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Abstract

Our model is a constrained homogeneous random walk in Zd
+. The convergence to stationarity

for such a random walk can often be checked by constructing a Lyapunov function. The same

Lyapunov function can also be used for computing approximately the stationary distribution of

this random walk, using methods developed by Meyn and Tweedie in [34]. In this paper we show

that, for stationary homogeneous random walks, computing the stationary probability exactly is

an undecidable problem, even if a Lyapunov function is available. That is no algorithm can exist

to achieve this task. We then prove that computing large deviation rates for this model is also an

undecidable problem. We extend these results to a certain type of queueing systems. The implication

of these results is that no useful formulas for computing stationary probabilities and large deviations

rates can exist in these systems.

1 Introduction

The main model considered in this paper is a constrained homogeneous random walk in a d-dimensional

nonnegative orthant Zd
+, where Zd

+ is the space of d-dimensional vectors with integral nonnegative

components. Specifically, the transitions with positive probabilities can occur only to neighboring

states and the transition probabilities depend only on the face that the current state of the random

walk belongs to, but not on the size of the components of the state.
∗IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA. Email address: gamarnik@watson.ibm.com
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Ever since the appearance of the papers by Malyshev [28], [27], [29] and Menshikov [31], random

walks in Zd
+ have assumed a prominent role in modelling and analysis of queueing networks of a certain

type, for example Markovian queueing networks. Specifically, the question of positive recurrence or

stability was analyzed. One of the main techniques used for the stability analysis of these type of

random walks is a Lyapunov function technique also known as Foster’s criteria. A comprehensive

study of constrained random walks in Zd
+ was conducted by Fayolle, Malyshev and Menshikov in [15]

and many additional results appeared after the book was published. Specifically, a very interesting

connection between constrained random walks and general dynamical systems on compact manifolds was

established by Malyshev [30]. Exact conditions for positive recurrence for the case d ≤ 4 were obtained

by Ignatyuk and Malyshev in [19]. The large deviation principle for special cases and modifications of

random walks in Zd
+ was established by Ignatyuk, Malyshev and Scherbakov in [20]. This followed by

efforts to actually compute the large deviation rates, which turned out to be a very complicated problem.

See for example Kurkova and Suhov [26], where large deviations limits are computed for a random walk

in Z2
+ arising from joint-the-shortest queueing system. The analysis uses a fairly complicated complex-

analytic techniques. The goal of the current paper is to explain the difficulty in obtaining such results

for general dimensions.

Analysis of random walks arising from special types of multiclass queueing networks became a subject

of particularly aggressive research efforts during the previous decade. Many interesting and deep results

were established which connect stability of such queueing networks with stability of corresponding fluid

models, obtained by Law of Large Numbers type of rescaling. This research direction was initiated

in pioneering works by Rybko and Stolyar [35] and Dai [10], where it was shown that stability of a

fluid model implies stability of the underlying queueing system. The converse of this result is not true

in general, see Dai, Hasenbein and Vande Vate [12], Bramson [9], but is true under some stronger

conditions, Dai [11], Meyn [32]. Despite these results, to the day no full characterization of stable

queueing networks is available. Stability was characterized only for special types of queueing networks

or special scheduling polices. For example feedforward networks are known to be stable for all work-

conserving policies, Down and Meyn [14], Dai [10]. Stability of fluid networks with two processing

stations operating under arbitrary work-conserving policies is fully characterized in Bertsimas, Gamarnik

and Tsitsiklis [1] by means of a linear programming and in Dai and Vande Vate [13] by direct methods.

The question of computing stationary distributions comes naturally after the question of stability.

Several results are available again in the context of multiclass queueing networks. Some of the results

were obtained using quadratic Lyapunov functions, Bertsimas, Paschalidis and Tsitsiklis [5], Kumar
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and Kumar [25], Kumar and Meyn [23], Kumar and Morrison [24], using piece-wise linear Lyapunov

functions in Bertsimas, Gamarnik and Tsitsiklis [2], and using more direct methods, Bertsimas and

Nino-Mora [3], [4] All of the results obtain only bounds on the stationary probabilities. Computing

exactly the stationary probabilities seems beyond the existing techniques.

2 Our results

It was established by the author in [16] that positive recurrence of a constrained homogeneous random

walk in Zd
+ is an undecidable property. Meaning, no algorithm can exists which given the description

of the random walks (given the dimension and the transition matrix) will be able to check whether the

walk is positive recurrent. This result was also established for queueing systems operating under the

class of so called generalized priority policies. This result explains the difficulty in stability analysis

by establishing that these problems are simply insolvable. It was conjectured in the same paper that

the stability of multiclass queueing networks operating under the class of much studied priority or

First-In-First-Out policies, is undecidable as well. The conjecture remains unproven.

In the current paper we continue the decidability analysis of constrained random walks by asking

the following question: given a constrained homogeneous random walk, can we compute its stationary

distribution? To put this question into a proper computation theoretic framework, we ask the follow-

ing question. Given a constrained homogeneous random walk, which possesses a unique stationary

distribution π, given a state q ∈ Zd
+, for example q = 0, and given a rational value r > 0, is it true

that the stationary probability π(q) of this state satisfies π(q) ≤ r? As we mentioned in the previ-

ous paragraph, even existence of stationary distribution is an undecidable property, as was proven in

[16]. However, in some cases, positive recurrence can be checked by constructing a Lyapunov function.

Can this Lyapunov function somehow help in computing the stationary distribution? In this paper we

prove that the problem of checking ”π(q) ≤ r” is undecidable, even if a Lyapunov function witnessing

positive recurrence is available as a part of the data. We show that the result remains true even if a

linear Lyapunov function is available. Thus, no algorithm can exist which given a positive recurrent

constrained homogeneous random walk computes its stationary distribution. The consequence of our

results is that the stationary distribution cannot be written down in any constructive way using some

formulas. Contrast this with random walks corresponding to product form type networks, for example

Jackson networks, for which a very simple formula is available.

Subsequently, we prove that computing large deviations limits for the same model is an undecidable
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problem as well. In particular, we show that given a random walk in Zd
+ with a unique stationary

distribution (witnessed, for example, by a Lyapunov function), and given a vector v ∈ �d, the problem

of deciding whether limn→∞ log(π(vn))/n is finite, is undecidable. We extend these results to queueing

systems operating under a class of generalized priority policies. Finally, we observe that, nevertheless,

estimating stationary distribution of a constrained random walk is a decidable problem, if one is willing

to tolerate a two-sided error and a Lyapunov function exists. Specifically, given such a random walk with

the unique stationary distribution π, given a Lyapunov function, given a state q ∈ Zd
+ and any value

ε > 0, an interval (r, r+ε) can be constructed which contains π(q). This result is an easy consequence of

a powerful result obtained by Meyn and Tweedie [34], which obtains exponential bounds on the mixing

rate of Markov chains, using Lyapunov function methods. We note that such approximation result

cannot be obtained for large deviations rates since, as we mentioned above, even determining whether

a given large deviation rate is finite is an undecidable problem.

The remainder of the paper is organized as follows. In the following section we describe our model

– constrained homogeneous random walk in Zd
+ and introduce Lyapunov functions. In Section 4 we

introduce a counter machine – a modification of a Turing machine which for us is the main tool for

establishing the undecidability results. In Section 5 we prove that computing a stationary distribution

of a positive recurrent random walk in Zd
+ is an undecidable problem. In Section 6 we prove that

computing large deviations rates for positive recurrent random walks in Zd
+ is an undecidable problem

as well. Extension of these results to queueing systems is established in Section 7. In Section 8 we

show how stationary distribution can be computed with a two-sided error using a Lyapunov function

technique and Meyn and Tweedie results from [34]. Conclusions and open problems are discussed in

Section 9.

3 Constrained homogeneous random walk in Zd
+. Lyapunov function

and stationary distribution

Let Zd
+ denote the space of d-dimensional vectors with nonnegative integer components. Our model is

a random walk Q(t), t = 0, 1, 2, . . . which has Zd
+ as a state-space. For each Λ ⊂ {1, 2, . . . , d} let ZΛ

denote the corresponding face:

ZΛ = {(z1, z2, . . . , zd) ∈ Zd
+ : zi > 0 for i ∈ Λ, zi = 0 for i /∈ Λ}.
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The transition probabilities are face-homogeneous – they depend entirely on the face the random walk is

currently on. In addition the transition vectors have at most unit length in max norm. In other words,

for each Λ ⊂ {1, 2, . . . , d} and each ∆ ∈ {−1, 0, 1}d a certain value p(Λ,∆) (the transition probability)

is defined. These values satisfy
∑

∆∈{−1,0,1}d

p(Λ,∆) = 1

for each Λ and p(Λ,∆) = 0 if for some i /∈ Λ,∆i = −1. The latter condition is simply a consistency

condition which prevents transitions into states with negative components. Given a current state Q(t) ∈
Zd

+ of the random walk, the next state is chosen to be Q(t)+∆ with probability p(Λ,∆), if the state Q(t)

belongs to the face ZΛ. We will also write p(q, q′) instead of p(Λ,∆) if the state q ∈ ZΛ and q′− q = ∆.

We denote by p(t)(q, q′) the t-step transition probabilities: Prob{Q(t) = q′|Q(0) = q}. The model

above will be referred to as constrained homogeneous random walk in Zd
+. We will say that our walk

is deterministic if p(Λ,∆) ∈ {0, 1} for all Λ and ∆. In other words, the transition vector ∆ = ∆(Λ)

deterministically depends on the face. The set of parameters p(Λ,∆) is finite, and, in particular, it

contains 6d elements corresponding to 2d faces ZΛ and 3d transition vectors ∆ per face (with some

transitions occurring with zero probability). Let ||Q(t)|| denote L1 norm. That is ||Q(t)|| = ∑
i≤d Qi(t).

For any state q ∈ Zd
+ and subset X ⊂ Zd

+, let T = T (q,X) denote the first hitting time for the set

X when the initial state of the walk is q, including the possibility T = ∞. That is

T = min{t : Q(t) ∈ X|Q(0) = q}. (1)

The following definition is standard in the theory or infinite Markov chains.

Definition 1 A homogeneous random walk is defined to be positive recurrent or stable if there exist

some C > 0 such that the random walk visits the set XC ≡ {z ∈ Zd
+ :

∑d
i=1 zi ≤ C} infinitely often with

probability one, and E[T (q,XC)] is finite for all q ∈ Zd
+.

Stability of a constrained homogeneous random walk Q(t) can be checked, for example, by con-

structing a suitable Lyapunov function.

Definition 2 A function Φ : Zd
+ → �+ is defined to be a Lyapunov function with drift −γ < 0 and

exception set B ⊂ Zd
+ if |B| < ∞ and for every state q /∈ B

E[Φ(Q(t+ 1)|Q(t) = q]− Φ(q) =
∑

q∈Zd
+

Φ(q′)p(q, q′)− Φ(q) ≤ −γ. (2)
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In other words, the expected value of the Lyapunov function should decrease at each time step,

whenever the random walk is outside of the exception set. Existence of a Lyapunov function under some

additional assumptions implies stability. For a comprehensive survey of Lyapunov function methods

see Meyn and Tweedie [33]. Various forms of Lyapunov functions, specifically piece-wise linear and

quadratic Lyapunov functions were used to prove stability of random walks corresponding to Markovian

queueing networks [2], [5], [21], [23], [24], [25]. In some simple cases even linear Lyapunov function of

the form Φ(q) =
∑d

i=1 wiqi with wi ≥ 0 can prove stability of a constrained homogeneous random walk.

It is easy to see that a linear function Φ(q) = wT · q is a Lyapunov function if and only if for some γ > 0

and every nonempty set Λ ⊂ {1, 2, . . . , d} the following inequality holds

E[wTQ(t+ 1)− wTQ(t)|Q(t) ∈ ZΛ] =
∑

∆∈{−1,0,1}d

(wT∆)p(Λ,∆) ≤ −γ. (3)

The existence of a linear Lyapunov function is only sufficient but not necessary for stability of the

constrained random walk. It is also useful sometimes to consider a geometric Lyapunov function, defined

as follows.

Definition 3 A function Φg : Zd
+ → [1,+∞) is defined to be a geometric Lyapunov function with drift

0 < γg < 1 and exception set B ⊂ Zd
+ if |B| < ∞ and for every state q /∈ B

E[Φg(Q(t+ 1)|Q(t) = q]
Φg(q)

=
∑

q∈Zd
+

Φg(q′)
Φg(q)

p(q, q′) ≤ γg < 1. (4)

A geometric Lyapunov function is used, for example in Meyn and Tweedie [34], to prove exponentially

fast mixing of a Markov chain which admits a geometric Lyapunov function. The precise statement of

this result will be given below in Section 8. If the condition (3) is met for some w and γ, then a function

of the form Φg(q) = exp(δwT · q) is a geometric Lyapunov function for a suitable value of δ > 0.

Throughout the paper we will assume all the states q communicate with the state 0, that is p(t)(q, 0) >

0 for some t ≥ 0. As a consequence, the random walk is irreducible. If it is in addition positive recurrent,

then it possesses a unique stationary distribution π : Zd
+ → [0, 1]. Namely

∑
q∈Zd

+
π(q) = 1 and for any

state q
∑

q′∈Zd
+

π(q′)p(q′, q) = π(q) (5)

This stationary distribution is defined completely by the set of transition parameters p(Λ,∆). Com-

puting the stationary probability distribution for these walks is the main focus of this paper. It was

established by the author in [16] that checking positive recurrence of a constrained homogeneous random
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walk is an undecidable problem - no algorithm can exist to achieve this task. However, if one is lucky

to construct a Lyapunov function, for example by checking condition 3 for some nonnegative vector

w ∈ �d
+, then the random walk is in fact positive recurrent. One might be tempted to believe that in

this case the analysis of the random walk is simplified significantly. In Section 5 we show even if a lin-

ear Lyapunov function exists, computing the stationary probability distribution is still an undecidable

problem. As in the case of stability analysis, our main tool for establishing this undecidability result is

a counter machine and the halting problem defined in Section 4.

4 Counter Machines, Halting Problem and Undecidability

A counter machine (see [6], [18]) is a deterministic computing machine which is a simplified version

of a Turing machine – a general description of an algorithm working on a particular input. In his

classical work on the Halting Problem, Turing showed that certain decision problems simply cannot

have a corresponding solving algorithm, and thus are undecidable. For a definition of a Turing machine

and the Turing Halting Problem see [37]. Ever since many quite natural problems, in mathematics and

computer science were found to be undecidable. Some of the undecidability results in control theory

were obtained by reduction from a counter machine, see Blondel et al. [6]. For a survey of decidability

results in control theory area see Blondel and Tsitsiklis [7].

A counter machine is described by 2 counters R1, R2 and a finite collection of states S. Each counter

contains some nonnegative integer in its register. Depending on the current state s ∈ S and depending

on whether the content of the registers is positive or zero, the counter machine is updated as follows:

the current state s is updated to a new state s′ ∈ S and one of the counters has its number in the

register incremented by one, decremented by one or no change in the counters occurs.

Formally, a counter machine is a pair (S,Γ). S = {s0, s1, . . . , sm−1} is a finite set of states and Γ is

configuration update function Γ : S × {0, 1}2 → S × {−2,−1, 0, 1, 2}. A configuration of a counter ma-

chine is an arbitrary triplet (s, z1, z2) ∈ S×Z2
+. A configuration (s, z1, z2) is updated to a configuration

(s′, z′1, z′2) as follows. First a binary vector b = (b1, b2) is computed were bi = 1 if zi > 0 and bi = 0 if

zi = 0, i = 1, 2. If Γ(s, b) = (s′, 1), then the current state is changed from s to s′, the content of the first

counter is incremented by one and the second counter does not change: z′1 = z1 + 1, z′2 = z2. We will

also write Γ : (s, z1, z2) → (s′, z1+1, z2) and Γ : s → s′,Γ : z1 → z1+1,Γ : z2 → z2. If Γ(s, b) = (s′,−1),

then the current state becomes s′, z′1 = z1 −1, z′2 = z2. Similarly, if Γ(s, b) = (s′, 2) or Γ(s, b) = (s′,−2),

the new configuration becomes (s′, z1, z2 + 1) or (s′, z1, z2 − 1), respectively. If Γ(s, b) = (s′, 0) then the
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state is updated to s′, but the contents of the counters do not change. This definition can be extended

to the one which incorporates more than two counters, but, in most cases, such an extension is not

necessary for our purposes.

Given an initial configuration (s0, z0
1 , z

0
2) the counter machine uniquely determines subsequent con-

figurations (s1, z1
1 , z

1
2), (s

2, z2
1 , z

2
2), . . . , (s

t, zt
1, z

t
2), . . . . We fix a certain configuration (s∗, z∗1 , z∗2) and call

it a halting configuration. If this configuration is reached then the process halts and no additional

updates are executed. The following theorem establishes the undecidability of the halting property.

Theorem 1 Given a counter machine (S,Γ), initial configuration (s0, z0
1 , z

0
2) and the halting configu-

ration (s∗, z∗1 , z∗2), the problem of determining whether the halting configuration is reached in finite time

is undecidable. It remains undecidable even if the initial and the halting configurations are the same

with both counters equal to zero: s0 = s∗, z0
1 = z0

2 = z∗1 = z∗2 = 0.

The first part of this theorem is a classical result and can be founded in [17]. The restricted case of

s0 = s∗, z0
i = z∗i , i = 1, 2 can be proven similarly by extending the set of states and the set of transition

rules. It is the restricted case of the theorem which will be used in the current paper.

5 Computing the stationary probability distribution. The undecid-

ability result

Theorem 1 was used in [16] to prove that the stability of a constrained random walk in Zd
+ is undecidable.

Naturally, the problem of stability comes before the problem of computing the stationary distribution of

a stable random walk. As we mentioned in Section 3, stability can be checked sometimes by constructing

a Lyapunov function. In this section we prove our main result: even if such a Lyapunov function,

witnessing stability, is available and is provided as a part of the data parameters, computing stationary

distribution is an undecidable problem.

We now give an informal outline of the proof. The proof uses a reduction from a halting problem for

a counter machine. We embed a counter machine with initial and halting configuration (s∗, 0, 0) into

a deterministic walk in Zd
+. The state space and the transition rules of this walk are then extended in

some way that incorporates an independent Bernoulli process with some fixed parameter p. We then

show that

• If the original counter machine never returns to the initial configuration (s∗, 0, 0), then the con-

structed random walk, when started from the origin, returns into the origin in 2t + 2 steps with
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probability (1 − p)pt for t = 0, 1, 2, . . . . In particular, the expected return time to the origin is

2/(1− p).

• If the original counter machine returns to the initial configuration in T steps, then the modified

random walk returns into the origin in 2t+2 steps with probability (1− p)pt for t ≤ T − 1 and in

2T +2 steps with the remaining probability 1−∑
t≤T−1(1−p)pt = pT . In particular, the expected

return time to the origin is (2− 2pT+1)/(1− p).

The stationary probability distribution of any state is exactly the expected return time to this state.

Therefore, the stationary probability of the origin is (1 − p)/2 if the counter machine halts and is

strictly greater, if the counter machine does not halt. Since the value p is our control parameter, and

since checking whether the counter machine halts is an undecidable problem, then computing stationary

probability is undecidable as well. We now state and prove rigorously this result. As before, let π denote

the unique stationary distribution of an irreducible positive recurrent random walk. Let also 0 denote

the origin of the nonnegative lattice Zd
+.

Theorem 2 Given an irreducible positive recurrent constrained homogeneous random walk with transi-

tion probabilities p(Λ,∆) and given a rational value 0 ≤ r ≤ 1, the problem of checking whether π(0) ≤ r

is undecidable – no algorithm exists which achieves this task. The problem remains undecidable even if

a linear vector w ∈ �d
+ satisfying (3) is given as well. Namely, the problem remains undecidable, even

if a linear Lyapunov function is provided as a part of the input.

Remarks :

1. As we will show in Section 8, computing stationary probability approximately is possible if a

Lyapunov function is provided as an input. The second part of Theorem 2 states that, yet, computing

stationary probability exactly is an undecidable problem, even for a much smaller class of random walks

admitting a linear Lyapunov function.

2. The stationary distribution can in principle take non-rational values. In order to put the problem

into a framework suitable for algorithmic analysis we modified the question into the one of checking

whether π(·) ≤ r for rational values r. This is a standard method in the theory of Turing decidable

numbers, see [8].

3. A simple example where computing the stationary probability distribution is a decidable problem

is Jackson networks, [22]. For such a network with d stations the stationary probability of the state

m = (m1, . . . ,md) is given by
∏d

j=1(1−ρj)ρ
mj

j , where ρj is the traffic intensity in station j. Specifically,
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the stationary probability of the state 0 is
∏d

j=1(1 − ρj). Given any rational value 0 ≤ r ≤ 1, it is a

trivial computation to check whether this product is at least r.

Proof of Theorem 2: we start with a construction used in [16]. Namely, we embed a given counter

machine with states s0, s1, . . . , sm−1 into a deterministic walk in Zm+1
+ as follows. Without the loss of

generality, assume that s∗ = s0. Let configuration (si, z1, z2), 1 ≤ i ≤ m − 1 correspond to the state

q = (ei, z1, z2) ∈ Zm+1
+ , where ei is unit vector with 1 in i-th coordinate and zero everywhere else. Also,

let configurations (s0, z1, z2) correspond to (0, z1, z2), with zeros in first m− 1 coordinates. Specifically,

the initial and halting configuration (s0, 0, 0) corresponds to the origin 0. We now describe the set of

transition vectors ∆ = ∆(Λ). We describe it first for subsets Λ ⊂ {1, 2, . . . ,m + 1} which correspond

to an encoding of some configuration of a counter machine. Specifically, Λ ∩ {1, 2, . . . ,m − 1} = ∅
(corresponding to configurations with state s0) or Λ ∩ {1, 2, . . . ,m − 1} = {i} for some 1 ≤ i ≤
m − 1, corresponding to configurations with state si. Fix any configuration (si, z1, z2). Suppose the

corresponding update rule is Γ((si, z1, z2)) = (sj ,+1) for some 1 ≤ j ≤ m − 1. That is, the state is

changed into sj , the first counter is incremented by 1 and second counter remains unchanged. We make

the corresponding transition vector to be ∆ = ∆(Λ), where the i-th coordinate of ∆ is −1, the j-th

coordinate is +1, the m-th coordinate is +1 and all the other coordinates are zeros. It is easy to see

that if at time t, the state Q(t) corresponds to some configuration (si, z1, z2), that is Q(t) = (ei, z1, z2),

then Q(t+ 1) = Q(t) + ∆ corresponds to the configuration (sj , z1 + 1, z2) obtained by applying rule Γ.

We construct transition vectors similarly for other cases of configuration updates. In particular, if the

state si is changed to state s0, then the corresponding ∆ has −1 in the i-th coordinate and zeros in all

the coordinates 1 ≤ j ≤ m− 1, j �= i. As we will see later, if Q(t) corresponds to some configuration of

a counter machine at time t, then it does so for all the later time t′ ≥ t. Now if Q(t) belongs to some

face ZΛ which does not correspond to some configuration, then we simply set ∆(Λ) = −ei where i is the

smallest coordinate which belongs to Λ. Then at some later time t′ > t the state Q(t′) will correspond

to some configuration.

Construction above is exactly the one used in [16] to analyze stability. We now modify the con-

struction by adding two additional coordinates. Our new state at time t is thus denoted by Q̄(t) =

(Q(t), q1(t), q2(t)) ∈ Zm+3
+ . Also a parameter 0 < p < 1 is fixed. The transition rules are modified as

follows.

1. When q2(t) = 1, the first part Q(t) of the state is updated exactly as above. Also, if ||Q(t)|| > 0, in

other words, Q(t) does not represent the halting configuration (s0, 0, 0), then the value of q2(t) stays
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1 with probability p and switches to 0 with probability 1 − p. If, on the other hand ||Q(t)|| = 0

then we set q2(t + 1) = 0 with probability 1. Finally, the value of q1(t) ∈ {−2,−1, 0, 1, 2} is

selected in such a way that ||(Q(t + 1), q1(t + 1))|| = ||(Q(t), q1(t))||+ 1, where ||(Q(t), q1(t))|| =
∑m+1

i=1 Qi(t) + q1(t). It is easy to see that such a value of q1(t) always exists. For example if Q(t)

encodes (si, z1, z2), i �= 0 and the configuration is changed into (sj , z1, z2 − 1), j �= 0, then we put

q1(t) = 2.

Remark : We stipulated before that the transition vectors ∆ must belong to {−1, 0, 1}m+4 for

our constrained random walk, whereas above the value of q1(t) can change by −2 and 2. It is

easy to satisfy this constraint for q1(t) by splitting it into two coordinates q1(t), q′1(t) and making

q1(t) = q′1(t) = 1 in case q1(t) was assigned 2 before, and q1(t) = q′1(t) = −1 in case q1(t) was

assigned −2. We keep only one q1(t) for simplicity, allowing it to take values −2, 2.

2. When q2(t) = 0, we set ∆k = −1,∆i = 0, i �= k, 1 ≤ i ≤ m+ 3, where k is the smallest coordinate

such that Q̄k(t) > 0. In particular, q2(t) stays equal to 0. If Q(t) = q1(t) = 0, (in particular

Q(t) encodes the initial-terminal configuration (s0, 0, 0)) then Q(t) and q1(t) are updated as in

the case q2(t) = 1 above. Also q2(t) in this case is switched to 1 with probability p and stays 0

with probability 1− p.

Note, that the only stochastic part in our random walk is the last component q2(t).

Proposition 1 The constructed random walk Q̄(t) is irreducible and positive recurrent with the unique

stationary distribution π. Moreover,

1. If the counter machine with the initial configuration (s0, 0, 0) does not halt, then the random walk

Q̄(t) with the initial state Q̄(0) = 0 returns to the origin in 2t+2 steps with probability (1− p)pt,

for t = 0, 1, 2, . . . . As a result, the expected recurrence time of the state 0 is 1/π(0) = 2/(1− p).

2. If the counter machine with the initial configuration (s0, 0, 0) halts in T ≥ 1 steps, then the random

walk Q̄(t) with the initial state Q̄(0) = 0 returns to the origin in 2 + 2t steps with probability

(1 − p)pt for t < T , and in 2 + 2T steps with the remaining probability pT . As a result, the

expected recurrence time of the state 0 is 1/π(0) = (2− 2pT+1)/(1− p).

3. For any C ≥ 2/(1− p) the function
∑m+1

i=1 Qi + q1(t) +Cq2(t) is a linear Lyapunov function with

drift −γ = −1 and an exception set B = {0}.
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We first show that the proposition above implies the theorem. Suppose, we had an algorithm A
which given an irreducible constrained random walk Q(t), with a linear Lyapunov function wTQ(t)

and given a rational value 0 ≤ r ≤ 1 could determine whether the unique stationary distribution π

satisfies π(0) ≤ r. We take a counter machine and construct a random walk Q̄(t) as described above.

Proposition 1 implies that this walk is a valid input for the algorithm A. We use A to determine

whether π(0) ≤ r ≡ (1− p)/2. From Proposition 1, this is the case if and only if the underlying counter

machine does not halt. In this fashion, we obtain an algorithm for checking halting property for counter

machines. This is a contradiction to Theorem 1. ✷

Proof of Proposition 1: Suppose the underlying counter machine does not halt. Let us trace the

dynamics of our random walk Q̄(t) starting from Q̄(0) = 0. Initially, by applying rule 2, it moves into

some state (Q(1), 0, 1) with probability p or state (Q(1), 0, 0) with probability 1 − p. An independent

Bernoulli process for q2(t) with parameter p is continued in the first case. Suppose this process succeeds

exactly t ≥ 0 times (including the transition from initial state 0), which occurs with probability (1−p)pt.

Then, applying rule 1, at times t and t + 1 we have states (Q(t), q1(t), 1), (Q(t + 1), q1(t + 1), 0) with

||Q(t) + q1(t)|| = t, ||Q(t+ 1) + q1(t+ 1)|| = t+ 1. At this moment rule 2 becomes applicable. Since at

each step the norm ||Q̄(t)|| decreases exactly by one, the origin is reached at time (t+ 1) + (t+ 1). We

conclude that the return time is 2 + 2t with probability (1− p)pt, t = 0, 1, 2, . . . . The expected return

time is then 2/(1− p) and the stationary probability of the state 0 is (1− p)/2.

Suppose, now, the underlying counter machine reaches the terminal state (s0, 0, 0) in exactly T ≥ 1

steps. Suppose also the Bernoulli process for q2(t) succeeds exactly t ≥ 0 times for t < T . Then,

exactly as above, the origin is reached in 2 + 2t steps and this occurs with probability (1 − p)pt. If,

however, by the time T the Bernoulli process does not fail, which occurs with probability pT , then the

state Q̄(T ) = (Q(T ), q1(t), 1) = (0m+1, q1(t), 1) is reached at time T , where 0m+1 denotes a m + 1-

dimensional zero vector. By the choice of q1(t) in rule 1, q1(T ) = T . At time T + 1, by rule 1, we have

a state Q̄(T + 1) = (0m+2, T + 1, 0) and rule 2 applies. At time (T + 1) + (T + 1) the origin is reached.

We conclude that the random walk returns to the origin in 2 + 2T steps. Combining, the expected

return time to the origin is then (2− 2pT+1)/(1− p), if the counter machine halts in T steps, and the

stationary probability of the state 0 is (1− p)/(2− 2pT+1).

To complete the proof of the proposition, we analyze the expected change of the function
∑m+1

i=1 Qi+

q1(t)+Cq2(t). When q2(t) = 0 and Q̄(t) �= 0, the sum decreases deterministically by 1. When q2(t) = 1,

the value of
∑m+1

i=1 Qi + q1(t) increases deterministically by 1, and the value of Cq2(t) stays the same
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with probability p or decreases by C with probability 1− p. Therefore, the expected change of the sum

is 1− C(1− p). When C ≥ 2/(1− p), the expected change is at most −1. ✷

An important implication of Theorem 2 is that it is impossible to express the stationary distribution

of a positive recurrent random walk Q(t) as a function of the parameters p(Λ,∆) via some computable

function f(·). For example, the stationary distribution cannot be expressed as roots of some polynomial

equations with rational coefficient, as inequalities x ≤ r can be checked for any root x of such a

polynomial and any rational value r. This is a startling contrast to a simple expression
∏
(1 − ρj)ρ

nj

j

corresponding to a stationary distribution of a Jackson network.

6 Large Deviation Rates. The undecidability result

In this section we discuss the question of computing large deviation rates for our model. Specifically, we

focus on computing large deviation rates for the stationary distribution π of our random walk Q(t) in

Zd
+. Let � and �+ denote the set of real values and the set of nonnegative real values, respectively. For

any x ∈ � let �x� denote largest integer not bigger than x, and for any x ∈ �d let �x� = (�x1�, . . . , �xd�).
We say that a function L : �d

+ → �+ ∪ {∞} is a large deviation rate function for a given irreducible

positive recurrent random walk Q(t) in Zd
+ if for any vector v ∈ �d

+, the stationary distribution π

satisfies

lim
n→∞

log(π(�vn�))
n

= L(v), (6)

In other words, the stationary probability of being in state �vn� is asymptotically exp(−L(v)n)

for large n. For results on large deviations for specific types of constrained random walks in Zd
+ see

[20]. There are numerous works on large deviation in the context of queueing systems, see Shwartz

and Weiss [36] for a survey. Specifically, Kurkova and Suhov [26] study large deviation rates for a two

dimensional random walk corresponding to join-the-shortest queue. The analysis is quite intricate and

uses complex-analytic techniques developed by Malyshev [28], [27], [29] back in 70’s. To the best of our

knowledge, the existence of the large deviations limits (6) is not fully proved for general constrained

homogeneous random walks Q(t) in Zd
+. One can instead consider limits

L−(v) ≡ lim inf
n→∞

log(π(�vn�))
n

, L+(v) ≡ lim sup
n→∞

log(π(�vn�))
n

. (7)
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The goal of the present section is to prove that computing the large deviation rate function L(v) is

an undecidable problem, even if the walk is known to be a priori positive recurrent via, for example,

existence of a linear Lyapunov function, and even if the large deviation limit function L(v) is known to

exist. The following is the main result of this section.

Theorem 3 Given an irreducible positive recurrent constrained homogeneous random walk, given a

rational value 0 ≤ r ≤ 1 and a vector v ∈ Zd
+, the problems of determining whether L−(v) ≤ r, L+(v) ≤ r

are undecidable.

Remark : As we will see below, the large deviations limit function L(v) = L−(v) = L+(v) exists

for the subclass of random walks we consider.

Proof : The proof is again based on reduction from a halting problem for a counter machine. Given

a counter machine with m states consider the extended m+3-dimensional random walk Q̄(t) constructed

in the proof of Theorem 2. We extend it even further by adding an additional coordinate (Q̄(t), q3(t)).

Recall, that the rules for updating q1(t) were such that ||Q(t)|| + q1(t) = t as long as q2(t′) = 1 for

1 ≤ t′ ≤ t. Construct the rules for updating q3(t) as follows. If q2(t) = 1, then q3(t + 1) = q3(t) + 1.

Also, if Q(t) = q1(t) = q2(t) = 0 then again q3(t+1) = q3(t)+ 1. In other words, as long as the random

walk starts from the origin and as long as q2(t) remains equal to 1, q3(t) = ||Q(t)|| + q1(t) = t. Once

q2(t) becomes zero, the value of q3(t) stays the same as long as Q̄(t) �= 0 and decreases by one when

Q̄(t) becomes zero, and continues decreasing until it itself becomes zero.

Let v = (0, . . . , 0, 1) be an m + 4 dimensional vector with the last coordinate equal to unity and

all other coordinates equal to zero. We now analyze the large deviation rate L(v) for this vector with

respect to the unique stationary distribution π. Specifically, we show that the value of L(v) depends on

whether the counter machine halts. Indeed, if the counter machine halts in T steps, then the value of

||Q(t)|| + q1(t) + q2(t) + q3(t) is bounded by 2T + 1 and, as a result, the stationary probability of the

state nv, for large n becomes zero. That is L(v) = +∞. Now we show that if the counter machine does

not halt, then L(v) = log p. We compute π(nv) by computing the expected return time to state nv,

when the random walk is in this state at time 0. Thus, we have q3(0) = n,Q(0) = q1(0) = q2(0) = 0.

By the update rules of q3, it decreases by one at each time step and at time t = n it becomes zero. All

the other components remain equal to zero. Beginning from this time t = n, the random walks keeps

returning to the origin 0 after some random time intervals. It is easy to see that the probability that the

state nv is visited in between any given two visits to the origin is exactly pn – the probability that the
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Bernoulli process survives at least n steps. Let R1, R2, . . . denote the random time intervals between

successive visits to the origin. For a fixed m ≥ 1 the probability that Rm is the first interval during

which vn is visited is pn[1− pn]m−1,m = 1, 2, . . ., and the expected number of intervals Rm before state

nv is visited for the first time is (pn)−1. Let In denote the indicator function for the event ”state vn

is visited between visits to the origin”. In particular, Prob{In} = pn. We now compute E[Rm|In] and

E[Rm|Īn]. Note, that the time n which takes to get from nv to the origin plus the expected time it

takes to get from the origin to nv, conditioned on In is exactly E[Rm|In]. We then obtain that the

expected recurrence time of the state nv is (pn)−1E[Rm|Īn] + E[Rm|In].

To compute E[Rm|·], recall from Proposition 1 that

E[Rm] = E[Rm|In]Prob{In}+ E[Rm|Īn]Prob{Īn} = 2/(1− p). (8)

If the Bernoulli process survives t ≥ n steps then Rm = 3t+ 1 steps. Then

E[Rm|In] =
E[RmIn]
Prob{In} =

∑
t≥n(1− p)pt(3t+ 1)

pn
=

(4− p)pn

pn
= 4− p (9)

Then we obtain from (8)

E[Rm|Īn] =
2/(1− p)− (4− p)pn

1− pn

We conclude that the expected return time to the state nv is

1
π(nv)

= (pn)−1 2/(1− p)− (4− p)pn

1− pn
+ (4− p),

and

lim
n→∞

log(π(vn))
n

= log p

as we claimed. We see that the value of L(v) depends on whether the underlying counter machine halts

or not. Specifically, by taking any rational value r > log p, we conclude that the problem of checking

whether L(v) ≤ r is undecidable, by appealing again to Theorem 1. ✷

Remarks :

1. Note that we cannot determine the value of L(v) even approximately, as we cannot distinguish

between the cases L(v) < +∞ and L(v) = +∞. Contrast this with the results of Section 8.

2. We would not need extra coordinate q3(t) if we were interested in large deviation rate

limn→∞ π(||Q̄(t)||)/n of the stationary distribution of the norm of the state. The analysis would be

identical to the one above.
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7 Application to queueing systems

The results of the previous sections have implications to a certain type of queueing systems. A queueing

system consisting of a single station processor and operating under a certain class of generalized priority

policies was introduced in [16]. It was shown that, similar to constrained random walks, determining

stability for these queueing systems is an undecidable problem. In this section we consider the same class

of system and show that computing stationary probabilities and large deviation rates are undecidable

problems as well.

We start with the description of the system. Consider a single station queueing system Q consisting

of a single server and I types of parts arriving externally. The parts corresponding to type i = 1, 2, . . . , I

visit the station Ji times. On each visit each part must receive a service before proceeding to the next

visit. Only one part among all the types can receive service at a time. While waiting for service for the

j-th time, the type i part is stored in buffer Bij . We denote by n the total number of buffers n =
∑I

i=1 Ji.

The service time for each part in each visit is assumed to be equal to unity. Each part can arrive into

the system only in times which are multiples of some fixed integer value M . Specifically, certain values

0 ≤ pi ≤ 1 are fixed for each type i. For each type i and each m = 0, 1, 2, . . . , exactly one part arrives

at time mM with probability pi and no part arrives with probability 1−pi, independently for all m and

all other types. In particular, interarrival times are geometrically distributed with expected interarrival

time equal to 1/λi = M/pi, where, correspondingly, λi is the arrival rate for type i.

A scheduling policy u is defined to be a generalized priority policy if it operates in the following

manner. A function u : {0, 1}n → {0, 1, 2, . . . , n} is fixed. At each time t = 0, 1, 2, . . . the scheduler looks

at the system and computes the binary vector b = (b1, b2, . . . , bn) ∈ {0, 1}n, where bi = 1 if there are

parts in the i-th buffer and bi = 0, otherwise. Then the value k = u(b), 0 ≤ k ≤ n is computed. If k > 0

then the station processes a part in the k-th buffer. If k = 0 the server idles. The map u is assumed

to satisfy the natural consistency condition: u(b) = k > 0 only when bk = 1. That is, processing can

be done in buffer k only when there are jobs in buffer k. Note that the generalized priority scheduling

policy is defined in finitely many terms and is completely state dependent - the scheduling decision at

time t does not depend on the state of the queueing system at times t′ < t. A usual priority policy

corresponds to the case when there is some permutation θ of the buffers {1, 2, . . . , n} and u(b) = k

if and only if bk = 1 and bi = 0 for all i such that θ(i) < θ(k). In words, priority scheduling policy

processes parts in buffers with lowest value (highest priority) θ, which still has parts. Once we specify

the queueing system Q and some generalized priority policy u we have specified some discrete time
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discrete space stochastic process. This process considered in times t = mM,m = 0, 1, 2, . . . is in fact a

Markov chain.

Given a generalized priority policy u, a pair (Q, u) is defined to be stable if there exists a finite

number C > 0 such that the total number of parts in the queueing system Q at time t does not exceed

C for infinitely many t with probability 1. In other words, the underlying Markov chain is positive

recurrent. In this case there exists at least one stationary probability distribution. It is known that the

necessary condition for stability is the following load condition

ρ ≡
I∑

i=1

Ji∑
j=1

λi < 1. (10)

This condition is also sufficient for stability if the policy is work conserving, which does not apply

here, since we allow idling u(b) = 0. We assume that the load condition above holds. We define a

Lyapunov function and large deviations rates L(v) for this queueing system in the same way we did for

constrained homogeneous random walks in Section 6. As for constrained random walks, we now show

that computing stationary probability distributions and computing large deviations rates for queueing

systems operating under generalized priority policies is not possible. As for constrained random walks,

we show that these problems are impossible to solve even if the underlying Markov chain is known to be

irreducible and a linear Lyapunov function is available. Let π denote the unique stationary distribution

of a given irreducible positive recurrent queueing system (Q, u). Let also 0 denote the state of the

system with all buffers empty.

Theorem 4 Given a queueing system Q operating under some generalized priority policy u and given

a rational value 0 ≤ r ≤ 1, the problem of determining whether π(0) ≤ r is undecidable. Likewise, given

a vector v, the problem of determining whether L(v) ≤ r is undecidable.

Proof : A reduction from a counter machine to a queueing system operating under some generalized

priority policy was constructed in [16]. This reduction had the following features. Given a counter

machine with m states, the corresponding queueing system had 24 buffers and I = 3m + 7 arrival

streams. There is a one-to-one correspondence between the configurations of the counter machine and

states of the queueing system. In particular, if a counter machine has configuration (si, z1, z2) at time

t, then the queueing system at time (3m + 26)t is in a state which corresponds to this configuration

in some well-defined way. We omit the details of this reduction and instead refer the reader to [16].

We now modify the reduction to incorporate the extended random walk Q̄(t) = (Q(t), q1(t), q2(t)) that
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was constructed in Section 5. Recall, that the part Q(t) of this walk represented exactly m states and

the two counters of the underlying counter machine. We add two additional streams of arrivals which

correspond to coordinates q1(t) and q2(t). We also construct additional buffers for q1 and q2 exactly

in the way we did in [16] for counters z1, z2. The interarrival times for all the arrival streams, except

for the stream corresponding to q2, are deterministic and equal to some integer M which is selected to

be bigger than the number of buffers. For the stream corresponding to q2, at most one part arrives at

times Mt, t = 0, 1, 2, . . . independently for all t, and the probability that a part does arrive at time t is

equal to p, where p is the parameter selected in construction of the random walk Q̄(t). Thus, pi = p for

the arrival streams corresponding to q2 and pi = 1 for all the other arrival streams. Finally, we modify

the rules of the generalized priority policy to incorporate the rules by which the values of q1(t), q2(t) are

updated. This can be done in a way similar to the rules corresponding to z1, z2 in [16]. We thus obtain

a system which mimics the dynamics of Q̄(t) at times Mt, t = 0, 1, 2, . . . . A linear Lyapunov function

can be constructed again, provided that the parameter p is sufficiently small. Arguing as in the proof

of Theorem 2, we show that the problem of checking whether π(0) ≤ r is undecidable. Similarly, we

show that the problem of checking whether L(v) ≤ r is undecidable, where v is the unit vector with

one in the coordinate corresponding to q2(t) and zero in all the other coordinates. For the latter case of

computing large deviations rates, we add an additional arrival stream and buffers to represent the part

q3. ✷

8 Computing stationary probabilities approximately using a Lya-

punov function

In this section we show that, despite the results of Section 5, computing the stationary probability

is possible, if we are willing to tolerate some two-sided error and a computable geometric Lyapunov

function Φg exists. Our result is a simple consequence of the following result established by Meyn and

Tweedie [34], which shows that infinite state Markov chain mixes exponentially fast when a geometric

Lyapunov function can be constructed. The following is Theorem 2.3 proven in [34].

Theorem 5 Given an irreducible Markov chain Q(t), suppose Φg is a geometric Lyapunov function

with a geometric drift γg < 1 and the exception set B. Suppose also that π is the unique stationary

distribution. Then, there exist constants R > 0, 0 < ρ < 1 such that for any state x ∈ X and any

function φ : X → � satisfying φ(x) ≤ Φ(x),∀ x ∈ X , the following bound holds
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∣∣∣
∑
y∈X

φ(y)
(
Prob{Q(t) = y|Q(0) = x} − π(y)

)∣∣∣ ≤ Φg(x)Rρt. (11)

The constants R, ρ are computable functions which depend on γg,maxx∈B Φg(x) and

νΦ
g = max

x,x′∈Zd
+

{Φg(x′)
Φg(x)

: p(x, x′) > 0}, pBmin ≡ min
x,y∈B

p(x, y). (12)

Exact formulas for computing R, ρ are provided in [34]. They are quite lengthy and we do not repeat

them here. These formulas give meaningful bounds only in case 0 < γg < 1; νΦ
g < ∞; pBmin > 0.

Given a fixed state x0 ∈ Zd
+, consider the function φ(x0) = 1/Φg(x0), φ(x) = 0, x �= x0. This

function satisfies the conditions of the theorem and one obtains a computable bound on the difference

|Prob{Q(t) = x0|Q(0) = x}−π(x0)|, which decreases exponentially fast with t. This bound can be used

for computing stationary probability distribution π.

Theorem 6 Given a constrained random walk Q(t) in Zd
+, given a state x0 ∈ Zd

+ and an arbitrary value

ε > 0, under the conditions of Theorem 5, there exists an computable value x̂ which satisfies π(x) ∈
[x̂ − ε, x̂ + ε]. In other words, the stationary probability of the state x0 can be computed approximately

with an arbitrary degree of accuracy.

Proof : The proof is a simple consequence of Theorem 5. We fix an arbitrary initial state Q(0),

say Q(0) = 0. Compute the values R, ρ, 1/Φg(x0). Select t large enough, so that Φg(Q(0))Rρt < ε.

Compute the transient probability Q(t) = x0 conditioned on Q(0) = 0. This can be done by direct

calculation since t is finite and from any state there are only finitely many neighboring states that can

be entered with positive probability. The value Prob{Q(t) = x0|Q(0) = 0} can be taken as x̂, using

inequality (11) and by the choice of t. ✷

As we mentioned above, a similar result cannot be established for large deviations rates L(v), since

the value of L(v) changes between log p and +∞ depending on whether the underlying counter machine

halts or not. Therefore, computing the value of L(v) even approximately still is an undecidable problem.

9 Conclusions

We considered in this paper the problems of computing stationary probability distributions and large

deviations rates for constrained homogeneous random walks in Zd
+. Both problems were shown to be

undecidable – no algorithmic procedure for solving these problems can exist. An implication of these
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results is that no useful formulas for computing these quantities, for example along the lines of formulas

for product form networks, can exist. For the problems of computing stationary probabilities, we showed

that an approximate computation is possible with arbitrary degree of accuracy if a suitable geometric

Lyapunov function can be constructed. Yet the problem of computing large deviation rates remains to

be undecidable even in approximation sense as even checking whether a large deviation rate along a

given vector is finite or not, is an undecidable problems.

We conjecture that these problems remain to be undecidable in more restrictive and interesting class

of Markov chains corresponding to multiclass queueing networks operating under more conventional

scheduling policies like First-In-First-Out or priority polices.
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