
RC22613 (W0210-193) October 29, 2002
Computer Science

IBM Research Report

Pervasive 3D Viewing for Product Data Management

Bruce D'Amora, Fausto Bernardini
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

modification to a part. Saving and

Abstract

A 3D viewer designed for mechanical CAD
application scenarios is presented. We designed
the viewer for low memory and processor speed
handheld devices such as the Pocket PC. In this
paper we describe the motivation for such an
application. We developed a software 3D rendering
pipeline to support the application. We elaborate
on the design decisions made to maximize
performance and image quality on resource
constrained devices. We describe implementation
details that should facilitate the readers
understanding of the performance issues resolved.
Finally, we include thoughts about future technical
developments needed to extend the usefulness of
this application within Product Life cycle
Management (PLM) and other application
segments.

Keywords

Product Data Management (PDM), Product Life
cycle Managment (PLM), Mechanical CAD
(MCAD),Personal Digital Assistant (PDA)

Introduction

Over the last several years there have been
significant advances in mobile computing
platforms. Handheld devices such as cellular
phones and Personal Digital Assistants (PDAs)
have become practically ubiquitous. With
innovations in processor, power management, and

wireless technology, handheld platforms will be
able to support a greater variety of applications.

As PDAs become smaller, more powerful, and
less expensive, applications previously reserved for
workstation, desktop, and laptop systems are
becoming available on these more mobile compute
platforms. Existing applications are not only being
modified to accommodate the resource constraints
of handheld devices, but new applications are
being designed specifically to meet the mobility
requirements of a PDA user. One industry
segment that provides an opportunity for such
applications is manufacturing.

Mechanical Computer-aided Design (MCAD)
applications traditionally focus on the design and
analysis phases of the production process. These
applications typically require powerful workstations
with large storage systems and high performance
3D graphics adapters. Other solutions to this
problem include server side rendering and
transmission of video streams to the PDA via
wireless as discussed by Woodward et al [1]. We
have provided a solution for users who require
access to MCAD 3D models during stages of the
manufacturing process where use of design
workstations is impractical or limited. In this
scenario, a user at a remote manufacturing
location requires access to an MCAD drawing of a
specific part. The user can reference this part with
the PDA 3D Viewer and annotate with customer
feedback or speculative design changes (Figure 1).
 The transfer of data from a parts database can be
accomplished via wireless or direct
synchronization. Unlike other handheld 3D Viewing

software, e.g. ParallelGraphics
Cortona™, AutoCAD PocketCAD™,
our system utilizes a server side
application during download to
transcode the VRML representation
of an MCAD 3D model to a highly
optimized data format appropriate to
PDA devices. The capability of
interaction with and annotation of a
digital model, allows the user to
capture more meaningful feedback
than is possible without a visual
reference. The necessity to orient the
models to specific views is invaluable
in describing a

Pervasive 3D Viewing for Product Data Management

Bruce D’Amora and Fausto Bernardini

1

Figure 1 a.) text dialog b.) annotated model

restoring annotations with specific 3D model views
provides a mechanism to capture multiple views
and annotations in a single file that can be
transferred to the server for access by the
engineer/designer. Another challenge was to define
a useful set of rendering capabilities and
interactions for an MCAD application and develop
it for a resource constrained device without
sacrificing performance or reducing image quality.
Also, when designing such an application, it is
crucial to adequately address restrictions in user
interface specifically in the areas of user input, i.e.
lack of keyboard and mouse/tablet devices. In the
remainder of this paper, we will attempt to
demonstrate that with certain design decisions and
careful implementation, an application for mobile
users requiring 3D MCAD viewing and annotation
capabilities can perform well on resource
constrained handheld devices.

Architecture

The 3D viewer we have prototyped is written in
C/C++ and is optimized to execute on Pocket PC
handheld devices. We created a Transcoder that
converts VRML 2.0 files into a proprietary binary
format. The Transcoder compresses geometric and
image data such as textures [2] to minimize
storage requirements for 3D models on the PDA
device. The viewer parses transcoded VRML files
and applies geometric transformations and scan
conversion to render triangles and lines to a
memory color buffer which is then copied to the

devices framebuffer (Figure 2). The Transcoder
includes an API so it can be integrated into an
application or run as a stand alone application on a
server. We have added user interface the enables
the user to manipulate the on screen models via
the stylus or PDA buttons.

In an effort to not only enable a platform for PDM
applications, but to provide general API for
addressing various 3D application segments, we
have defined and implemented a set of low-level 3D
functions which have been packaged into a shared

library written entirely in C. We have also included
an API packaged as a shared library for creating
and maintaining a scene graph representing the
graphics database constructed from the
transcoded VRML data file. The graph is
composed of transform and shape nodes. Each
shape node contains references to indexed face
sets, normal and texture coordinate buffers. We
have included an additional appearance field in
each shape node that contains information about
textures, material properties, and lighting. During
traversal of the scene graph, function entry points
in the low-level 3D API are called to set rendering
state and geometry . All data is passed via
pointers to avoid excessive duplication and

processing of data via extraneous copy operations.
The inset shows an example of the API for the
low-level rendering library as well as the scene
graph.

The rendering pipeline renders lit, textured, and
Gouraud-shaded triangles and lines. Geometry is
projected via orthographic or perspective projection
(Figure 3). The renderer supports multiple attribute
binding types: color per primitive, color per face,
color per vertex, color per corner, normal per face,
normal per vertex, normal per corner, texture per
vertex, and texture per corner. Figure 4 shows
some of the various attribute bindings supported.
We have implemented this via “specialty”
rasterizers that are loaded based on changes in
the attribute state of the geometry being rendered.
The state machine approach has been used before
in other 3D APIs such as OpenGL [3]. Although
this increases code size of libraries - a potential
impact to model storage on PDAs - the
performance increase from eliminating multiple
branches within inner loops justifies this design
decision. In an effort to minimize floating point
operations which are particularly slow on Pocket
PC devices that employ emulation libraries, we
have minimized the amount of floating point in the
rendering pipeline. Specifically, we have only
maintained individual transformation matrices in
floating point until they are concatenated at which

2

Figure 2 Architecture

Viewer

Scenegraph API

Transcoder

Optimization

P3D Output

VRML
parserApplication

Application

Rendering DLL

Annotation
API

View
API

Scenegraph
API

Server PDA

Figure 3 a.) Orthographic b.) Perspective

time they are converted to short integers. The
vertex, color, and texture coordinate data is stored
and maintained as short or unsigned short integer
throughout the rendering process. The Phong
lighting equation is applied for directional diffuse
lighting and forcing symmetrical view scaling
allows us to update lighting by applying the
transpose of the rotation matrix to the light vector
[4]. In order to provide functionality particularly
useful to the MCAD viewing applications, We have
included annotation, save/restore view, and a
select capability. The goal was to include support
for display and interaction with digital mockups
while at a remote customer location. . We added
function that allows the user to select a specific
part or area of the drawing and create a short text
label to be displayed with the drawing as well as a
more detailed comment . This textual information
along with the current view of the 3D model can be
stored in a binary file for later viewing or transfer to
a server via internet or USB synchronization. We
have provided a class library for adding, deleting,
modifying, saving, and restoring this information.
User interaction is affected by the lack of a 2 or 3
button mouse on PDAs. We chose to address
this difference with desktop platforms by
designating screen areas for viewing
transformations such as rotation, scaling, and
translation.

Implementation

Geometry Pipeline

In creating the prototype viewer, we encountered
several technical and usability challenges. First
and foremost was the memory sizes of the PDA
devices. Pocket PC devices typically include 32 or
64MB of memory for storage of data and
applications. This can be a challenge for storage of
MCAD drawings that typically represent multiple
parts. We alleviated this problem by creating the

Transcoder that converted VRML files into
a compact binary representation using
signed and unsigned short integer data
types rather than floating point data. The
use of short integer also reflects the need
to eliminate as much floating point
computation as possible since native
floating point support is not available on the
Pocket PC processors. The geometry
pipeline maintains separate matrices for
model/view and projection transforms in
floating point, but converts the final
concatenated transformation to short
integer before applying to vertex buffers.
This was done to minimize transformation

error and maximize performance. A more
significant problem that we found to directly effect
rendering performance was the size of the
instruction and data cache. The Pocket PC
processors we tested on had 16KB instruction and
data caches. Vertex data included x, y, z, r, g, b
values each being represented with 16-bit signed
integer totaling 12 bytes per vertex. Geometry
buffers with more than 1,365 vertices would
overflow the data cache (assuming that no local
data was being stored). 3D MCAD models often
contain hundreds of thousands of triangles which
would present a problem when processing data
buffers. In order to accommodate this cache
memory limitation, we organized our data into
buffers that fit in the cache and organized our code
to render all the triangles in a buffer before
processing the next buffer.

 Rasterization

Pocket PC devices currently have no 3D
acceleration. It was necessary to create an
optimized triangle scan converter. Performance
was the primary goal. Rather than use a parallel
polygon rasterization algorithm [5] more commonly
found in current hardware implementations, we
decided on a scan line approach. This approach
has the advantage of only processing pixels within
the boundary edges of the triangle. Also, parallel
polygon rasterization algorithms are optimal for
multiple rendering pipeline architectures. We were
utilizing a single threaded uniprocessor platform.
We used a modified Bresenham [6] algorithm to
compute polygon edge intersections [7]. This
approach was incremental and minimized divides
to one per edge. Sub-pixel accuracy was achieved
by shift scaling all vertex attributes during
geometry processing and then re-scaling before
using in color, texture, or Z-buffer lookups. We
avoided inner loop branching by creating fragment
processors for each attribute binding type: color
per primitive, color per face, color per vertex, color

3

Figure 4 a.) normal per vertex b.) color per corner c.) texture per
corner

per corner, normal per face, normal per vertex,
normal per corner, texture per vertex, and texture
per corner.

Results

We are able to achieve polygon
rendering rates of 200K triangles/sec
for unlit, untextured models. If lighting
is enabled performance decreases on
average by 25%. Performance
bottlenecks differ depending on several
factors including the vertex attribute
binding and the size of the triangles
being rendered. For small triangles the
overall rendering rate is limited by
transformation of vertices and triangle
setup. For larger triangles or textured
triangles, the overall rendering rate is
limited by interpolation of colors or
texture coordinates. Figure 5 shows
the performance improvements from
the initial raster engine to the current
version. The raster performance is
characterized by time per stage per
frame. The model used during this
analysis was a 3000 triangle object
with an average triangle area of 5 pixels. The raster
engine was broken into 5 stages - triangle setup,
edge setup, edge walk, and interpolation. The
performance impact of cache misses due to
repeated loading/unloading of the color framebuffer
was also measured. The results demonstrate that
all stages except cache miss performance were
improved resulting in approximately a 2x overall

rasterization performance improvement. The
increase in cache miss time may be due to
optimizations in the other stages that resulted in
the cache being more fully utilized than in the
initial implementation increasing the probability of
a cache miss from a color framebuffer access. The
improvements to the initial rasterizer were on both
the algorithmic and implementation level. The initial

rasterizer attempted to compensate for precision
loss of interpolants by maintaining separate integer
and fractional variables. Subsequently, this was
changed to using a scaled integer approach.

Conclusions

4

Low-level Rendering API
void Transform::draw() const
{
 ::RenPushMatrix();
 ::RenTranslate(translate.x, translate.y, translate.z);
 ::RenTranslate(invcenter.x, invcenter.y, invcenter.z);
 ::RenRotate(rotat.x, rotate.y, rotate.z, rotat e.angle);
 ::RenRotate(invscalerotate.x, invscalerotate.y,
 invscalerotate.z, invscalerotate.angle);
 ::RenScale(scale.x, scale.y, scale.z);
 ::RenRotate(scalerotate.x, scalerotate.y, scalerotate.z,
 scalerotate.angle);
 ::RenTranslate(center.x, center.y, center.z);

 // set accumulated rotation for lighting transform
 Matrix4 r = Matrix4::rotation(rotate, rotate.angle);
 ::RenMultRotationMatrix(r.getFloat());
 Group::draw();

 ::RenPopMatrix();
}

Scene graph API
Void Node::AddT ransformNode()
BoundingSphere* sphere = new BoundingSphere(cv, radius);
t ransform->setBoundingSphere(sphere);

Transform->setTranslate(tx, ty, tz);
Transform->setCenter(cx, cy, cz)
Transform->setRotate(r_axis, r_angle);
Transform->setScale(sx, sy, sz);
Transform->setScaleOrientation(so_axis, so_angle);
t ransform->setChildCount(numchildren);

Figure 5 Raster Performance

T
ri

an
g

le
 S

et

E
d

g
e

S
et

u
p

E
d

g
e

W
al

k

In
te

rp
o

la
ti

o
n

C
ol

or
 b

uf
fe

r

F
u

ll
R

as
te

ri
z

Stage

0

0.01

0.02

0.03

0.04

0.05

S
ec

on
ds

/F
ra

m
e

Inital
Optimized

Raster Performance

As handheld devices become more powerful, they
will become a viable alternative platform for
traditional desktop applications as well as new
mobile applications. Over 13.1M PDA units were
shipped worldwide in 2001 up 18% from 2000.1 It is
also predictable that the processor speeds will
increase as the chip manufacturers discover
innovative ways to decrease power requirements
and fabrication costs to meet the demands of the
increasing mobile and embedded device market.
As this happens, we expect to see corresponding
performance improvements in our software renderer
which are predominantly integer based and should
scale with clock speed.

Another factor is the availability of low-power 2D
and 3D graphics chips. Certainly, the trend is for
chip providers to develop low power full function 3D
chips targeted for the mobile laptop market. ATI 2D
video chips have recently been used in the Toshiba
e740 Pocket PC™. What will drive these
manufacturers to target lower power handheld
devices? One enabling application may be gaming.
The $9.35B U.S. Video game industry2 is being
driven by hardware platforms such as Nintendo
GameCube™, Sony Playstation™, and most
recently Microsoft Xbox™. Another significant
phenomena is the popularity of the handheld
Nintendo Gameboy Color™ and Gameboy
Advance™. Over 20 million of these devices have
been sold since inception with the bulk of the
revenue coming from the game software itself.
These devices are very similar to PDAs with the
GameBoy Advance even utilizing the same ARM™
processor core as many PocketPC models.

As other user interfaces develop specifically voice
recognition and motion tracking, handheld devices
will have additional opportunity to be utilized as
tools in maintenance and support training.

The handheld market will continue to grow driven
by increased demand for mobile computing and
supported by the technology trend of low-cost
powerful processors. This growth will be
accelerated as traditional desktop applications
adapt themselves to this low-cost platform and
new mobile applications become available.

References

1. Woodward,Charles and Valli,Seppo and
Honkamaa, Petri and Hakkarainen,Mika,
Wireless 3D CAD Viewing on a PDA Device,

Proceedings of the 2nd Asian Mobile Computing
Conference 2002

2. Balmelli, Laurent and Bernardini, Fausto and
Taubin, Gabriel, Space-Optimized Texture Maps,
Computer Graphics Forum, volume 21(3), pp.
411-420, 2002 (Proceeding of Eurographics)

3. Segal, M and Akeley K. The OpenGL Graphics
System: A Specification

4. Moller, T and Haines, E. Real-time Rendering

5. Pineda, Juan. A Parallel Algorithm for Polygon
Rasterization. SIGGRAPH 1988 Proceedings

6. Bresenham, J. Algorithm for Computer Control of
Digital Plotter. IBM Systems Journal 4,1 (1965),
25-30

7. Fleisher, K and Salesin, D. Accurate Polygon
Scan Conversion using Half-Open Intervals.
Graphics Gems IV, p. 362

5

2 The NPD Group, Inc.

1 Gartner Dataquest

