans. Also, learning algorithms
respond to detected payoff increasing opportunities systematically; however, the re-
sponses are too weak to improve the algorithms’ payoffs. Human play against various
decision maker types doesn’t significantly vary. These factors lead to a strong linear
relationship between the humans’ and algorithms’ action choice proportions that is
suggestive of the algorithm’s best response correspondence.



1 Introduction

Identifying how people adapt their behavior in repeated strategic decision making tasks

has emerged as a central question, and a difficult question, in the social sciences. Most

research has addressed this question by formulating hypotheses about the learning process,

then embedding the hypotheses in a parametric model, and then estimating the model’s

parameters from experiments using human subjects. The model is then evaluated either by

goodness-of-fit statistical criteria or by using it to generate simulations that are compared

to human play. Unfortunately, using this approach makes it difficult to determine how well

a model reflects actual human learning, because current econometric techniques generate

exceedingly high rates of Type I and Type II errors in this setting (Salmon [21] (2001)).

These econometric difficulties stem from the data generating process implied by the

models. A learning in games model is generally comprised of two components: a rule that

assigns a value to each of a player’s actions conditional upon the history of play, and another

rule that converts a player’s action values to a probability distribution over the player’s

action set – in effect, a mixed strategy. Notice the conversion of the observable history of

play into a current action choice involves a player’s action values and mixed strategy, both of

which are unobservable – or latent – variables. Identifying the underlying adjustment rules of

these latent variables is a challenging econometric problem. Further, players in these models

simultaneously use a common history of play to update their respective latent variables, and

the resulting interdependencies only make matters worse.

In this study we control strategic interdependence through hybrid experiments in which a

human repeatedly plays a simple game against a computer-implemented learning algorithm.

Initially we conduct experiments in which humans play against humans, and use this data to

estimate parameters of alternative learning models. Then we conduct the hybrid experiments

with new human subjects and generate parallel simulations in which computer plays against

computer. Our experiments thus allow us to observe how the play of a learning algorithm

adjusts against actual human behavior, in addition to how it adjusts against the hypothesized

model of human play.

This suggests a benchmark for evaluating learning models: a model can be considered the

true model if human versus computer play is indistinguishable from human versus human
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play. When differences in play can be identified, the differences should suggest how we can

refine the model. Our hybrid procedure can also help in developing new learning models: by

systematically varying the kind of strategies against which people are required to play, we can

obtain descriptions of how humans play against a variety of strategies. These descriptions

can then serve as the empirical results that new models of learning must take into account.

We implement two prominent learning models in our hybrid experiments: Erev and

Roth’s [6] (1998) reinforcement learning model and Camerer and Ho’s [2] (1999) experienced

weighted attraction model.1 The structure of the two models is similar to nearly all models

in this genre: starting values are assigned to each of the players’ actions; after each stage

game, the values are updated according to an adaptive rule; and each player selects his next

stage game action according to a probabilistic choice rule, where the probabilistic choice

rule assigns higher probabilities to actions with greater values. Both of the models include

unobservable parameters whose values are estimated from experimental data. Uniformly

across studies, estimated parameter values imply that the adaptive rules have significant

memory. As a consequence, the impact of recent outcomes on action values (and thus on

mixed strategies) is very small. This leads to inert adjustment rules: mixed strategies, and

the resultant pattern of action choices, are sluggish and exhibit little change from period to

period.

Our technique reveals properties about both human learning and learning models that

could not be discovered through pure human experimentation or through pure simulation.

We find that human play does not significantly vary depending on whether the opponent is

a human or is one of the learning algorithms we consider. In contrast, the joint algorithm-

human play differs markedly from joint algorithm play in a simulation. For example, when

humans’ action frequencies deviate from the Nash equilibrium proportions, the algorithms’

mixed strategies systematically adjust towards their pure strategy best responses. These ad-

justments result in a strikingly linear relationship between the learning models’ and humans’

action choice frequencies. Moreover, the linear relationship is consistent with the computer

players’ best response correspondence. While adjustments by the algorithms are remarkably

1There are many other similarly structured models worth studying with our technique, but models in
this class tend to generate similar play (Salmon [21]) and consequently most of the potential insights can be
gained through evaluation of just one or two models of this type.
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systematic, the magnitude of the adjustments is quite weak – indeed, too weak to result in

statistically significant gains in payoffs.

Our experimental study is just one of several that exploit laboratory control to better

measure some of the latent variables underlying human play in games.2 The findings, coupled

with those reported in this paper, paint a picture of human learning different from the one

upon which current learning models are based. Specifically, experiments with unique mixed

strategy Nash equilibrium games have shown that humans’ beliefs about opponent play are

highly volatile from period to period (Nyarko and Schotter [16](2002)), and correspondingly

players’ mixed strategies exhibit significant variability with substantial switching between

pure and mixed strategy play (Shachat [22] (2002)). Furthermore, humans are also successful

at significantly increasing their payoffs when computerized opponents play either stationary

non-equilibrium fixed mixed strategies (Lieberman [12](1961) and Fox [7] (1972)) or highly

serially correlated action sequences (Messick [14] (1967) and Coricelli [4](2001)). In summary,

human play is characterized by volatile beliefs, variable mixed strategy choices, and successful

exploitation of some strategies. In contrast, the learning models we evaluate generate beliefs

that are inert, make only minor mixed strategy adjustments from period to period, and don’t

take advantage of calculated payoff-increasing opportunities.

We proceed with a more detailed discussion of several past studies that incorporate hu-

man versus computer game play. Then we present the two learning models adopted in our

study. In the fourth section we discuss the games used in our experiments and our experi-

mental procedures. Section 5 covers our experiment results, findings and interpretations. In

conclusion, we integrate our results with other experimental results to provide a summary

of human play in games and contrast this with current learning models.

2 Literature Review

In a number of studies, human players and computerized decision makers researchers have

interacted in strategic environments. This technique has been used to identify social pref-

2For example Camerer, Johnson, Rymon, & Sen [3](1993) and Crawford, Costa-Gomes, &
Broseta [5](2000) studied information look-up patterns of subjects. Also, Nyarko & Schotter [16] (2002)
elicited subjects’ beliefs of opponents’ future actions.
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erences in strategic settings (Houser and Kurzban [10] (2000), and McCabe et al. [13]

(2001)), to establish experimental control over player expectations in games (Roth and

Shoumaker [20] (1983) and Winter and Zamir [24] (1997)), and to identify how humans

play against particular strategies in games (as in Walker, Smith, and Cox [23] (1987)). In

this section, we discuss the last type of study and summarize results on how humans play

against unique minimax solutions, non-optimal stationary mixed strategies, and variants of

the fictitious play dynamic (with deterministic choice rules) in repeated constant-sum games

with unique minimax solutions in mixed strategies.

All of the studies we discuss incorporated fixed human-computer pairs playing repetitions

of one of the zero-sum games presented in Table 1. 3 Studies by Lieberman [12] (1961),

Messick [14] (1967), and Fox [7] (1972) all contain treatments where humans played against

an experimenter-implemented minimax strategy. In these studies, the human participants

were not informed of the explicit mixed strategy adopted by their computerized counterparts.

4 All three studies reach the same conclusion: human play does not correspond to the

minimax prediction, and only in the Fox study does the human play adjust – albeit weakly

– towards the minimax prediction. These results are not surprising: when a “computer”

adopts its minimax strategy the expected payoffs of a human player’s actions are all equal.

This indifference is not present when the computer adopts non-minimax mixed strategies.

Lieberman [12] and Fox [7] both studied human play against non-optimal stationary mixed

strategies and discovered that human players do significantly adjust their play (although not

to the extent of exclusively playing the pure strategy best response) and also significantly

increase – in a statistical sense – their payoffs above minimax value levels. In the relevant

Lieberman treatment, subjects played against the experimenter for a total of 200 periods.

In the first 100 periods, the experimenter played his minimax strategy of (.25, .75) and

then in the final 100 periods the experimenter played a non-minimax strategy of (.5, .5).

Human players were not informed that their opponent had adjusted his strategy. Human

play adjusted from best responding approximately 20 percent of the time right after the

3In some of these studies the experimenters implemented stationary mixed strategies by using pre-selected
computer generated random sequences in their non-computerized experiments.

4When reported, human participants were instructed something similar to, “The computer has been
programmed to play so as to make as much money as possible. Its goal in the game is to minimize the
amount of money you win and to maximize its own winnings.” (Messick [14], page 35)
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experimenter began non-minimax play, to best responding approximately 70 percent of the

time by the end of the session. This shift toward the best response was also a shift towards

the human’s minimax strategy, making it difficult to differentiate between the attractiveness

of the minimax strategy and the best response.

In one of Fox’s treatment, each human participant played 200 periods against a com-

puter which played the non-minimax mixed strategy (.6, .4) for the entire session. This

design placed the human’s best response, (1, 0), on the opposite side of (.5, .5) from the

human’s minimax strategy, (.214, .786). Human play started slightly above (.5, .5) and then

slowly adjusted towards the pure strategy best response over the course of the experiment.

Specifically, human players were best responding approximately 75 percent of the time by the

latter stages of the experiment. These experiments demonstrated that human participants

will adjust their behavior to take advantage of (but not as much as possible) exploitable

stationary mixed strategies. Furthermore, the human subjects in both studies statistically

improved their payoffs.

Messick [14] and Coricelli [4] (2001) conducted experiments to evaluate how human play-

ers respond when playing against variations of fictitious play.5 These experiments are no-

table in that the computer’s strategy was responsive to the actions selected by its opponent.

Messick studied human subjects matched against two fictitious play algorithms: one with

unlimited memory and the other with only a five period memory. Against unlimited mem-

ory fictitious play, human players earned substantially more than their minimax payoff level.

Human players s earned an even greater average payoff against limited memory fictitious

play. In the study by Coricelli, there are two treatments (both utilizing the game form intro-

duced by O’Neill [17] (1985)) in which human participants play against unlimited memory

fictitious play with and without a belief bias. This bias holds that human subjects tend not

to repeat their “P” action. In both treatments human participants win significantly more

often against the algorithms than they do against human opponents.6 Establishing that hu-

mans can “outgame” these algorithms is significant, though not surprising. It is well known

5In the original formulations of fictitious play (Brown [1](1951) and Robinson [18](1951)) a player uses
the empirical distribution of the entire history of his opponent’s action choices as his belief of the opponent’s
current mixed strategy and then chooses a best response to this belief.

6Human versus human data for this conclusion are taken from O’Neill [17] (1985) and Shachat [22](2002).
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that in games with a unique mixed strategy equilibrium, the fictitious play algorithm can

generate strong positively serially correlated action choices that are easily exploited.7 It was

this speculated vulnerability that partially motivated game theorists to propose and study

adaptive learning models which incorporated probabilistic choice as a key component.8

To summarize, experiments pairing human subjects against algorithms in constant sum

games with strictly mixed strategy solutions have taught us: (1) that human players do not

tend to play their minimax strategy in response to opponents playing their minimax strategy,

(2) human players exploit (but not fully) opponents who play mixed strategies significantly

different from their minimax strategy, and (3) human players exploit adaptive algorithms

which generate highly serially correlated action choices.

3 Response Algorithms

In this section we describe Erev and Roth’s [6](1998) Reinforcement learning model and

Camerer and Ho’s [2](1999) Experience Weighted Attraction model.

3.1 Reinforcement Learning

Erev and Roth’s model (hereafter ER) is motivated by the reinforcement hypothesis from

psychology: an action’s score is incremented by a greater amount when it results in a “posi-

tive” outcome rather than a “negative” outcome. More formally, let Rij(t) denote player i’s

score for his jth action prior to the game at iteration t; let σij(t) denote the probability that

i chooses j at iteration t; and let Xi denote the set of player i’s possible stage-game payoffs.

The two initial conditions for the dynamical system are (1) that at the initial iteration, each

of a player’s actions has the same probability of being selected and (2) that

Rij(1) = σij(1)S(1)Xi,

where S(1) is an unobservable strength parameter, which influences the player’s sensitivity

to subsequent experience, and Xi is the absolute value of player i’s payoff averaged across

7See Jordan [11](1993) and Gjerstad [9](1996).
8For example, see cautious fictitious play proposed by Fudenberg and Levine [8] (1995), and the two

learning models we utilize in this study.
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all action profiles.

After each iteration, each action’s score is updated as follows

Rij(t + 1) = (1− φ)Rij(t) +
(
(1− ε)I(ai(t)=j) +

ε

2

)
(πi(j, a−i(t))−min{Xi}),

where φ is an unobservable parameter that discounts past scores, I(ai(t)=j) is an indicator

function for the event that player i selected action j in period t, ε is an unobservable pa-

rameter determining the relative impacts on the scores of the selected versus the unselected

action, and πi(j, a−i(t)) is i’s payoff when he plays action j against the deleted action profile

a−i(t). Also player i’s minimum possible payoff for any action profile, min{Xi}, is subtracted

from πi(j, a−i(t)) as a normalization to avoid negative scores. The second component of the

model, a probabilistic choice rule, is specified as

σij(t) =
Rij(t)∑
k Rik(t)

.

For each game we consider, parameters of the model are estimated along the lines sug-

gested by Erev and Roth. We estimate the values of S(1), φ, and ε by minimizing the mean

square error of the predicted proportions of Left play in 20-period trial blocks for the human

versus human treatments. More specifically, for each fixed triple of parameter values from

a discrete grid we proceed as follows: we simulate the play of 500 fixed pairs engaging in

200 iterations, and then we calculate separately the frequency of Left play by the 500 Row

players and by the 500 Column players in each 20-period block. These frequencies are the

model’s predictions for that triple of parameter values. The grid is then searched for the

optimal parameters.

3.2 Experience-Weighted Attraction

We use the version of EWA developed by Camerer & Ho [2](1999). While the structure of

the EWA formulation is similar to the ER learning model, it adopts a different parametric

form of probabilistic choice and it updates actions’ scores according to what actions actually

earned in past play, and what actions hypothetically would have earned if they had been

played.
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According to EWA, subjects choose stage-game actions probabilistically according to the

logistic distribution

σij(t) =
eλRij(t)

∑
k eλRik(t)

,

where at stage t player i chooses action j with probability σij(t), where λ is the inverse

precision (variance) parameter, and where Rij(t) is a scoring function, as in the ER model,

albeit defined (i.e., updated) differently. The updating of Rij(t) involves a “discounting”

factor N(t), which is updated according to N(t + 1) = ρN(t) + 1 for t = 1, where ρ is an

unobservable discount parameter and N(1) is an unobservable parameter, interpreted as the

strength of experience prior to the beginning of play. The score Rij(t) is updated as follows:

Rij(t + 1) =
N(t)φRij(t) + ((1− ε)I(ai(t)=j) + ε

2
)πi(j, a−i(t))

N(t + 1)
,

where πi(j, a−i(t)), φ, and ε are interpreted as in the Erev and Roth model. Initial scores,

Rij(1) for each i and j, are additional unobservable parameters.

Parameters of the EWA model are estimated via maximum likelihood. It is worth noting

that EWA is a flexible specification that includes several other models as special cases. For

example, a simple reinforcement learning model is generated when N(1) = 0, ε = 0, and

ρ = 0; and probabilistic fictitious play is generated when ε = ρ = φ = 1.9

4 Experimental Procedure

There are three basic steps in our experimental methodology. First, we collect baseline data

samples consisting of fixed human versus human pairs that play 100 or 200 rounds of one of

two 2× 2 games. Second, we estimate parameters for the two learning models separately for

each of the two games. In the third step, a new sample of humans play one of the two games

against an estimated learning algorithm. We proceed by describing the two games we used

and then present more details on the outlined steps.

9We refer the reader to Camerer and Ho [2](1999) for more discussion of how EWA can emulate various
models and for a more complete interpretation of the parameters.
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4.1 The Two Games

The first game we consider is a zero-sum asymmetric game called Pursue-Evade. This game

was introduced by Rosenthal, Shachat, and Walker [19](2002) (hereafter RSW). The normal

form representation of the game is given in Table 2. The minimax solution (and Nash

equilibrium) of this game is symmetric with each player choosing Left with probability of

two-thirds.

There are several reasons why this game is a strong candidate to use in our study. (1)

Zero-sum games eliminate social utility concerns often found in experimental studies of

games, thereby mitigating some behavioral effects that might arise if a human suspects he is

playing against a computer rather than another human. (2) With some standard behavioral

assumptions, the repeated game has a unique Nash equilibrium path which calls for repeated

play of the stage game Nash equilibrium. This eliminates potential repeated game effects

that the algorithms are not designed to address. (3) Pursue-Evade is a simple game in which

the Nash equilibrium predictions differ from equiprobable choice. This generates a powerful

test against the alternative hypothesis of equiprobable play.

We selected our second game to pose a more difficult challenge to the learning algorithms.

We refer to our second game, presented in Table 3, as Gamble-Safe. Each player has a Gamble

action (Left for each player) from which he receives a payoff of either two or zero and a Safe

action (Right for each player) which guarantees a payoff of one. This game has a unique

mixed strategy in which each player chooses his Left action with probability one-half, and

his expected Nash equilibrium payoff is one. Notice that this game is not constant-sum;

therefore the minimax solution need not coincide with the Nash equilibrium. In this game,

Right is a pure minimax strategy for both players that guarantees a payoff of one. A game

for which minimax and Nash equilibrium solutions differ but generate the same expected

payoff is called a non-profitable game.10 The potential attraction of the minimax strategy

can (and does) prove to be difficult for the learning algorithms which, loosely speaking, have

best response flavors.

10Morgan and Sefton [15](2002) present an excellent study of human play in non-profitable games.
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4.2 Protocols

4.2.1 Human versus Human Baselines

For the human versus human baseline play in the Pursue-Evade game we use the data gen-

erated by RSW. In their hand-run experiments, a pair of subjects were seated on the same

side of a table with an opaque screen dividing them. The Evader was given an endowment

of currency. Each player was given two index cards: one labelled Left and the other labelled

Right. At each iteration the players slid their chosen cards face down to the experimenter

seated across the table. Then the experimenter simultaneously turned over the cards, ex-

ecuted the payoffs, and recorded the actions. Twenty pairs of human subjects played this

treatment: fourteen for 100 periods and six for 200 periods.

The human versus human baseline experiments for the Gamble-Safe game were executed

via computerized interaction. Each subject was seated at a separate computer terminal such

that no subject could observe the screen of any other subject. Within a pair, each subject

either played the Row or Column role for the entire experiment. Fifteen pairs of subjects

participated in this treatment; five pairs who played 100 periods and ten pairs who played

200 periods. At the beginning of each repetition, a subject saw a graphical representation

of the game on the screen. A Column player’s display of the game was transformed so that

he appeared to be a Row player. Thus, each subject selected an action by clicking on a

row, and then confirmed his selection. Each subject was free to change his row selection

before confirmation. Once an action was confirmed, a subject waited until his opponent also

confirmed an action. Then a subject saw the outcome highlighted on his game display, as

well as a text message stating both players’ actions and his own earnings for that repetition.

Finally, at all times a history of past play was displayed to the subject. This history consisted

of an ordered list with each row displaying the number of the iteration, the actions selected

by both players, and the subject’s earnings.
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4.2.2 Human versus Algorithm Treatments

We conducted our hybrid treatments using both the experimental software and protocol

used for the Gamble-Safe game baseline.11 In these treatments, two human subjects played

against each other for the first 23 repetitions of the game. Then, unbeknownst to the human

pair, they stopped playing against each other and for the remainder of the experiment they

each played against a computer that implemented either the EWA or ER learning algorithm.

We used an initial phase of human versus human play to minimize the impact of estimated

initial score values of actions and focus our evaluation on the dynamics of the algorithm.

During the first 23 repetitions, we allowed the action value scores to “prime” themselves

with the play generated by the subjects. (Although updating of scores was determined by

the parameter estimates obtained from the baseline treatments). That is, even though the

response algorithms were not selecting actions during the first 23 repetitions, the scores were

still being updated according to the specifications of the previous section. For example,

consider the 24th repetition of a game. The human Row player now faces a computer that

plays the Column role. Moreover, during the first 23 repetitions, the computer Column

player updated the scores associated with Column’s actions based on the observed actions

of both humans.

We adopted a simple technique to make the “split” seamless from the subjects’ per-

spectives. From period twenty-four on, the two human/computer pairs had no interaction

except for the timing of how action choices were revealed. Specifically, although the comput-

ers generated their action choices instantly, the computers didn’t reveal their choices until

both humans had selected their actions. This protocol preserved the natural timing rhythm

established by the humans in the first twenty-three stage games.

In summary, we have two treatment variables; the stage game and the type of opponent.

The data samples we have for each treatment cell are given in Table 4.12

11For the Pursue-Evade game, the Evader was given a currency endowment.
12We explain in the next section why we have no observations for the EWA Gamble-Safe treatment.
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5 Baseline Results and Model Estimation

Our experimental baselines are the human versus human play in each of the two games.

Inspection of the aggregate data reveals that play in the two games departs from the Nash

equilibrium and the dynamic features of the data suggest non-stationarity of play. After

estimating the unobserved parameters of the learning models, we simulated large numbers

of experiments based upon these estimated versions of the models. Simulations reveal that

the learning models generate aggregate choice frequencies similar to the experimental data,

but only weakly mimic the experimental data time series. Furthermore, the simulations do

not reveal striking differences between the two learning models.

We use the data from RSW as the Pursue-Evade game baseline data set. Figure 1 shows

contingency tables for the data aggregated across subject pairs and stage games. A graph

of the time series of the average proportion of Left play for the Row and Column players

is shown below each table. Each observation in a series is the average across a twenty

period time block. As noted by RSW, the contingency table is distinctly different from the

Nash equilibrium predictions (the numbers in parentheses) and Column subjects play Left

significantly more often than the Row subjects.13 In the block average time series, we see

that the Column series almost always lies above the Row series and that both series exhibit

an increasing trend.

Using this data, RSW estimated the parameters of both the ER and EWA models.

As noted by RSW, both models have some success in explaining the deviation. Using the

estimated models we simulated 10,000 experiments of twenty pairs playing the Pursue-Evade

game for 200 iterations. Averages from the 10,000 simulated experiments were used to

construct contingency tables and time series in the same format as those presented for

the baseline data. These results are presented alongside the baseline results in Figure 1.

Unsurprisingly, given the respective objective functions used to select model parameters,

casual observation suggests that the EWA model generates an expected contingency very

close to the human baseline and the ER model more accurately mimics dynamics in the

times series.

We provide a corresponding analysis for the Gamble-Safe game in Figure 2. In the con-

13Moreover, the Column subject plays Left more frequently than his Row counterpart in almost all pairs.
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tingency table for the baseline data we observe that the Row subjects play Right significantly

more than Left, while Column subjects played Left more often. This result partly comes

from two pairs in which the Row and Column subjects’ action profile sequence eventually

converged to the profile (Safe, Gamble). This is evident around the midpoint of the times

series for the baseline treatment, where we see the Column and Row subjects’ series diverge.

This convergence to minimax play by the Row subjects in these two pairs is problematic

for the maximum likelihood estimation used in the EWA model. Specifically, the long strings

of Left by Column leads the EWA model to assign a near zero probability to Right (Safe) by

Row for any possible parameter values. However, since Row is repeatedly choosing Right in

these instances there is a zero likelihood problem in estimating the EWA parameters. Rather

than violate the maximum likelihood criterion for parameter selection specified by Camerer

and Ho we chose not to conduct a Human versus EWA treatment for this game.

Since the ER model parameter selection does not rely upon maximum likelihood estima-

tion we obtain estimates which generate the best fit for the baseline data. Interestingly we

see that the ER contingency table is remarkably similar to the baseline table. However, the

predicted ER dynamics are excessively smooth and do not resemble the baseline time series.

We believe this failure results from the inability of the model to incorporate the heterogenous

behavior that occurs when some players adopt the minimax strategy and other players use

adaptive strategies.

Comparison of the experimental data to simulations based upon estimated versions of the

learning models suggests that the learning models successfully capture some features of the

humans’ disequilibrium behavior. However, time series views of the simulation data exhibit

much smoother and less extreme dynamics than the experiment data, which suggests that

learning models are not as responsive as humans and tend to simply “fit” aggregate human

choice frequencies.

6 Analysis of Human/Algorithm Interaction

In the previous section we used a common technique of comparing experimental data to

simulation results to evaluate the appropriateness of alternative learning models. Now we
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proceed to present analysis of human/algorithm interaction which reveals a significantly dif-

ferent story. Action choice frequencies by the algorithms are more responsive to opponents’

play than the humans’ action choice frequencies. Moreover, the action frequencies by each

algorithm adjust linearly toward the best response to its opponent’s non-equilibrium action

frequencies. However, the magnitude of these adjustments is too small to generate payoff

gains for the learning algorithms. Finally, we see that human play does not vary signifi-

cantly whether the opponent is another human or a learning algorithm. Examination of the

human/human experiments and the model simulations don’t reveal these results.

6.1 Learning Algorithm Response to Opponents’ Play

We now introduce pair-level data to better highlight differences in play across treatments.

Inspection of the Row and Column players’ proportions of Left play in each pair reveals sur-

prising differences from purely human play and the simulations reported in the prior section.

The learning algorithms are quite responsive to human deviations from Nash equilibrium

play. Specifically, the algorithms’ frequencies of Left play have a striking linear correlation

to their human opponents’ Left play proportions. Moreover, these linear relationships are

consistent with a linear approximation of the algorithms’ best response correspondences.

These results are most easily seen in Figures 3 - 5. Each of these figures is a 2 × 2

array of scatterplot panels. The rows of each panel array correspond to the decision maker

type for the Row player: the top row indicates human decision maker and the bottom row

indicates computer decision maker. Similarly the columns of each panel array correspond

to the decision maker type for the Column player: the left column for human and the right

column for computer. Hence the upper left panel is from the human/human baselines, the

lower right panel is from the algorithm/algorithm simulations, and the off-diagonal panels

are from the human/algorithm and algorithm/human experiments.

The scatterplots show the proportions of Left play by the Row and Column players in

each pair after the first 23 iterations. In the simulation panel we only use the data from

a single simulated experiment with twenty pairs playing 200 iterations. Also, each of these

scatterplots displays a regression line of the Row proportion Left regressed on the Column

proportion Left, and a dashed line for the computer’s best response correspondence.
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Examination of these figures reveals important common results across the two games

and learning models. Comparisons between the two main diagonal panels reveal consistent

differences and similarities between human/human play and pure simulations of model in-

teraction. Both types of interactions generate uncorrelated “clouds” with the simulations’

clouds exhibiting much smaller dispersion.14 This raises the issue of whether the learning

models are quite aggressive in adaptation and quickly converge to an equilibrium or instead

the models are quite insensitive to opponents’ play and just stubbornly mimic human ag-

gregate frequencies. We can ask a similar question regarding human play. Do the humans’

dispersed clouds result from high variance in the humans’ propensities to play Left coupled

with little response to the opponents’ play or is it the result of differential skill in human

play in which some humans more successfully exploit other humans’ play?

Inspection of the human and learning algorithm interactions answers these questions. In

contrast to the model simulations and human/human play, the scatter plots of human and

learning algorithm interactions (found in the off-diagonal panels of Figures 3 - 5) exhibit

strongly correlated interactions. This is evident by the tight clustering of the data along

the plotted regression lines. Also, in each case the regression line is in the direction of the

computer players’ best response correspondence (the dashed correspondence given on each

scatterplot). In other words, the computer “better” responds instead of best responds. This

is best illustrated by an observation in the upper right scatter plot of Figure 3. In this

scatterplot, Column ER players play against human Row players in the Gamble-Safe game.

One of the human players chose his Minimax strategy, Right, exclusively and his computer

ER opponent best responded to this only about 70 percent of the time. Hence, we see that

(1) the frequency of Left by the learning algorithms move toward (but not all the way to)

the best response to their opponents’ frequencies, and (2) the magnitude of these responses

by the algorithms is described by a surprisingly predictable linear relationship.

Table 5 gives some quantitative support for these observations by presenting the OLS

results of regressing the learning algorithms’ Left frequencies on their human counterparts’

Left frequencies.15 A learning algorithm that is highly sensitive and adjusts systematically to

14F-tests reject the significance of the presented regression lines; this gives statistical support for claims
of no correlation.

15Note that the regression lines displayed in the upper-right panel of Figures 3 - 5 differ from the regression
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opponents’ play should generate regressions that explain a high percentage of the variance of

the algorithm’s Left frequencies, and the estimated slope coefficient should be consistent with

the best response correspondence. These features are found in the Table 5 regressions: the

slope of each regression has the correct sign, three of the regressions have exceedingly large

adjusted R2 statistics, and a fourth is still quite large considering the data is cross sectional.

These adjusted R2 results reflect the tight clustering to the fitted regression line observed in

the scatterplots and correspondingly the detection and systematic reaction by the learning

algorithms to calculated payoff-increasing opportunities. Correspondingly, F-tests for these

four regressions do not reject the significance of the regressions at the 5 percent level of

significance. Interestingly, the two cases where F-tests reject the regressions are when the

EWA and ER algorithms assume the Column role in the Pursue- Evade game. We do not

see a reason for the differential performance, but do note that the mean of the computers’

data is close to their minimax strategy in this case.

6.2 Learning Algorithms’ Lack of Effective Exploitation

Previous arguments established that the learning algorithms sensitively detect opponents’

exploitable action choice frequencies and then the algorithms respond with a systematic but

tempered reaction in the direction of their best response. However, we will now see that

these statistically significant responses are too weak in magnitude to generate statistically

significant payoff gains. Table 6 presents the average stage game winnings for all decision

maker types when pitted against a human for each role and game. If the learning algorithms

successfully exploit human decision makers we would expect the algorithms in each game and

role to have greater winnings than a human when playing against a human in the competing

role. The average stage game winnings in Table 6 do not exhibit this trait.

The reported average stage game payoff statistics are calculated by first taking the total

session payoffs for each decision maker who plays against a human, and dividing by the

number of stage games played.16 Then we partition these decision makers according to the

results in Table 5. This is because the figures show the plot of Row proportion Left regressed on Column
proportion Left, while the table reports Computer proportion Left regressed on Human proportion Left.

16We normalize this way because in the baseline data for Pursue-Evade and Gamble-Safe some pairs played
100 stage games and others 200.
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game played, role played, and decision maker type. Finally, we report the average stage

game payoffs across decision makers in each partition. For each game and player role we

conduct t-tests with the null hypothesis that on average a non-human decision maker earns

the same as a human when the opponent is a human. At a 5 percent level of significance

we fail to reject the null hypothesis in four out of the six tests. In the two rejections, the

human average exceeds the algorithm average.

Why don’t the learning algorithms, which are sensitive and responsive to opponent play,

generate higher payoffs than humans? The answer is twofold. First, the two games we con-

sider have fairly flat payoff spaces in the mixed strategy domains presented in Figures 3 - 5.

Thus a pair must be far removed from the Nash equilibrium to generate large payoff devia-

tions from Nash equilibrium payoffs. Second, whenever the algorithm calculates a difference

between its two action scores, it adjusts choice probabilities without assessing whether this

difference is statistically significant. If this difference is not statistically significant, then

there is no adjustment that can generate a real increase in payoff. Alternatively, an adjust-

ment to a statistically significant score difference may also fail to generate a real increase in

payoffs. Why? We have already seen that algorithms adjust in statistically significant ways,

but these adjustments are relatively small in magnitude. These weak adjustments are the

product of probabilistic choice rules, which were adopted to avoid generating transparent

serially correlated choice patterns.

6.3 Human Play Conditional On Opponent Decision Maker Type

Past studies have demonstrated that humans play differently against Nash equilibrium strate-

gies than they do against other humans. However, we also have presented arguments that

play by learning algorithms is more responsive to opponents’ decisions than human play is. A

natural question to ask is, do humans play differently against learning algorithms than they

do against other humans? To answer this question we compare the empirical distributions

of the proportions of Left play by humans when facing the different decision-making types

as presented in the scatter plots of Figures 3 - 5. We report a series of Kolmogorov-Smirnov

two-sample goodness-of-fit tests (hereafter denoted KS) comparing the distributions of Left

play proportions against human opponents to Left play proportions against the alternative
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algorithms. The main result is that we can’t find differences in human play except in the

case when the human is the Row player in the Pursue-Evade game.

Figure 6 shows the empirical CDFs of proportion of Left play by human Row players as

they face human, ER, and EWA Column decision maker types in the Pursue-Evade game.

Additionally, the figure reports the results of Kolmogorov-Smirnov tests of whether the Hu-

man’s distribution of Left play frequencies differs when facing an algorithm opponent as

opposed to a human opponent. Previously we have observed that the learning algorithms

performed differently in the Column role of the Pursue-Evade game than in any other sit-

uation. This trend continues as the proportions of Left by humans in the Row role are

significantly different when facing each learning algorithm than when facing another human.

Next we consider the CDFs generated by human Column players when playing against

Human, ER, and EWA Row decision maker types in the Pursue-Evade game. We see in Fig-

ure 7 that play against human opponents is statistically indistinguishable from play against

both EWA and ER opponents.

Next, we turn our attention to human play in the Gamble-Safe game. Figure 8 shows that

human Row players’ CDFs of proportion of Left play are not statistically different as they

face Human and ER Column decision maker types. Finally, the CDFs and associated KS

tests generated by human Column players in the Gamble-Safe game are shown in Figure 9.

We see that play against human opponents differs from play against ER opponents at the

six-percent level of significance.

7 Discussion

Through experiments in which humans play games against computer-implemented learning

algorithms, we have established that humans do not detect nor exploit the non-stationary

but rather inert mixed strategy processes of the ER and EWA algorithms. Our experiments

also establish that the learning models are more sensitive than humans in detecting ex-

ploitable opponent play. Furthermore, our experiments reveal that the learning algorithms’

action choice frequencies respond uniformly and linearly to opponents’ non-equilibrium ac-

tion choice frequencies. However, the corresponding mixed strategy adjustments of the
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learning models to detected exploitable play are too weak to increase their payoffs.

Our results, in conjunction with those of other studies, reveal a different depiction of

human learning in games than those suggested by currently proposed models of adaptive

behavior. First, through the technique of pitting humans against algorithms we know that

humans successfully increase their payoffs (but not as much as possible) against non-optimal

but stationary mixed strategy play and against adaptive play that generates highly serially

correlated action sequences. On the other hand humans do not exploit the subtle dynamic

mixed strategy processes of the learning models examined in this paper.

Some sources of behavioral departure between learning models and humans are identified

in experiments that elicit subjects’ beliefs (Nyarko and Schotter [16]) or subjects’ mixed

strategies (Shachat [22]). Elicited beliefs are highly volatile and often times correspond to a

belief that one action will be chosen with certainty. Similarly elicited mixed strategies show

erratic adjustments and a significant amount of pure strategy play.

This set of stylized facts establishes benchmarks which new learning models should ex-

plain. Furthermore, the use of human/algorithm interactions can play an important role in

future efforts to identify how humans adapt in strategic environments. First, the technique

brings increased power in evaluating proposed models and overcomes some current econo-

metric and numerical limitations. Second, this technique can be used to identify human

learning behavior through the adoption of carefully selected algorithms and the subsequent

measurement of human responses to these algortihms. For example, one could determine the

extent to which humans can exploit serially correlated strategies by adjusting the level of

variance incorporated in the probabilistic choice rule of a cautious fictitious play algorithm;

or one could determine human ability to detect and exploit non-minimax mixed strategies

by systematically varying the computer’s mixed strategy across opponents in a matching

pennies game. In these instances, the algorithms are not being evaluated but rather used as

carefully chosen stimuli to generate informative measurements of human behavior.
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(Humans are row player, Payoffs are for row player, minimax strategy proportions are next to action names)

E1 (.25) E2 (.75) A (.556) B (.244) C (.2)

S1 (.75) 3 -1 a (.400) 0 2 -1

S2 (.25) -9 3 b (.111) -3 3 5

c (.489) 1 -2 0

a1 (.426) a2 (.574) G (.2) R (.2) B (.2) P (.4)

b1 (.214) 6 -5 G (.2) -5 5 5 -5

b2 (.786) -2 1 R (.2) 5 -5 5 -5

B (.2) 5 5 -5 -5

P (.4) -5 -5 -5 5

Zero-Sum Games Used In Previous Studies

Fox Coricelli (Introduced by O’Neill)

MessickLieberman

Table 1:



Column player

L R

Row player L 1, -1 0, 0

R 0, 0 2, -2

Table 2: Pursue-Evade



Column player

L R

Row player L 2, 0 0, 1

R 1, 2 1, 1

Table 3: Gamble-Safe



Opponent treatment

Game treatment Human EWA ER

Pursue-evade 40 30 30

Gamble-safe 34 0 24

Table 4: Number of subjects that participated in each treatment.
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Figure 1: Baseline Data and Estimated Model Summary for Pursue-Evade Game.
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Figure 2: Baseline Data and Estimated Model Summary for Gamble-Safe Game.
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Figure 3: Gamble-Safe joint densities of proportion Left; ER interactions.
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Figure 4: Pursue-Evade joint densities of proportion Left; ER interactions.
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Figure 7: Distributions of Left by Human Column players in Pursue-Evade.
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Figure 8: Distributions of Left by Human Row players in Gamble-Safe.
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Figure 9: Distributions of Left by Human Column players in Gamble-Safe.


