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Abstract 

Resource flexibility refers to the ability to dynamically reallocate resource units from one 

stage of a production process to another in response to shifting system bottlenecks.  Recent 

research has demonstrated that substantial improvements in operational performance can be 

realized in both serial and parallel production environments through the effective utilization of 

resource flexibility.  In these contexts the resource was assumed to exhibit complete flexibility, 

i.e., each resource unit can be assigned to any stage of the system.  This research explores the 

extent to which the operational benefits associated with resource flexibility can be achieved in a 

flow shop environment using a partially flexible resource.  Focusing on labor flexibility, we 

propose corresponding metrics for partial flexibility and formulate a model for flow shop 

scheduling with partial resource flexibility (FSPRF).   We also present a branch-and-bound 

algorithm and a heuristic for FSPRF. And on the basis of a set of computational experiments, we 

suggest the importance of the distribution of flexibility on system performance, and characterize 

important attributes for those flexibility distributions that yield superior results.  The conclusions 

drawn from this research provide significant insight into the management of flow shops with a 

work force that is cross-trained to achieve partial flexibility.  Moreover, we adapt the principles 

developed by Jordan and Graves (1995) for partially flexible manufacturing plants to the flow 

shop scheduling environment, and we link these principles in a novel way to recent research on 

self-buffering flow lines.  
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1. Introduction 
 

With intensified competition, shortened product life cycles, and time-sensitive customer 

demand, flexibility has become more and more crucial to the success of a firm.  In many 

business environments, the flexibility of resources has been recognized as an important 

competitive weapon.  To achieve high returns from flexibility investments, the relationship 

between the flexibility embodied in the resources and the associated operational performance 

need to be clearly understood.  Furthermore, acquiring adequate flexibility doesn’t guarantee a 

competitive edge.  The actual return from any investment in flexibility depends heavily on how 

the flexibility is managed. 

Overall, resource flexibility decisions must be made at three different levels: strategic, 

tactical and operational.  At the strategic level, a firm determines an appropriate level of 

investment in resource flexibility and the types of flexibility (e.g., technology, facility or 

workforce) in which to invest.  Decisions at this level consider the dynamic business 

environment in which the firm operates, and the objective is to choose a role for flexibility that 

reflects the firm’s strategic long-term need.  At the tactical level, the optimal 

composition/distribution of a given investment in flexibility among types and units of resource is 

determined.  The objective at this level is to determine the set of stages to which each unit of 

resource can be assigned.  The operational level then considers the problem of scheduling jobs 

and assigning individual resource units over time so as to optimize system performance, to 

efficiently utilize the existing flexible resources in day-to-day operations, and to ultimately 

materialize the potential benefits from the flexibility investment.  This research addresses issues 

primarily at the tactical and operational levels, i.e., determining the right amount and mix of 

resource flexibility to include in the system, and determining how to utilize this resource in the 
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daily production schedule.  Based on a set of computational experiments, important insights are 

obtained into all three levels of decision making in resource flexibility.  

While there are many types of flexible resources, labor, given the inherent flexibility of 

the human worker, offers perhaps the most common example of a widely available flexible 

resource.  In addition, flexible machines, including flexible manufacturing systems, offer another 

means for achieving system flexibility (see, for example, Sethi and Sethi 1990). We focus 

exclusively on labor flexibility in flow shops.  The ubiquity of the worker-staffed assembly line 

offers strong motivation for understanding the role of labor flexibility in this setting.  Our 

research contributes to the increased understanding of the benefits of partially flexible labor in 

flow shops; in so doing, it also offers a basis for unifying recent work on partial manufacturing 

flexibility (e.g., Jordan and Graves 1995) and self-balancing flow lines (see, e.g., Bartholdi and 

Eisenstein 1996 and Zadalav, McClain, and Thomas 1996). 

 We study labor flexibility from a scheduling perspective, because production scheduling 

is one of the most important and challenging manufacturing functions that must be performed 

repetitively.  Nevertheless, a significant gap exists between scheduling theory and the situation 

faced by schedulers in practice.  For example, classic scheduling models (see e.g., Baker 1994, 

Morton and Pentico 1993) assume that processing times are fixed and known prior to scheduling.  

This assumption implies that all resource inputs required for an operation are available in the 

right quantities and mix whenever they are needed.  In practice, schedulers must determine not 

only the timing of an operation, but also the appropriate resources (machines, workers and 

capital) for the associated operation.  The processing time of an operation is therefore often a 

function of the amount and mix of resources dedicated to the operation.  

When job processing times depend on the amount of resource allocated to a task, flexible 

resources can be used to break processing bottlenecks, thereby enhancing system effectiveness 

and efficiency.  Recent research has established that when resources exhibit complete flexibility, 
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i.e., when each unit of resource can be allocated to any stage of the production process, 

substantial improvements in operational performance can be realized in both serial and parallel 

production environments (e.g., Daniels and Mazzola 1993, 1994 and Daniels, Hoopes, and 

Mazzola 1996, 1997). 

This research extends the work on resource flexibility from complete flexibility to partial 

flexibility.  This extension was motivated by our observation of flow lines used to fabricate and 

assemble telephone switching equipment, where tasks are performed sequentially at a series of 

work stations, and the time required to perform each task is a function of the number of workers 

assigned to the associated work station.  In production line (flow shop) environments such as 

these, partial (labor) resource flexibility is a particularly important issue that is addressed by 

training each worker to perform a subset of the tasks occurring within the line.  We explore 

modeling issues associated with scheduling partially flexible labor in flow shops when 

processing times depend on the amount of labor allocated to tasks; moreover, we investigate the 

impact of partial resource flexibility on system performance.  We focus on obtaining insight into 

the relationship between the operational performance of the system and system characteristics 

such as the amount (or degree) of resource flexibility present within the system and also the 

manner in which flexibility is allocated among the work force.  In so doing we propose measures 

for capturing the amount and mix of resource flexibility contained within the production system. 

The study of scheduling with resource flexibility draws from the scheduling literature as 

well as from the literature on manufacturing flexibility.  In addition to the articles mentioned 

previously, flexible resource scheduling is related to project scheduling (see, e.g., Talbot 1982, 

Lawrence and Morton 1993, or the survey by Ozdamar and Ulusoy 1995), scheduling with 

controllable processing times (see, e.g., Vickson 1980, Van Wassenhove and Baker (1982), 

Daniels and Sarin 1989, Trick 1994, or Alidaee and Kochenberger 1996), and flexible 

manufacturing (Fine and Freund 1990 or Sethi and Sethi 1990).  For a discussion of scheduling 
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(including flow shop scheduling) see, e.g., Baker (1994), and for recent trends in the area of 

scheduling, see Lee, Lei, and Pinedo (1997). 

In the next section we define the concept of skill matrix, which establishes workers' 

cross-training skills. Section 2 also presents measures for partial flexibility, addressing both the 

amount and the allocation of flexibility among the workforce.  Based on these flexibility 

measures, attributes for skill matrices that yield good operational performance are discussed in 

this section as well.  The flow shop scheduling with partial resource flexibility is formulated in 

Section 3, and problem complexity is also established.  Section 4 presents a branch-and-bound 

algorithm to solve FSPRF, and Section 5 discusses heuristic algorithms for approximate 

solutions to FSPRF.  The computational experiments summarized in Section 6 provide important 

insights into flow shop scheduling with partial workforce flexibility.  Section 7 ends the paper 

with a summary and suggestions for future research. 

2. Skill Matrices, Flexibility Metrics and Effective Skill Matrices 
 
 Let },,2,1{ wW L=  denote the set of workers, each trained to staff a subset of work 

stations M={1,2,…, m}.  The workers can be divided into distinct groups such that each worker 

in a group gW  is trained to operate on the same subset of stations, i.e., workers in gW  are 

identically skilled.  Let G index the set of these worker groups.  Thus, the sets },{ GgWg ∈  form 

a partition of W; that is, WWg ⊆ , φ='gg WW I if 'gg ≠ , and .WWgGg =∈U  Let gg Ww =  

be the number of workers for Gg ∈ .  The stations that can be operated by any particular group 

of workers can be identified, as can the different groups of workers that are capable of staffing a 

specific station.  In particular, for Gg ∈ , define: 

Mg = { Mj ∈ : station j can be staffed by any worker in group g}, 

and define gg Mm = be the number of such stations.   Similarly, for Mj ∈ , let 
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Gj = { Gg ∈ : workers in group Wg can be allocated to station j}, 

and let jj Gg =  be the number of such groups. 

The worker-station skill matrix S is a useful tool for establishing which workers can 

operate which station s.  Specifically, the matrix S=( hjs ), where Wh ∈ , Mj ∈ , is defined as: 


= Otherwise.   ,0

  j;station  staffcan h  worker if,1
hjs  

For example, the mm ×  unit matrix S = Imxm represents the skills consistent with the classic flow 

shop, where there is no labor flexibility since each worker is permanently assigned to a fixed 

work station.  At the other extreme, S = Emxm, the mm ×  matrix containing all ones, captures the 

complete flexibility case studied by Daniels and Mazzola (1993, 1994).  

The following notation for skill matrices is adopted for convenience.   Given a skill 

matrix S=(shj), the support of the matrix S, denoted supp(S), is defined as 

}1|),{( =×∈ hjsMWjh .  For each row of the matrix S corresponding to a worker Wh ∈ , let 

S
hM = { Mj ∈ | shj=1} be the stations which worker h has skills to operate, and S

h
S
h Mm =  

∑ ∈
=

Mj hjs  be the number of such stations.  Similarly, for each column of S corresponding to 

station Mj ∈ , define S
jW ={ Wh ∈ |shj=1} and S

j
S
j Ww =  ∑ ∈

=
Wh hjs . 

Let jk  be number of possible modes in which jobs can be processed on station j.  Since it 

would not be possible to assign more than S
jw  number of workers to station j, we assume without 

loss of generality that the maximum processing mode S
jj wk ≤  for any Mj ∈ .  In some 

instances, however, it is feasible and potentially advantageous to allow jk  < S
jw , since some of 

the workers trained to staff station j may also be trained to staff other stations, and during the 
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course of the dynamic allocation of workers the increased flexibility afforded by j
S
j kw >  may 

prove to be beneficial. 

Example 1.  Consider a problem with 4 stations and 4 workers.  Suppose that 



















=

1101
1101
1010
1011

S . 

In this example worker 1 can staff stations 1, 2 and 4; worker 2 can staff stations 2 and 4, 

and so forth.  There are 3 groups of workers: W1={1}, W2={2}, and W3={3,4}; hence, w1= w2=1 

and w3=2.  Also, M1={1, 2, 4}, M2={2, 4}, M3={1, 3, 4}.  Similarly, G1={1, 3}, G2={1, 2}, 

G3={3}, and G4={1, 2, 3}. 

This example illustrates that the maximum processing mode on a station, and hence of 

any jobs on the station, depends on the skill matrix S.  Since sh1=1 for 3 workers, the fastest 

processing speed of any job on station 1 is achieved by assigning all 3 workers to it.  On the 

other hand, station 4 is capable of processing jobs up to 4 modes.  Regardless of the skill matrix, 

however, the number of possible processing modes of any job is bounded by a number k , which 

can represent, e.g., the total number of workers or the maximum number of possible processing 

modes of all jobs. 

2.1       Metrics for Partial Resource Flexibility 

One of the objectives of this research is to understand better the ways in which system 

performance changes as the degree of resource flexibility increases.  This requires the 

development of appropriate metrics for resource flexibility that capture the level (amount) of 

resource flexibility as well as the mix of the flexible resource with respect to stations.  Define 

flexibility metric:  

Sφ  = wms
Wh Mj

hj /)(∑ ∑
∈ ∈

. 
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Clearly, for any skill matrix S, Sφ  assumes a value on the interval [0,1], with greater values of 

Sφ  corresponding to more flexible systems.  Given that entries in a skill matrix can be either 0 or 

1, the possible values of Sφ  are discrete.  A real number ]1,0[∈φ  is an attainable value if there 

exists a skill matrix S satisfying φφ =S  that yields a feasible flow shop scheduling problem. 

The metric Sφ  measures the level of flexibility.  Within each value of Sφ , we can also 

measure the mix of flexibility by quantifying the degree to which flexibility is allocated across 

stations and workers.  For each station Mj ∈ , we define }{max '',
S
j

S
jMjj

S ww −= ∈β .  If we 

consider the station that has the largest number of workers who are trained to staff it, and the 

station that has the smallest such number of workers, this metric represents the difference 

between these two values.  The number Sβ  seeks to measure how evenly resource flexibility is 

distributed throughout the system, with smaller values of Sβ  corresponding to more evenly 

distributed flexibility.  We refer to Sβ  as the station-balance metric or simply s-balance metric, 

since it concentrates primarily on the stations. 

An alternative mix metric is established by defining the station-worker-balance metric or 

simply sw-balance metric },{maxˆ
'',

S
j

S
jMjj

S mwmw −= ∈β  where )/( S
hWh hj

S
j msmw ∑ ∈

=  (recall 

that ∑ ∈
=

Mj hj
S
h sm  is the number of stations that worker h has skills on).  This measure takes 

into account that a worker trained on more than one station would need to effectively split his 

time across stations; hence, the adjustment factor S
hm  is incorporated into the metric. 

For the matrix S appearing in Example 1, Sφ =11/16.  For each column 1 through 4 in S, 

the values of S
jw  are 3, 2, 2, and 4, respectively.  Thus, the s-balance measure is 224 =−=Sβ .  
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The sw-balance measure for this skill matrix is 6/53/22/3ˆ =−=Sβ .  Moreover, Sφ =1 and 

0ˆ == SS ββ  when S=Emxm; while Sφ =1/m and 0ˆ == SS ββ  for S=Imxm.  

2.2       Attributes of Effective Skill Matrices 

 Matrix S is an effective skill matrix if S results in superior system performance relative to 

skill matrices having the same value of Sφ .  In a flow shop with w workers and m stations, a 

skill matrix S has mw ×  entries (each entry being either 0 or 1).  Thus, there are total of wm2  

possible skill matrices.  For w=m=3, there are 512 skill matrices; this number increases to 65,536 

when w=m=4 and reaches more than 33 million for w=m=5.  This explosive growth in the 

number of skill matrices motivates the characterization of effective skill matrices, i.e., a set of 

attributes that allow the decision maker to confine attention to a manageable subset of skill 

matrices to identify the best distribution of flexibility.  We define a set of such attributes in this 

section.  

Without loss of generality, for each Mj ∈ , we require that ∅≠S
jW  (or equivalently 

1≥S
jw ) for any skill matrix S; otherwise, the corresponding flow shop scheduling problem will 

be infeasible (this property also implies that at least one worker can staff every station).  

Similarly, we require that every worker Wh ∈ can staff at least one station (i.e., ∅≠S
hM ); 

otherwise, any such workers can be eliminated from consideration. Moreover, we are concerned 

with the overall flexibility of a workforce without explicitly considering which workers possess 

which skills.  Hence, if two skill matrices S and 'S  differ only in the order of their rows (i.e., if 

there exists a permutation of the rows of S such that the corresponding rearrangement of rows 

gives rise to 'S ), then the two matrices S and 'S  define precisely the same set of worker skills.  

The skill matrices S and 'S  are then said to be equivalent. Throughout the remainder of our 

discussion, we do not distinguish between equivalent skill matrices.  
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Both the s-balance metric Sβ  and the sw-balance metric Sβ̂  measure how evenly skills 

are distributed across stations.  Intuitively, high values of Sβ  (or Sβ̂ ) should be associated with 

poor operational performance, since jobs are more likely to be delayed when at least one station 

lacks the additional labor needed to break system bottlenecks. Therefore, we define a skill matrix 

S to be s-balanced whenever 1≤Sβ ; and it is said to be sw-balanced if 1ˆ ≤Sβ . 

The computational experiments described in Section 6 indicate that for any attainable 

value of flexibility metric φ , the skill matrix yielding the best operational performance is both s-

balanced and sw-balanced, suggesting that these are two important attributes of effective skill 

matrices.  Unfortunately, a large number of feasible skill matrices are still both s-balanced and 

sw-balanced.  For example, 33 of the 57 feasible skill matrices are both s-balanced and sw-

balanced when m=w=3; and this number increases to 578 out of 2306 feasible skill matrices 

when m=w=4, and over 28,000 out of over 270,000 when m=w=5.  Thus, s-balance and sw-

balance do not provide a sufficiently precise means for distinguishing between effective and 

ineffective distributions of flexibility among a workforce.  This observation motivates 

consideration of a third group of skill matrices, which we refer to as chains. Chains form a 

proper subset of matrices that are both s-balanced and sw-balanced.  Importantly, the number of 

chains is quite manageable and, as will be discussed in Section 6, chains consistently yield 

excellent system performance.  

A chain is most easily conceptualized in flow shops in which the number of workers is 

equal to the number of stations, i.e., w=m.  For any skill matrix S, the corresponding worker-

station graph G(S) = (VS, ES) is the bipartite graph with one set of vertices in VS corresponding 

to the set W of workers and the other set of vertices corresponding to the set M of stations; thus 

there are 2m vertices in the graph.  An arc SEjh ∈),(  if and only if 1=hjs  in S.  
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Jordan and Graves (1995) studied process flexibility in the context of the assignment of 

products to plants, and observed that limited flexibility (i.e., each plant builds only a few, but not 

all products) results in large benefits when the plant-product assignments follow a chain in the 

corresponding plant-product bipartite graph.  The basic idea behind a chain is to form a 

continuous path in the bipartite graph and then maintain the continuity of the path while also 

creating cycles of maximal length (before creating subcycles).   We now extend the concept of 

chains to flow shop scheduling with partial resource flexibility.  

Let S be an mm ×  skill matrix.  For ,1 mk ≤≤ the skill matrix S is said to be a k-chain if 

S
hM ={h, h+1, …, h+k-1} for all Wh ∈ , where it is understood that if S

hMj ∈  and j>m, then j is 

taken to be the unique station },,2,1{' mj L∈  satisfying )(mod' mjj ≡ .  Any skill matrix S that 

is equivalent to a k-chain is also said to be a k-chain.  The k-chain (of dimension mm × ) is 

denoted by kmC , .  Observe that |supp( kmC , )| = km.  An arbitrary skill matrix S is then said to be 

a chain if there exists some }1,,2,1{ −∈ mk L  satisfying )supp(C)supp(S)supp(C 1km,km, +⊂⊆ .  

As before, any skill matrix S that is equivalent to a chain is also said to be a chain.  Thus, S 

defines a chain if either it is equivalent to some k-chain, or it can be obtained by taking a k-chain 

and adding some extra 1’s in the positions of )supp(C\)supp(C km,1km, + .  Note that kmC ,  is 

sometimes referred to in the literature as a circulant (see, e.g., Balas 1975).   

If we define the mm ×  matrix )( ,
,

, km
jr

km δ=∆  by 


 +≡= ,,0

),(mod,1,
, otherwise

mkhjifkm
jhδ  

for MjWh ∈∈ , , it then follows that kmkmkm CC ,,1, ∆+=+ , for k=1,…, m-1.  This is illustrated 

in the following example. 
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Example 2. For m=w=5, we have that 
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  3,52,52,5 CC =∆+  

  Workers  Stations    Workers  Stations 

     1      1       1      1 
     2      2       2      2 
     3      3       3      3 
     4      4       4      4  
                5      5       5                 5 
   2,5C        3,5C  

Figure 1. The Bipartite Graphs for 2-chain 2,5C  and 3-chain 3,5C  
 

The bipartite graphs corresponding to the 2-chain 2,5C  and the 3-chain 3,5C  are shown in 

Figure 1.  Observe that in the 2-chain for m=w=5, worker 1 is trained to staff stations 1 and 2; 

worker 2 is trained on stations 2 and 3; and so forth, with worker 5 trained on stations 5 and 1.  

Also, as can be seen in the graph for 2,5C , the 2-chain forms a continuous path and the 

corresponding cycle is of maximal length in that the chain covers all of the workers and stations 

without forming subcycles.   These properties as they correspond to the 3-chain are also observed 

in the graph for 3,5C .  The worker skill patterns defined by chains lend themselves readily to the 

flow shop scheduling environment in that they involve training workers to operate a set of 

stations that occur consecutively in the process.  This is an important observation in that the 

resulting worker skill patterns can be seen to relate directly to other recent research findings on 

worker flexibility in flow shops, as we discuss in Section 7.   

The following result will prove helpful.  
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Proposition 1. If a mm ×  skill matrix S defines a chain, then its s-balance and sw-

balance measures satisfy 

1≤Sβ ; 

1
2ˆ

* +
≤

k
Sβ , 

where }1,,2,1{* −∈ mk L  is the maximum number satisfying )supp(S)supp(C
*km, ⊆ . 

All proofs are contained in the Appendix.  Observe that the right hand side of the 

inequality for Sβ̂ in Proposition 1 is not greater than 1; hence chains are both s-balanced and sw-

balanced.  The relationship among s-balanced skill matrices, sw-balanced skill matrices and 

chains is further illustrated by the following example. 

Example 3. Consider the skill matrices 
















=

100
110
101

1S , 















=

001
001
110

2S , 















=

101
011
011

3S , 















=

100
010
101

4S . 

By definition, 21 =Sβ , 2/3ˆ 1 =Sβ , 12 =Sβ , 2/3ˆ 2 =Sβ , 23 =Sβ , 1ˆ 3 =Sβ and 4Sβ = 4ˆ Sβ =1.  

Hence, S1 is neither s-balanced nor sw-balanced, S2 is s-balanced but not sw-balanced, S3 is sw-

balanced but not s-balanced, while S4 is both s-balanced and sw-balanced but not a chain.   

  

 

 

 

 

 

Because of these relationships, the set of feasible skill matrices can be partitioned into 

five non-overlapping subsets as depicted in Figure 2.  The first subset is the set of matrices that 

Figure 2. The Relationships among Different Kinds of Skill Matrices 
matrices 

Chains 
(C) SW-Balanced 

(W\S) 
S-Balanced 

(S\W) 

Feasible Skill Matrices 
(F\SW) 

SW\C 
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are feasible but neither s-balanced nor sw-balanced. The second subset includes s-balanced 

matrices that are not sw-balanced, while the third subset contains sw-balanced matrices that are 

not s-balanced.  The fourth is the subset of matrices that are both s-balanced and sw-balanced but 

not chains, and the last subset is the set of chains.  As in the Figure 2, these five subsets of 

matrices are denoted, respectively, as F\SW, S\W, W\S, SW\C and C.                      

Given the values of m and w, let S(m,w) be the number of skill matrices (recall that 

equivalent skill matrices are treated as identical); and let C(m,m) be the number of chains when 

m=w.  The following result gives the number of skill matrices and the number of chains.  

Theorem 1.  In a flow shop with m stations and w workers:  

S(m,w)  = 










−

−+

22

22
m

mw
 

C(m,m) = )2(2)1( −−− mm m  

Table 1 presents the number of different kinds of skill matrices for various values of m 

and w.  Information is also provided concerning the size of the other non-overlapping subsets 

depicted in Figure 2.  These numbers and Theorem 1 highlight the explosive growth in the 

number of possible ways to distribute resource flexibility as problem size increases, and proved 

useful in guiding the design of computational experiments discussed in Section 6. 

3. Problem Formulation 
 

We are given a set of jobs (indexed by) N = {1, 2,…, n} which are to be processed 

sequentially on a set of stations, M = {1, 2, … , m}, which constitute a flow shop. The jobs are to 

be processed in the same order on each of the stations, and we refer to the processing of job 

Ni ∈  on station Mj ∈  as (job) operation ),( ji .  Each operation can be performed in any one of 

a set },,1{ ijij kK L= of possible processing modes.  For each ijKk ∈ , operation (i,j) requires ijkr̂  

 



 15 

units of renewable resource (e.g., labor) and has a processing time of ijkp̂  time units.  We assume 

without loss of generality that the sets ijK  are ordered so that 
21

ˆˆ ijkijk pp ≤  whenever 21 kk ≥ .  Let 

Cij denote the completion time of operation (i,j). Consistent with the measure of system 

performance for flow shop problems typically encountered in the literature, the objective is to 

minimize the total makespan Cmax of all the jobs.  At any point in time there is a fixed (and 

known) amount of the resource available, and the resource may be specific to a particular subset 

of stations.  We assume that each operation must be processed without preemption and that once 

a specific set of workers has been assigned to an operation, this assignment remains fixed for the 

duration of it processing.   

To formulate the flow shop scheduling problem with partial resource flexibility with 

respect to the skill matrix S, which we refer to as FSPRF(S), define the decision variables: 

 




=
otherwise

ijobprecedesijobif
Yii ,0

',1
'  


= otherwise

ttimeatkinjstationincompletesijobifX ijkt ,0
modeprocessing,1  


 −= otherwise

ttduringjstationtoassignedishifahjt ,0
),1[worker,1  

The number of workers, stations, and jobs, are specified, along with the data on 

processing times and resource requirements (all of which are assumed to be integer-valued). Let 

)(SC be the optimal makespan of FSPRF with respect to a feasible skill matrix S = (shj).  

FSPRF(S) can then be formulated as the following 0-1 mixed integer programming problem (Let 

}ˆ...,,2,1{ˆ tT = , where t̂  is a known upper bound on the optimal makespan, and let M̂  be an 

arbitrarily large positive integer).     
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)(SC  = Minimize Cmax(S) 

              s.t. NiCSC im ∈≥ ,)(max       (1) 

MjNiXpp
Tt

ijkt
Kk

ijkij
ij

∈∈= ∑∑
∈∈

,,ˆ
ˆ

     (2) 

MjiNiNipYMCC ijiijiij ∈∈∈≥−+− },{\',,)1(ˆ
''   (3) 

}{\',,1'' iNiNiYY iiii ∈∈=+      (4) 

MjNipCC ijjiij ∈∈+≥ − ,,1,      (5) 

MjNiXtC
ijKk

ijkt
Tt

ij ∈∈= ∑∑
∈∈

,,
ˆ

     (6) 

MjNiX
Tt Kk

ijkt
ij

∈∈=∑ ∑
∈ ∈

,,1
ˆ

     (7) 

TtMjWhsa hjhjt
ˆ,,, ∈∈∈≤      (8) 

TtWha
Mj

hjt
ˆ,,1 ∈∈≤∑

∈

      (9) 

MjNirsaX ijk
Tt

hjhjtijkt
Kk ij

∈∈=−∑∑
∈∈

,,0]ˆ[
ˆ

    (10) 

TtWhMjNipaX
ij ijijkKk

ijk

t

ptl
hjl

t

pt
ijkt

ˆ,,,,0]ˆ[
1ˆ

∈∈∈∈=−∑ ∑∑
∈ +−==

  (11) 

Xijkt, Yii’, ahjt ∈  {0,1}, TtWhKkMjiNiNi ij
ˆ,,,},{\', ∈∈∈∈∈∈ (12) 

In this formulation the objective function minimizes schedule makespan as defined by 

constraints (1).  Constraints (2) determine the unique processing time of each operation.  

Constraints (3-5) determine the job sequence and also enforce precedence requirements (define 

NiCi ∈= ,00, ).  Constraints (6) define the completion time of each operation, and constraints (7) 

ensure that exactly one processing mode and one completion time is selected for each operation.  
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Constraints (8) ensure that workers are assigned only to work stations for which they have the 

requisite skills, and Constraints (9) specify that at each point in time, a worker can be assigned to 

at most one station.   Constrains (10) require that if operation (i,j) is completed at time t in mode 

k, then exactly ijkr̂  appropriately-skilled workers are assigned to it during the time interval [t-1,t).  

Constrains (11) then require that if any worker Wh∈  is assigned to an operation during the final 

time interval of its processing, then that worker must also have been assigned to the operation for 

the previous 1ˆ −ijkp  time intervals.  (We note that this formulation allows for solutions that 

could possibly contain an extraneous “assignment” of an idle worker to a job operation in a 

period before the job operation is even begun (provided, of course, that the assignment does not 

result in a suboptimal solution); rather than imposing additional constraints to prevent such 

assignments, it is sufficient to simply ignore them when interpreting the final solution.)  

When w=m, FSPRF contains as special cases both the classic flow shop scheduling 

problem (i.e., S=Im) and the (complete) flexible resource flow shop scheduling problem 

introduced in Daniels and Mazzola (1994) (i.e., S = Em).  Since the flexible-resource flow shop 

scheduling problem is NP-hard in the strong sense for m = 2 (Daniels and Mazzola 1994), the 

same computational complexity holds for FSPRF.  The foregoing remarks concerning the 

complexity of FSPRF assume that the skill matrix S is not fixed as an input parameter.  For a 

specified (feasible) skill matrix S, the problem FSPRF(S) is also easily seen to generalize the 

classical flow shop scheduling problem; hence, it too is NP-hard in the strong sense (see, e.g., 

Garey and Johnson 1976 and 1979).   

Given a pair of skill matrices S1 and S2, we say that S1 is a restricted case of S2, denoted 

as 21 SS p , if supp(S1) ⊂ supp(S2).  Whenever 21 SS p , any feasible solution to FSPRF(S2) also 

defines a feasible solution to FSPRF(S1), hence we immediately have the following.  

Proposition 2. If 21 SS p , then )()( 12 SCSC ≤ . 
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Let )(min)ˆ(
ˆ

SCC
S φφ

φ
=

=  denote the minimum makespan of all skill matrices of a specified 

value φ̂  of the flexibility metric.  It follows as an immediate corollary to this proposition that 

1221
ˆˆ),ˆ()ˆ( φφφφ ≤≤ ifCC . 

4. A Branch-and-bound Algorithm for FSPRF 

In this section we define a branch-and-bound algorithm for obtaining optimal solutions to 

FSPRF.  Because of the inherently complex nature of the problem, the utility of the algorithm is 

not primarily as a tool for solving instances of FSPRF arising in practice.  Rather, its principal 

objective is to provide essential insight into scheduling with partial resource flexibility, allowing, 

e.g., examination of the direct benefits that accrue as the amount of resource flexibility increases.  

It also provides a basis for characterizing the structure of effective skill matrices and for 

identifying properties of optimal schedules.  In Section 6 we discuss important insights obtained 

by applying the algorithm to a set of test problems and examining the resulting optimal solutions.  

From information obtained in these experiments, we define a heuristic for FSPRF which 

facilitates further exploration of these principles and furthers our understanding of flow shop 

scheduling with partial labor flexibility. 

The FSPRF branch-and-bound algorithm solves FSPRF(S), for each skill matrix S, by 

utilizing a two-level branching procedure.  On the first level, the process branches through all 

possible sequences of the n jobs.  Given a skill matrix S and a specific sequencing of jobs, the 

second level systematically constructs all possible feasible schedules of operations on each 

station in conjunction with associated assignments of workers to operations.  The construction of 

these feasible schedules involves the generation of nodes in the search tree corresponding to 

partial schedules.  Specifically, for a given job sequence, the branching procedure begins at time 

t = 0, and after scheduling the initial operations, it generates a new set of partial schedules each 
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time a currently scheduled operation completes processing.  For our purposes we adopt the 

convention that if an operation has a processing time of p and begins processing at time t, then 

the station and workers assigned to it are occupied during the (half-closed) interval [t,t+p).  

4.1. Branching 

To describe the branching procedure in detail, we establish some terms and notation.  Let 

Θ denote the set of all operations (i,j), and assume a job sequence π  = { i1, i2, …, in} is given.  

At each point in time t occurring either at the beginning of the scheduling horizon or when a 

currently scheduled operation completes processing, a partial schedule is constructed, evaluated 

and (possibly) stored as a node in the search tree for further completion.  At any point t, let tΩ  

represent the set of operations that have been scheduled (in the partial schedule) to begin strictly 

prior to time t.  Each operation tji Ω∈),(  has an associated (scheduled) operating mode, 

processing time, and resource amount, denoted by kij, 
ijijkij pp ˆ= , and 

ijijkij rr ˆ= , respectively; in 

addition, the specific set of workers assigned to each operation in tΩ  is known.  Throughout the 

remainder of our discussion we assume for each operation Θ∈),( ji  that krijk = , that the total 

amount of resource R is equal to the number of workers w, and that workers have partial 

flexibility as specified by the skill matrix S = (shj).  

Let F
tW represent the set of workers who are free (i.e., unassigned to a station) at time t; 

this set will include those workers who were free at time t-1, together with those workers who 

complete the processing of an operation at time t.  Let Et be the set of operations that are eligible 

to begin at time t, taking into account the specified sequence of jobs, operation precedence 

constraints, and the availability of a worker to perform the operation (i.e., tq Eji ∈),(  if for 

2≥q , (iq-1,j) has been completed;  for nq ≤≤1  and 2≥j , its predecessor operation (iq,j-1) has 

been completed;  and there exists a worker F
tWh∈  with 1=hjs ). 
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Recall that the set W of workers is partitioned into groups WWg ⊆ , Gg ∈ .  Define 

F
tg

t
g WWW I= , and t

g
t
g Ww = ; thus, the set t

gW  is the set of workers from group Gg ∈  who are 

free at time t, and t
gw  is the number of such workers.  Define F

tM  to be the (sub)set of stations 

M that are free (or become free) at time t and for which there exists an operation tEji ∈),( .  

Recalling the earlier definitions of GgM g ∈,  and MjG j ∈, , for each Gg ∈ , we define the set 

g
F
t

t
g MMM I= , which is the set of eligible stations at time t to which any worker in group g 

can be assigned, and for each Mj ∈ , the set }:{ ∅≠∈= t
gj

t
j WGgG , which is the set of groups 

at time t that are capable of providing at least one worker to be assigned to station j. 

At a branching point t, the branching procedure begins with the partial schedule 

contained in an active node of the search tree (with the partial schedule corresponding to 

∅=Ω0  occurring at t = 0) and then generates new nodes of the search tree corresponding to all 

possible subsets of jobs in Et that satisfy the operation processing precedence constraints and that 

can be run simultaneously on the stations that are idle at time t; in addition, for each of these 

operations, all corresponding processing modes that are possible using the number of workers in 

each group that are available at time t must also be taken into account.  While it is essential to 

consider all possible combinations of the applicable groups of workers and to keep track of the 

number of workers in each of the groups assigned to an operation, because workers within each 

group are considered to be identically skilled, it is not necessary to enumerate all possible 

individual assignments of workers to operations. 

The set of branches generated from a node of the search tree must also include branches 

in which some or perhaps all of the labor resource from each of the relevant groups is 

strategically withheld.  Because workers must complete their tasks before moving on to new 
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operations, it is sometimes optimal at a branching point t to deliberately withhold labor that 

could otherwise be assigned to an operation in Et. 

We now describe an approach for generating all of the possible branches at time t.  First, 

identify F
tM .  From this (already knowing F

tW ), identify t
jG , for each F

tMj ∈ .  All possible 

subsets of F
tM (including the empty set) must then be considered as candidates for stations that 

become active at time t, and for each of these subsets, all possible (and feasible) combinations of 

processing modes for the operations on these stations must also be considered; moreover, for 

each processing mode on each station, it is also necessary to consider all combinations of 

workers from each of the groups that are able to supply labor for this operation.  In regard to this 

last point, we again note that it is necessary only to consider the number of workers from each 

group assigned to an operation and not all possible specific assignments of individual workers to 

operations.  Once the number of workers to be assigned from a group is specified, the particular 

workers can be selected arbitrarily. 

4.2. Dominance Relations and Bounds 

The branching procedure described in the previous section generates a set of new nodes, 

corresponding to time t, to be included in the search tree.  A large number of potential branches 

can arise as the many possible combinations of operations and worker assignments are taken into 

account.  We now discuss dominance relations and bounds, which are used to fathom nodes (i.e., 

eliminated from further consideration in the search tree without interfering the ability of the 

algorithm to identify an optimal solution) to expedite the searching for the optimal solution. 

Suppose we are considering a node that is generated at time t using the branching 

procedure.  Recall that this node corresponds to a partial schedule that is constructed for a fixed 

sequence of jobs π , and also recall the definitions of tΩ , tE , and F
tW  from the earlier 

discussion.  Define the (sub)set of workers F
t

B
t WWW \= , which is the set of workers who are 
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busy processing operations at time t.  Each worker B
tWh∈  is assigned to a unique operation 

thh ji Ω∈),( ; let )(ˆ hmt  be the station, jh, to which worker h is assigned.  Paralleling the 

definitions of F
tW  and B

tW , we define B
tM  to be the (sub)set of stations Mj ∈  that are busy at 

time t, where )}(ˆ{\ hmMMM tWh
F
t

B
t B

t∈
== U .   

At time t each node generated by the branching procedure involves the selection of 

subsets F
tt MM ⊆~

, tt EE ⊆~
, and F

tt WW ⊆~
, where tM

~
 is the set of stations in F

tM  on which a 

new operation is begun at time t, tE
~

 is the set of operations in Et that are started at time t, and tW
~

 

is the set of workers in F
tW who are assigned to work on operations in tE

~
.  We can then define 

t
B

t
B

t WWW
~ˆ U=  and t

B
t

B
t MMM

~ˆ U= to be the sets of workers and stations, respectively, that are 

busy immediately after time t (when the new operations in tE
~

 have been scheduled).  For each 

operation tEji
~

),( ∈ , let ijk
~

 be its newly scheduled processing mode.  

Again, assume that a skill matrix S is specified.  For a particular node, suppose there 

exists a worker t
F

t WWh
~

\∈  who can be assigned to an operation in tEji
~

),( ∈  and thus allow its 

processing mode to be increased or that there exists an operation tt EEji
~

\)','( ∈ with 

t
F
t MMj

~
\'∈  and 1'=hjs  so that worker h can be assigned to begin this operation on station 'j .  As 

discussed earlier it is necessary sometimes to strategically withhold resources; i.e., to reserve 

(labor) resources so that they are available for use at subsequent branching points.  We therefore 

seek conditions under which the deliberate withholding of workers is not necessary, and thus the 

node defined by the corresponding partial solution can be fathomed. 

The two theorems that follow provide different sets of conditions for fathoming (a node 

corresponding to) a partial solution.  First, for any worker Wh∈ , define  
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}1Mj'exists  thereand,,
~

),(:min{ '
F
t

' ==∈>Ω∈= hjhjijttijh sswithtCEjiCt U  

Observe that '
ht  is the earliest time after time t when worker h could possibly be assigned to a 

new operation.  For an operation tt Eji
~

),( UΩ∈ , by allowing for F
tMj ∈'  to either equal j or not, 

this definition takes into account stations on which no operation is assigned at time t (i.e., that are 

deliberately left idle) but for which a new worker will become available when one of the current 

operations completes processing, and at that time, this new worker could possibly work with 

worker h on a new operation on that station. 

Theorem 2. For a partial schedule σ , at time t if there exist:  (i) an operation 

tEji ∈)','( with '''' jiji kk <  (where '' juk  = 0 if tt EEji
~

\)','( ∈ ), (ii) a subset of workers 

t
F

t WWH
~

\⊆  with 'hjs  = 1, for all Hh∈ , and (iii) a processing mode 'k  satisfying 

'''' ||' jiji kHkk ≤+=  and }},{minmin{ˆ *
''

'
''' jihHhkji ttpt

∈
<+ , where 









∞+
∈+==∈

∈Ω∈
=

,,
,

~
\)','(,ˆ}')ˆ(ˆ1ˆˆ

,ˆ,
~

),(:min{

'''''ˆ
*

''

Otherwise
EEjiifpjhmandswithWh

existsthereandMjEjiC
t ttkjitjh

B
t

B
tttij

ji ji

U
 

then the node corresponding to σ  can be fathomed. 

Observe that the definition of *
'' jit  simply means that if operation )','( ji  is eligible to start 

at time t but is not included in tE
~

, then *
'' jit  assumes a value that is equal to the earliest 

completion time of any operation in tt E
~

UΩ  to which there is a worker h currently assigned who 

could also work on operation )','( ji .  We assume that min taken over the empty set is equal to 

∞+  and that the sum of ∞+  and any real number is equal to ∞+ . 

Theorem 2 extends a similar dominance result from Daniels and Mazzola (1994) to 

accommodate partial resource flexibility.  In identifying sets t
F

t WWH
~

\ˆ⊆  and associated 

processing modes 'k satisfying the conditions of the Theorem, it is important to note that when 



 24 

searching for a value of 'k  satisfying the requisite conditions for a particular operation )','( ji for 

which there are appropriately trained workers in F
tŴ , it could easily be the case that the next 

larger processing mode 1'' +jik  might not satisfy the conditions, but that there exists a larger 

processing mode that indeed satisfies the conditions (this is because condition (iii) involves the 

processing time in a particular mode).  In addition, as suggested in the proof of Theorem 2, it is 

sufficient to look at maximal values of |H| and 'k  satisfying the conditions, which facilitates the 

fathoming of a greater number of nodes.  In this regard, it is also important to observe that 

maximal sets H may be limited to workers in F
tŴ  from the same group, i.e., since }{min '

hHh t∈  is 

taken into account. 

We now provide another set of conditions for fathoming nodes, generalizing a second 

result from Daniels and Mazzola (1994).  

Theorem 3.  For a partial schedule σ , at time t, following the decision to schedule a set 

of operations tt EE ⊆~
 (where tE

~
 is possibly empty), if there exists a subset of workers F

tWH ˆ⊆  

and an operation tji Ω∈)','(  satisfying (i) 'hjs = 1, for all Hh∈ , (ii) '''' || jiji kHk ≤+ , and (iii) 

}{minˆ '
''''' hHhkji

s
ji tpt ∈≤+ , where s

jit ''  is the scheduled starting time of operation )','( ji , then σ  

can be fathomed. 

We now turn our attention to the calculation of bounds that can be used to fathom a 

partial schedule σ .  We assume that an upper bound maxC  on the optimal solution is known. 

Assuming that sequence π  of jobs is given, a lower bound on the makespan of any 

completion +σ  of σ  can be obtained by appending to the partial schedule the schedule of all 

remaining operations formed by processing each operation in its fastest possible processing 

mode (i.e., by relaxing the resource constraints for these operations) and scheduling each 
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operation to occur as early as the precedence constraints permit.  This bound, +
maxC , can then be 

used to fathom the node corresponding to σ  whenever maxmax CC ≥+ . 

Another bound based on the amount of remaining resource can also be utilized to fathom 

nodes.  The application of such a bound, which is based on the saturated-processor bound of 

Garey and Johnson (1975), was used in the algorithm defined in Daniels and Mazzola (1994) for 

the complete resource flexibility case.  Denote the set of operations that are being processed at 

time t by R
tΘ , and observe that tt

R
t E

~
UΩ=Θ .  Again, let maxC  be the current upper bound on the 

optimal makespan.  For each operation Θ∈),( ji , compute }ˆˆ{min ijkijkKkij pr
ij

•= ∈κ , and recall 

that S
jw denotes the number of workers who are trained (according to the skill matrix S) to 

operate station j, for each Mj ∈ .  If   

∑∑
Θ∈ΘΘ∈

−−−≥
R
t

ij
R
t ji

ijijk
ji

ij tCrtCW
),(

max
\),(

)(ˆ)(||κ  

or if for any Mj ∈' ,  

∑∑
=Θ∈=ΘΘ∈

−−−≥
'),(

max'
'\),(

)(ˆ)(
jjwithji

ijijk
S
j

jjwithji
ij

R
t

ij
R
t

tCrtCwκ  

then insufficient labor is available for the remaining operations to yield a schedule with 

makespan less than maxC , and the node can be fathomed.  Note in the second set of inequalities 

that the two summations are taken over zero or one operation, since there can be at most one 

operation on station 'j  at time t (we assume that summation over the empty set yields a value of 

zero). 

An additional lower bound can be obtained from the current partial solution at a given 

node as follows.  For each station Mj ∈ , let ),ˆ( ji j  be the last operation scheduled on that 

station in the partial schedule, and let jC  be its completion time.  Let }{minˆ
min jMj CC ∈= , and 
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}{maxˆ
max jMj CC ∈= .  Similarly, for the incumbent solution, for each Mj ∈  let *

jC  be the 

completion time of operation ),ˆ( ji j , and define }{min **
min jMj CC ∈= , and }{max **

max jMj CC ∈= .  If 

*
maxmin

ˆ CC ≥ , the node can be fathomed.  Also, if *
minmax

ˆ CC < , a better incumbent solution can be 

constructed by replacing the corresponding partial schedule in the incumbent solution with the 

partial schedule σ , while starting all the remaining operations max
*
min ĈC − earlier than in the 

incumbent solution.   

To solve an instance of FSPRF to optimality for each possible value of the skill metric, 

Sφ , it is necessary to solve FSPRF(S) for all feasible skill matrices S.  In the computational 

experiments described in Section 6, we solve instances of FSPRF to optimality for n = 5 jobs, m 

= 3 stations, and w = 3 workers utilizing this branch-and-bound algorithm.  The optimal 

solutions from these problems offered valuable insight for designing the heuristic defined in 

Section 5, as well as for understanding characteristics of effective skill matrices.  To improve the 

performance of the branch-and-bound algorithm, the second two levels of the heuristic (which is 

described in the next section) were applied for each skill matrix S to provide a good initial 

starting solution.  In addition, all skill matrices 'S  for which SS p'  were identified, thus 

enabling the application of Proposition 1 to identify an even better starting solution. 

In another set of the computational experiments, FSPRF was solved for each possible 

value Sφ̂  while considering only a restricted set of skill matrices.  For these problems, the 

FSPRF problems were solved in order of increasing value of the flexibility metric Sφ̂ .  The 

heuristic was applied once for each value of Sφ̂ , and the corresponding solution, along with the 

optimal solution from the previous value of Sφ̂ , was used to provide a starting solution for the 

branch-and-bound algorithm.  In addition, if the branch-and-bound algorithm determined that a 

particular skill matrix S could not improve upon an incumbent solution for that value of the 
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flexibility metric, then the algorithm proceeded immediately to the next skill matrix without 

solving problem FSPRF(S) to optimality.  

5.   A Heuristic for FSPRF 
 

In this section we define a heuristic for obtaining approximate solutions to FSPRF.  The 

heuristic operates on three levels, which address, respectively, the selection of a skill matrix, the 

sequencing of jobs, and the scheduling of operations.  In the remainder of our discussion we 

focus on flow shops in which the number of workers is equal to the number of stations; i.e., 

w=m. 

On the first (or highest) level the heuristic subprocedure HSKILL is employed to 

determine an effective skill matrix S that conforms with a specified value of the flexibility metric 

φ̂ .  Recall that S
hM  denote the set of stations on which worker Wh∈  is trained as the worker's 

skill set.  The HSKILL subprocedure determines each worker's skill set (i.e., makes the worker-

skill assignments) by forming a chain in the worker-station graph, G(S), corresponding to skill 

matrix S.  Within the context of chains, additional worker-skill assignments that might be 

required to achieve the desired value φ̂  of the flexibility metric are made based on the marginal 

benefit associated with each possible assignment.   

For a given a value of m and a specified value φ̂ , the HSKILL heuristic identifies the 

largest value of k for which 2, ˆ)(supp mCkm km φ≤= , or equivalently, mk φ̂≤ ; call this value k̂ .  

The skill matrix S is initially set equal to kmC
ˆ, .  If mk φ̂ˆ = , HSKILL terminates, and the FSPRF 

heuristic then proceeds to the next level.  Alternatively, if mk φ̂ˆ < , then an additional 

mkmm ˆˆˆ 2 −= φ  number of 1’s must be added to positions of )supp( k̂m,∆ = 

)supp(C\)supp(C k̂m,1k̂m, +  to complete the skill matrix S.  The selection of these m̂  elements is 
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performed on the basis of ratios that estimate the benefit of increasing the skill set corresponding 

to each of the workers.  

To compute these ratios we first focus attention on the total processing time required on 

each station if all jobs are processed in the same operating mode.  The relative magnitudes of 

these total times measure the potential of each station to become a system bottleneck.  Recall that 

ijk  is the number of possible processing modes for operation (i,j), and ijNij kk
∈

= max  is the 

maximum number of processing modes on station j.  Without loss of generality, we assume that 

all operations have the same maximum number k of possible processing modes.  For each station 

Mj ∈  and processing mode },,1{ kKk L=∈ , define ∑
∈

=
Ni

ijkjk pP ˆˆ to be the minimum total time 

required processing all jobs on station j in mode k. 

Next, consider the set M of stations as ordered by the columns of skill matrix S.  For any 

pair Mjj ∈21 , , define the subset },,2,1{ 211
, 21 jjjM jj L++= .  Again, we apply the 

convention that if mlj >+1  for any l , then it is replaced by the unique Ml ∈' satisfying 

)(mod1
' mljl +≡ .  For example, if m=5, M1,5={2,3,4,5} and M3,2={4,5,1,2}.  For Mjj ∈21 ,  

and a processing mode Kk ∈ , we identify the set }|ˆ{ˆ 2121 ,, jj
lk

jj
k MlpP ∈= .  For any 

21 ,1 jjMq ≤≤ , we then define the subset 21 ,
}{,

jj
qkM  to be the q elements of 21 , jjM  corresponding to 

the q smallest elements of 21 ,ˆ jj
kP (ties, if any, are broken arbitrarily).  Thus, for example, if m=5, 

k=2, j1=1, j2=5, with }100,90,120,100,80{}|ˆ{ 2 =∈ Mjp j , then M1,5={2,3,4,5} (as noted above) 

and 5,1
2P̂ ={100,120,90,100}; for q=2, 5,1

}2{,2M ={2,4} or 5,1
}2{,2M ={4,5} if another alternative is 

chosen for ties; and 5,1
}3{,2M ={2,4,5} for q=3. 
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Finally, to complete the skill matrix S, the HSKILL heuristic fills m̂ additional 1’s in the 

positions of )supp(C\)supp(C)supp( k̂m,1k̂m,k̂m, +=∆ .  For each )supp(),( k̂m,
21 ∆∈jj , we compute 

the ratio: 
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The m̂  positions corresponding to the m̂  smallest ratios k
jj

ˆ
, 21

ρ  (with ties broken arbitrarily) are 

included in skill matrix S, thus completing the HSKILL subprocedure. The application of 

HSKILL heuristic, along with the rationales and computations of these ratios is illustrated in the 

following example. 

Example 4. Using the data from the example problem in Daniels and Mazzola (1994) 

with n=4 jobs, m=4 stations, and w=4 workers, we assume here that 3=k is the maximum 

processing mode of any job.  The job processing times as given in Table 2. 

Table 2. Job Processing Times of a 4-station and 4-job Example Problem 

Job i 
 11ˆ ip

 
12ˆ ip
 

13ˆ ip
 

 21ˆ ip
 

22ˆ ip
 

23ˆ ip
 

 31ˆ ip
 

32ˆ ip
 

33ˆ ip
 

 41ˆ ip
 

42ˆ ip
 

43ˆ ip
 

1  14 13 12  25 15 10  28 16 12  10 5 4 
2  38 19 13  30 24 20  10 8 7  16 12 10 
3  20 14 11  5 4 3  16 13 11  22 17 15 
4  26 18 14  20 10 7  24 17 16  8 7 6 

 

From the data in Table 2, we compute the aggregate (total) processing times jkp̂  for each 

station and processing mode as indicated in the following table. 

Station j 
1

ˆ
jP  2

ˆ
jP  3

ˆ
jP  

1 98 64 50 
2 80 53 40 
3 78 54 46 
4 56 41 35 
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 Now, suppose that HSKILL is to determine a skill matrix for 16/7ˆ =φ .  In this case, 

m=4, 1ˆ =k  and 3ˆˆˆ 2 =−= mkmm φ  elements from supp( )1,4∆  must selected using the ratios 

075.2)2/532/80/()2/8098(1
12 =++=ρ , 803.1)2/542/78/()2/7880(1

23 =++=ρ , 

381.12/422/56/()2/5678(1
34 =++=ρ , and 296.1)2/642/98/()2/9856(1

41 =++=ρ . Hence 

selecting the elements corresponding to the 3 smallest ratios, HSKILL sets skill matrix S equal to 

1,4C , and in addition, set s23= s34= s41=1.  Since the ratio 1
hjρ  seeks to estimate the benefit of 

increasing the skill set of worker h by include station j in the 1-chain 1,4C , it is not surprising that 

1
41ρ  yields the best ratio.  Observe that station 1 with only one worker is much more likely to be 

a bottleneck than is station 4 (since 981̂1 =P  is the highest and 564̂1 =P  is the lowest among 4 

stations).  Additionally, if all operations on station 1 could be processed in mode 2 using a 

second worker, then the total (minimum) processing time would drop by almost 35%.  Thus, if 

worker 4 were cross-trained to staff station 1 in additional to station 4, there is high potential for 

an improvement in system performance.  Note that worker 4 would still need to allocate his or 

her total time between the two stations; hence, the ratio incorporates estimates of the average 

processing time increase on station 4 (reflecting time spend on station 1) and the average (faster) 

processing time on station 1 (resulting from some of the operations being performance in a faster 

processing mode).    

 We conclude this example by considering a case in which 8/7ˆ =φ .  In this case, 3ˆ =k  

and HSKILL must select 2 additional elements from )supp( 3,4∆  to include in S, which is initially 

set equal to C4,3.  Computing the ratios 

 { } 598.2912.2,598.2min}
3/)35()3/2)(56(

3/)5678(98
{},

2/)41(2/)56(
2/)56(98

{min3
14 ==









+
++

+
+

=ρ  
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 { } 520.1520.1,593.1min}
3/)50()3/2)(98(

3/)5678(80
{},

2/)64(2/)98(
2/)98(80
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+
+

=ρ  

 { } 744.1850.1,744.1min}
3/)40()3/2)(80(

3/)8056(78
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2/)53(2/)80(
2/)80(78
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 { } 439.1614.1,439.1min}
3/)46()3/2)(78(

3/)7880(56
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=ρ  

HSKILL then also sets s43=s21=1.  

 The HSKILL heuristic is now summarized. 

Heuristic HSKILL 
Input: Problem size and problem data, including the number of workers w, which is equal to the number of stations m, and a 

specified value φ̂  of the flexibility metric. 

Output: A skill matrix S with FM(S)= φ̂  that defines a chain. 

0. Initialize.  Determine the maximum Mk ∈ˆ  satisfying mk φ̂ˆ ≤ .  Initially, set kmCS
ˆ,= .  If mk φ̂ˆ = , then stop.  

Otherwise, let mkmm ˆˆˆ 2 −= φ , and go to step 1. 

1. Select remaining worker skill assignments.  For each ordered pair )(supp),(
ˆ,kmjh ∆∈ , compute the ratio k

hj
ˆ

ρ .  

For each of the m̂  smallest ratios (breaking ties arbitrarily), set shj=1 for the corresponding pairs (h,j), and then stop. 
 

The second level of the FSPRF heuristic consists of the HSEQ heuristic subprocedure, 

which determines the sequence in which the n jobs should be processed on each station.  The 

sequence determined at this level is used in the subsequent level by the subprocedure HSCHED 

to generate a feasible schedule to FSPRF.  Note that a feasible schedule consists of a schedule of 

operation start times on each station, together with an assignment of specific workers to each 

operation (thus also specifying the processing mode and labor resource requirement of each 

operation).  By utilizing a job sequencing heuristic in conjunction with the operation scheduling 

subprocedure (HSCHED), and alternating between the two, HSEQ iteratively considers a 

number of different job sequences.   

 Specifically, an initial set of operation processing times is calculated using the skill 

matrix S determined by the HSKILL heuristic and assuming that each operation is processed in 
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its fastest mode for this skill matrix.  Given this fixed set of processing times, by relaxing the 

resource constraint, a classical flow shop scheduling problem is obtained.  HSEQ then employs 

the flow shop scheduling heuristic of Nawaz, Enscore, and Ham (NEH) (1983) to determine a 

sequence.  This sequence is then input to the next level heuristic HSCHED routine, which returns 

a feasible schedule of operation start times and also a corresponding set of operation processing 

times.  The schedule that is returned by HSCHED is then compared with the best schedule, 

HBEST, with corresponding makespan value HBESTCmax , and these are updated if an improved 

schedule is realized.  The new set of processing times is then used as input to the NEH heuristic 

and a new sequence is determined.  The procedure is repeated in this manner until the same 

sequence is generated in two consecutive iterations, or until the number of iterations reaches the 

limit, MAXIT.  We now summarize the HSEQ subprocedure. 

Heuristic HSEQ 
Input: Problem data, together with a skill matrix S and a specified value for the parameter MAXIT. 

Output: A heuristic solution for FSPRF consisting of the schedule HBEST with corresponding makespan value HBESTCmax . 

0. Initialize.  Set +∞=HBESTCmax .  Calculate the initial vector of processing times p= }),(|{ Θ∈jipij  by setting the 

initial set of resource requirements r= ∑
∈

Θ∈=
Wr

rjij jisr }),(|{  and then determining the corresponding vector P of 

processing times by assuming operation (i,j) is processed by rij units of workers.  
1. Determine sequence.  Using the vector p of processing times, call the NEH flow shop heuristic, returning a sequence 

π  of n jobs.  If π  is the same sequence obtained in the previous iteration or if the number of applications of this step 
exceeds MAXIT, then stop.  Otherwise, go to step 2. 

2. Determine feasible schedule 

a. Using the sequence π , call HSCHED, returning a feasible schedule, SCHED, with makespan SCHEDCmax .  If 
HBESTSCHED CC maxmax < , update the best schedule found, HBEST and its makespan. 

b. Using the processing times corresponding to SCHED, update vectors p and r.  Return to step 1. 
  

 As mentioned above, the HSCHED subprocedure represents the third level of the FSPRF 

heuristic. At this level we are given skill matrix S, a specified job sequence ),,( 1 nii L=π  in 

which jobs will be processed on each station, and the problem data, including processing times 

ijkp̂  and resource requirements ijkr̂  , for each operation (i,j), where Kk ∈ .  Since both S and the 

sequence π  are specified, we denote the subproblem occurring at this level by FSPRF(S,π ).  
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 The HSCHED heuristic constructs a feasible schedule to FSPRF(S,π ) similarly to the 

construction used in the branch-and-bound algorithm, except that instead of creating multiple 

branches, HSCHED constructs a solution in a single pass by randomly selecting eligible 

operations and corresponding operation processing modes, and then allowing processing modes 

to be increased and additional operations to be scheduled through application of Theorems 1 and 

2 (to avoid unnecessary withholding of the labor resource).  Because of its randomized 

construction and its ability to generate feasible schedules rapidly, the procedure is repeated for a 

specified number, NUMREP, of iterations, and then returns the best solution found, SCHED, for 

problem FSPRF(S, π ) .  

 The HSCHED heuristic systematically schedules job operations and assigns processing 

modes and sets of workers to these operations by beginning at time t=0, and then proceeding in 

order of increasing t as jobs complete processing.  Recall that tΩ  is defined as the set of job 

operations in the partial solution scheduled to start before time t, and F
tW  is the set of workers 

who are free at time t.  For each Mj ∈ , let F
t

F
jt WW ⊆  be the set of workers available at time t 

who can operate station j, and jtŵ  be the number of such workers. Et again denotes the set of 

operations that are eligible to begin at time t and tE
~

 represents the set of operations that are 

actually scheduled to begin at time t.  .  We now summarize the HSCHED subprocedure. 

Heuristic HSCHED 
Input: Problem data, a skill matrix S, a sequence π , and a parameter, NUMREP, indicating the number of replications of the 

partial-schedule construction procedure. 

Output: A feasible schedule, SCHED, with makespan SCHEDCmax  and a corresponding set of operation processing times and labor 

resource requirements. 
 0. Initialize. 

a. Set +∞=SCHEDCmax . 

b. Set t=0, ∅=Ω0 , and jtj wr ˆˆ 0 =  (which is the number of workers who are trained to operate station j). 

1. Select operations and corresponding workers at time t.  Determine Et.  If ∅=tE , set ∅=tE
~

, and go to Step 2.  

Otherwise, define }ˆ|max{*
jtijkijjt wkrKkk ≤=∈=  for each tEji ∈),( .  Randomly select a subset 

tt EE ⊆~
 of operations to begin at time t (along with a corresponding set processing modes) by the following steps.  
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a. Set ∅=tE
~

.  Randomly choose an operation tEji ∈),(  and then randomly select a corresponding 

processing mode },,1,0{ *'
jtjt kk L∈ . Update Et by removing operation (i,j).  If 0' >jtk , include 

operation tEji
~

),( ∈ , then randomly select 'ˆ
jtijk

r  workers in F
jtW  to perform operation (i,j).  Update F

jtW  

by removing this subset of workers, and update jtŵ  by decreasing it by 'ˆ
jtijk

r .  Further update Et by removing 

those operations )','( ji  for which tjw 'ˆ =0.  Repeat this step until ∅=tE . 

b. Apply theorem 1 to the partial schedule generated the proceeding step.  If an operation tEji ∈),(  and a 

corresponding set of workers in F
jtW  are identified for which the conditions of the Theorem are met, then 

assign the workers to the operation, updating *,,,
~

, jt
F
jt

F
ttt kWWEE  and 'ˆ

ijijk
r  accordingly.  Repeat this 

until no set of workers F
tW  meeting the conditions of the Theorem is found. The, repeat this entire step 

applying Theorem 2 at time t to operations in tΩ .  When this has been completed, go to Step 2.  

c. Apply the bounds introduced in the branch-and-bound algorithm to the current partial schedule.  If it is 
determined that a completion of the partial schedule cannot improve on this schedule, then return to Step 0 to 
begin a new repetition of this subprocedure. 

2. Schedule operations at time t and proceed to next t. If ∅≠tE
~

, schedule each tEji
~

),( ∈  to begin at time t in 

processing mode '
jtk  with 'ˆ

jtijk
r  workers assigned to it in Step 1a, and let its completion tie be 'ˆ

jtijkij ptC +=   Then 

(regardless of whether or not ∅=tE
~

) update ttt E
~

UΩ←Ω .  If mnt <Ω  (i.e., not all operations are 

scheduled), calculate }),(|min{' tCandjiCt ijtij >Ω∈= , Update ,'tt ←  and return to Step 1.  Otherwise, 

a complete feasible schedule of job operations has been determined. Compare the makespan of this new schedule with 
SCHEDCmax ; if a better solution has been found, update SCHED and SCHEDCmax .  If the number of repetitions of this 

subprocedure during its current implementation is less than or equal to NUMREP, return to part b of Step 0 to repeat the 
subprocedure and generate a new solution; otherwise, stop.  
 

Observe in Step 1a that the selection of a processing mode of 0 for the randomly selected 

operation corresponds to not scheduling the operation to begin at time t.  This is important in that 

it is sometimes optimal to strategically withhold one or more workers so that they can be used in 

a subsequent time period; hence, to ensure that the heuristic is capable of generating an optimal 

solution, the procedure must accommodate the existence of idle labor 

6. Computational Experiments 
 

We performed a series of experiments to obtain a greater understanding of flow shop 

scheduling with partial labor resource flexibility.  The principal objective of the experiments was 

to explore how the operational benefits derived from resource flexibility change as the level and 

mix of resource flexibility contained in the system vary.  A second objective of the experiments 
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was to provide insight into effective ways of training workers by identifying characteristics of 

skill matrices that lead to high-quality optimal solutions.  This contribution has important 

managerial implications for determining how resource flexibility should be distributed 

throughout the system (through worker cross-training) in order to optimize performance.  The 

final objective of the experiments was to assess the performance of the FSPRF heuristic as a tool 

for identifying close approximations of the optimal solution.  

The FSPRF branch-and-bound algorithm and heuristic were coded in C++ to conduct a 

series of computational experiments.  The test problems were generated using an experimental 

design similar to that presented in Daniels and Mazzola (1994).  Problem instances involve n 

jobs, m stations, and w=m workers.  Each operation can be processed in one of three possible 

modes 3=k , with processing mode k requiring k workers (recall that the actual number of 

processing modes in any particular problem instance also depends on the specified skill matrix).  

The normal (mode 1) processing time, 1ˆ ijp , of each operation (i,j) is an integer randomly drawn 

from the uniform distribution U[10,50bj], where the vector b = (b1,…,bm) specifies the bottleneck 

configuration of the problem.  Higher processing modes for the operation are then given by 

1ˆ)]
1

1(1[ˆ ijijk p
k

p −−= α  

where a is a parameter determining the marginal impact of additional labor on operation 

processing times.  As a increases, the use of additional labor for processing the operation has a 

greater effect on lowering the operation's processing time.  The experiments involve values of a 

= 0.2, 0.4, 0.6, 0.8 so that this effect can be examined in detail.  The test problems also reflect 

m+1 different bottleneck configurations  (b = (1,1,…,1), (1.5,1,…,1), (1,1.5,…,1), and 

(1,1,…,1.5)). 

To achieve the objectives outlined above, three sets of experiments were performed.  The 

first set of experiments involved the solution of 16 test problems involving 5 jobs, 3 stations, and 
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3 workers.  For each of these problems, all of the 57 possible skill matrices were generated, and 

for each skill matrix S the resulting problem instance of FSPRF(S) was solved to optimality 

using the branch-and-bound algorithm.  The second two levels (HSED and HSCHED) of FSPRF 

heuristic were applied to each problem to provide a good starting solution for the algorithm.  The 

16 problems were obtained by considering the four different a values in conjunction with the 

four different bottleneck configurations, and generating one problem instance per combination.  

Problem instances across a given bottleneck configuration are linked by keeping the normal 

processing times 1ˆ ijp  for each operation (i,j) fixed across the four problem instances 

(corresponding to the four different values of a respectively); this structure allowed us to isolate 

the impact of a on the results.  

Recall that the case of no flexibility ( mmIS ×= ) corresponds to the classical flow shop 

(i.e., each worker permanently assigned to one and only one station); the complete flexibility 

case corresponds to the case of mmES ×= , the matrix with each entry being 1; and )(SC  denote 

the optimal makespan of the corresponding FSPRF(S) problem.  The complete flexibility benefit 

is defined as the reduction in the optimal makespan from no flexibility to complete flexibility, 

which equals )()( nnnn ECIC ×× − .  For any particular skill matrix S, the relative benefit achieved 

by S refers to the percentage of the complete flexibility benefit that can be realized by the skill 

matrix specified by S, which is equal to the ratio )]()(/[)]()([ nnnnnn ECICSCIC ××× −− ; this 

quantity is then multiplied by 100 and reported as a percentage.  

Figure 3 shows the distribution of the relative benefit achieved by different types of skill 

matrices as the flexibility metric Sφ  increases from 1/3 to 1 for one of the 16 test problems in the 

first set of experiments.  We observe that a large fraction of the benefit of complete flexibility 

can be obtained with a relatively modest amount of partial flexibility.  In this problem instance, 
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for example, the best skill matrix (i.e., the one with the highest relative benefit value) for 

Sφ =0.67 captures about 95% of the complete flexibility benefit; and that even the best of 

Sφ =0.56 provides over 80% of the benefit of complete flexibility.  We also observe that the 

benefits of labor flexibility rise as the amount of flexibility increases, but with diminishing 

marginal returns (as shown by the concave property of the upper envelope of the graph).    

The data in Figure 3 demonstrate considerable performance variability for different 

matrices with the same value of Sφ ; this observation conveys the importance of the proper mix 

of workers’ skills.  It is interesting to note that some skill matrices actually provided a relative 

benefit that is negative, i.e., for these skill matrices, improved performance would be realized if 

there were no flexibility in the system and each worker were simply assigned permanently to a 

specific station.  A total of 6 such skill matrices exhibited this property for this problem instance.  

An example of such a skill matrix is given below.  

















0
0
1

0
0
1

1
1
0

. 

For this skill set, the first worker must divide time between stations 2 and 3, while workers 2 and 

3 are each dedicated to station 1.  In the example, this skill matrix yields a relative benefit of –

188.6%.  An important managerial implication of this observation is that workers should be 

provided with some direction in selecting an appropriate portfolio of cross-training skills.  

Individual worker self-determination of skills with no consideration of the resulting mix of skills 

across all workers in the system can yield performance that is even worse than that occurring in a 

totally inflexible system. 

Figure 3 also shows the difference in operational performances corresponding to skill 

matrices that are chains, sw-balanced, s-balanced, and others (as classified in Figure 2).  We 

observe that matrices, which are both s-balanced and sw-balanced, yield solutions that occur 
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along the upper envelope of the graph.  This observation provides strong evidence of the 

importance of skill matrices that are both s-balanced and sw-balanced (including chains).  

Moreover, in Figure 3 solutions corresponding to chains consistently occur near the upper 

envelope of the graph for each value of the flexibility metric Sφ , suggesting that chains represent 

an important class of skill matrices.  Further comparison of the performance of (either s- or sw-) 

balanced matrices against those that are not balanced, and chains against non-chains, reveals that 

skill matrices that have any of the attributes tend to result in better solutions than those that 

don’t.  These observations motivate the attributes of effective skill matrices discussed in Section 

2.     

Table 3 summarizes our computational experience with the 16 problems that constitute 

the first set of experiments.  In the table each of the problem types is identified according to the 

bottleneck configuration (b1, b2, b3) and the value of α .  We next report the benefit associated 

with complete flexibility, which is computed by taking the difference between the optimal 

makespans from the normal flow shop and a completely flexible system, and then dividing the 

difference by the latter; the resulting amount is then multiplied by 100 and reported as a 

percentage.  The next five columns correspond to values of the flexibility metric Sφ  ranging 

from 0.44 through 0.89 in increments of 0.11.  For each value of Sφ , we report the percentage of 

the available benefit (i.e., the benefit realized with complete flexibility) obtained by the best 

solution occurring among all skill matrices with the specified value of the flexibility metric Sφ .  

Observe that no columns are included for Sφ = 0.33 and Sφ  = 1.00, since the corresponding 

values in the table would (by definition) equal 0% and 100%, respectively. 

We are also interested in assessing the frequency in which the best solution for each 

value of Sφ corresponds to a skill matrix that is sw-balanced, as well as the corresponding 

frequency for the best-solution skill matrices that define a chain.  These frequencies (reported as 
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percentages) are indicated in the next two columns of Table 3; note that skill matrices 

corresponding to Sφ = 0.33 and Sφ  = 1.00 are not included in these values, since the matrices 

associated with no flexibility and complete flexibility are necessarily sw-balanced and also 

define chains.  The last column reports the solution quality for skill matrices defining chains, i.e., 

for each value of Sφ and each problem instance, the difference between the optimal makespan 

and the makespan corresponding to the best chain occurring among that set of skill matrices is 

reported as a percentage of the optimal makespan.   

In Table 3 we observe that operational performance improves as the amount of labor 

flexibility in the system increases for all bottleneck configurations and for all values of a.  The 

relationship exhibits pronounced diminishing marginal returns, with a significant improvement 

in performance (ranging from 20-61%) realized by adding only one skill to a single worker (i.e., 

for Sφ  = 0.44).  This observation is consistent with Jordan and Graves (1995), who found that 

increasing the flexibility of production facilities even a small amount can yield sizable 

improvements in performance.  We also note that all of the optimal solutions were obtained from 

skill matrices that are sw-balanced, and on the average 75% of the optimal solutions derive from 

chains.  In addition, the quality of solutions corresponding to chains is quite high, with chains 

giving rise to solutions that are on the average within 0.56% of optimality. 

A second, similar set of experiments was performed on problems involving n = 5 jobs 

with m=w=3 stations and workers, and n=4 jobs with m=w=4 stations and workers.  We again 

use m+1 bottleneck configurations and four values of α .  This set of experiments involved five 

replications of each problem type.  To compensate for problem difficulty, we consider only those 

skill matrices that are sw-balanced for the m=3 problems; and for the m=4 problems we further 

restrict attention to skill matrices that define chains (since exhaustive evaluation of the 2306 skill 

matrices, or even the 1102 sw-balanced skill matrices, associated with m=w=4 effectively 
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renders the problem computationally intractable).  The results from the first set of experiments 

suggest strongly that these restricted classes of skill matrices yield high-quality solutions. 

The computational results are presented in Table 4 for n=5 and m=w=3 and in Table 5 for 

n=4 and m=w=4. Tables 4 and 5 are structured similarly to Table 3, with values for each problem 

type averaged over the five replications.  We again see that a large portion of the available 

benefit attributable to labor flexibility is captured as Sφ  is increased modestly over its minimum 

value Sφ  = 0.33 in Table 4 and Sφ = 0.25 in Table 5).  In nearly all cases, over 90% of the 

available benefit is realized with values of Sφ in the middle of the range between no flexibility 

and complete flexibility, again emphasizing that far less than complete flexibility is required to 

capture most of the associated improvements in operational performance.  We also note in Table 

4 that 64.75% of the optimal solutions are derived from chains, and that the best solutions 

generated from chains averaged within 0.7% of optimality.  Thus, this set of experiments 

provides further evidence of the importance of chains in defining an effective class of skill 

matrices.  This justifies the consideration of only these skill matrices when solving the n=m=w=4 

problems (reported in Table 5) and provides a reasonable expectation for the resulting solutions 

to be close approximations to optimal solutions (that would occur if all skill matrices were 

considered). 

Table 6 presents information on the branch-and-bound algorithm and the FSPRF heuristic 

for the second set of experiments.  Specifically, the table reports the average CPU time (in 

seconds) required by the branch-and-bound algorithm to solve each instance of a problem type 

over all of the applicable skill matrices, as well as the average CPU time (in seconds) for the 

heuristic.  The implementation of the FSPRF heuristic used in these experiments employed 

values of MAXIT = 60 and NUMREP = 100.  We also report the average solution quality for the 

FSPRF heuristic, calculated by taking the difference between the makespans of the heuristic 
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solution and the optimal solution and dividing by the makespan of the optimal solution (and 

reported as a percentage).  The results in Table 6 confirm the difficulty encountered in generating 

optimal solutions for even small problem instances.  Even when the solution process is 

constrained to consider only sw-balanced skill matrices (for the n=5, m=w=3 problems) or 

chains (for the n=m=w=4 problems), excessively large computation times are observed.  In 

contrast, the solution times for the FSPRF heuristic are quite reasonable. In both cases, 

computational times grow significantly with increasing a, suggesting that problem difficulty is 

most pronounced when processing times are sensitive to the number of workers assigned to an 

operation. The FSPRF heuristic also yields good approximations, e.g., heuristic solutions average 

3.6% above the best solution for a given value of Sφ .  The overall quality of the heuristic 

solutions is therefore quite sufficient to provide important insight into the nature of the 

operational benefits of partial resource flexibility, which is the principal objective of these 

experiments.  

In the third set of experiments the FSPRF heuristic was applied to problems involving n = 

10 and 20 jobs and m = w = 5 stations and workers.  This set of experiments involved problem 

types corresponding to the six bottleneck configurations and a = 0.2, 0.4, 0.6, 0.8, and five 

replications were generated for each problem type.  For this set of experiments, MAXIT=100 and 

NUMREP=100 in the FSPRF heuristic.  Table 7 presents the average benefit realized by the best 

heuristic solution for complete flexibility compared with that for the normal flow shop.  The 

average relative benefit achieved for each value of the flexibility metric Sφ  is then reported (for 

brevity, the values of Sφ are reported in increments of 0.08), as are the average CPU times for 

the heuristic.  The results in Table 7 again show that performance improvements accumulate 

steadily with Sφ , and that the benefits associated with labor flexibility increase most rapidly for 

higher values of α .   As expected, the computational effort required to generate approximate 
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solutions grows with problem size; however, the heuristic represents a reasonable alternative for 

solving larger problems. 

7. Concluding Observations and Remarks 
 

This paper has addressed a flow shop scheduling problem in which processing time 

control is exercised through the dynamic assignment of partially-flexible labor resources.  Our 

primary objective was to ascertain the extent to which the operational benefits attributable to 

labor flexibility can be captured by cross-training the work force so that each worker can be 

assigned to only a subset of the stages in the system.  We presented metrics for partial flexibility, 

formulated the flow shop scheduling problem with partial resource flexibility, and characterized 

those skill sets that consistently yield superior operational performance.  Our computational 

results suggest that a large portion of the available benefit associated with labor flexibility can be 

realized with a relatively small investment in cross training. 

The experiments also demonstrated that operational performance for a given level of 

flexibility can vary widely depending on the mix of skills resident in the work force.  A 

somewhat surprising result was that arbitrarily allocated partial flexibility can result in 

operational performance that is considerably worse than that achieved by an inflexible system.  

Thus, to consistently obtain high-quality solutions, scheduling, skill allocation, and resource 

assignment must be closely coordinated decisions.   

The results further indicate that s-balanced and sw-balanced skill matrices and, in 

particular, skill matrices derived from chains are particularly effective in distributing skills 

across workers to optimize operational performance.  This is an important finding in that chains 

constitute a direct connection with the earlier work of Jordan and Graves (1995) on partially 

flexible production facilities.  Moreover, the work-force skill sets corresponding to chains 

involve training workers to operate stations occurring consecutively in the production line.  
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Hence, another connection is immediately established with other recent work by Bartholdi and 

Eisenstein (1996) and Zavadlav, McClain, and Thomas (1996) on self-buffering production lines, 

where the efficacy of worker flexibility across consecutive workstations has been established.  

Our research therefore provides a unifying framework for linking these two heretofore seemingly 

disparate studies.  When viewed in this manner, our finding that a large percentage of the benefit 

of complete flexibility can be realized from a reasonably small amount of carefully selected 

partial flexibility connects and reinforces similar findings noted in Jordan and Graves (1995) and 

Zavadlav, McClain, and Thomas (1996).  

This research represents an important step toward understanding the benefits of partial 

work force flexibility in flow shops and also toward characterizing effective ways in which 

workers should be cross-trained.  The FSPRF problem is extremely difficult computationally.  

Future research can be directed toward the development of other (exact and heuristic solution 

approaches to the problem).  Recent advances in heuristic approaches to scheduling problems 

have resulted in effective solution procedures for difficult scheduling problems (see, for 

example, Daniels and Mazzola 1993, Lee, Lei , and Pinedo 1997, and Daniels, Hoopes and 

Mazzola 1997).  In addition, future research can also be directed toward the further 

characterization of effective worker-skill combinations, the consideration of other measures of 

performance, and the incorporation of partial resource flexibility to other production 

environments.  
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Appendix 

Proof of Proposition 2.  If 
*,kmCS = , then 0ˆ =Sβ , 0=Sβ , and the Proposition immediately follow.  

Otherwise, since )supp(C)supp(S)supp(C 1km,km, ** +⊂⊂ , we have 1=Sβ , and: 
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Proof of Theorem 1. Recall that the sets },{ GgWg ∈  form a partition of W, and that Mg is a subset of M 

of stations representing stations which any worker in group Wg can operate.  Observe that there is a one-to-one 
mapping between the group index G and the set of non-empty subsets of the m-element set M, with Gg ∈  

corresponding to MM g ⊆ .  Thus, the number of worker groups 12 −= mG  is equal to the number of non-

empty subsets of an m-elements set.    
Let xg be the number of workers in group g for g=1, 2, …, 2m-1.  Then the number of skill matrices is 

equal to the number of integer solutions to the equation: 
wxxx m =+++

−1221 L , where xg ≥ 0.      (A1) 

Let yg = xg +1.  Equation (&) is then equivalent to: 

12
1221 −+=+++

−
mwyyy mL , where yg ≥ 1.     (A2) 

The number of integer solutions to equation (A2) is equivalent to the number of ways a set of w+2m-1 
elements can be divided into (2m-1) number of non-empty subsets, which is equal to the right hand side for S(m,w) 
in Theorem 1. 
Now assume that m=w, and let k denote the number of 1’s in a chain.  If k is a multiplier of m, say k=k*m for some 
k*, there is then only one chain with k 1’s in the matrix; otherwise, let k*m<k<(k*+1)m for some k* and k**=k-
k*m.  To generate chains of k 1’s, k** extra 1’s must be added to the k*-chain Cm,k*, restricted to the m potential 

positions of supp(Cm,k*+1)\ supp(Cm,k*).  Therefore, there are 






**k
m  chains of k 1’s. Thus, the number of chains of 

k 1’s with mkkmk )1*(* +≤≤  is given by 




++





+





= m

mmmm L102  for any obtainable value of k*.  

The possible obtainable values of k are m, m+1, …, m2. These values of k can be rearranged as m ≤ k ≤ 2m, 
2m ≤ k ≤ 3m, …, (m-1)m ≤ k ≤ mm=m2.  Therefore, there are total of (m-1) obtainable values of k*, namely 
{1,2,…,m-1}, satisfying mkkmk )1*(* +≤≤ , and there are 2m number of chains for any of these (m-1) values 
of k*.   However, chains with k=2m, 3m, …, (m-1)m are double-counted in the process, and subtracting these from 
the total yields the right hand side of C(m,m) in Theorem 1. ¦  

 

Proof of Theorem 2.  Let σ  be such a partial schedule, and let +σ  be any completion of σ .  Suppose that there exists 

an operation )','( ji  and a set of workers H that satisfy the conditions of the Theorem.  Let σ~  be a modified partial schedule 

that is identical to σ  except for operation )','( ji  and the assignment of additional workers in H.  There are two cases to 
consider. 

 Case 1.  If tEji ~)','( ∈  in schedule +σ , then tEji ~)','( ∈  in partial schedule σ  ; hence the only difference 

between partial schedules σ  and σ~  is the reduced processing time of operation )','( ji  in σ~  resulting from the assignment 

of workers in H to that operation.  Observe that the modified partial schedule σ~  will also be generated by the branching 

procedure.  In addition, the completion +σ~  of σ~  formed by using the operations scheduled subsequently to time t with the 

same starting times, processing modes, and labor assignments as those occurring in +σ  will be resource feasible and the starting 

time of any of the subsequent operations will not be delayed beyond that occurring in +σ  (because of insufficient labor), since 
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}{minˆ '
''' hHhkji tpt ∈≤+ .  This completion of schedule σ~  will also be generated by the branching procedure.  Since the 

completion time of every operation in +σ~  is less than or equal to the completion time of the corresponding operation in +σ , 
σ  can be fathomed. 

 Case 2.  If tt EEji ~\)','( ∈ , then in schedule +σ , operation )','( ji  is scheduled on station 'j  at some time 

t̂ >t.  If this operation is scheduled with a processing mode '' jik  that is less than or equal to the maximal processing mode 'k  

satisfying the conditions in the Theorem, then the start time of operation )','( ji  can be moved earlier to occur at time t and the 

conditions ensure that there is a subset of workers t
F

t WWH
~

\⊆  who can be assigned to the operation without affecting any 

of other operations in tt E~UΩ .  Call the resulting partial schedule σ~  and again observe that it will be generated by the 

branching procedure.  In addition, by the definition of *
'' jit  and the fact that *

'''''ˆ jikji tpt ≤+ , none of the workers in H will be 

needed for a subsequent operation before the completion of operation )','( ji .  Once again, we can form the completion +σ~  of 

σ~  by using the schedule from +σ for scheduling operations occurring after time t; moreover, because operation )','( ji  has 
been shifted to an earlier time, it might be possible to shift some of subsequent operations to an earlier starting time (maintaining 

the same processing modes and labor assignments).  Therefore, the completion times of all operations in schedule +σ~  are no 

later than the corresponding completion times in +σ , and σ  can be fathomed. 

 On the other hand, if operation )','( ji  is scheduled to begin in partial schedule σ  at time tt >ˆ  with processing 

mode '' jik  that is strictly greater than the maximal value of 'k  satisfying the conditions of the Theorem, then it will be 

necessary to wait for additional workers who can operate station 'j  beyond those available in 
B

tW~ .  The earliest possible time 

that this can occur is 
''''

*
'' ˆ

jikjiji pt − .  Thus, the earliest possible completion time for operation )','( ji  in schedule +σ  is 

*
'' jit .  However, consider the partial schedule σ~  that is identical to σ  except that operation )','( ji  starts at time t using any 

processing mode 'k  satisfying the conditions of the Theorem.  For this partial schedule, the completion time of operation 

)','( ji  is no later than 
*

'' jit , and using the same reasoning as above to identify a completion +σ~  of this partial schedule, σ  

can be fathomed. ¦  

Proof of Theorem 3. Let +σ  be any completion of σ .  If such a (sub)set of workers
F

tWH ~⊆  and an operation 

tji Ω∈)','(  exist, then all workers Hh∈ , who would otherwise be idled until (at the earliest) time }{minˆ '
hHh

tt
∈

=  can be 

assigned to this operation.  Denote the resulting partial schedule by σ~ .  With the improved processing time of this operation, its 

completion time will be ''''' ˆ kji
s

ji pt + , which is no greater than t̂ , thus we use the schedule of operations in +σ  occurring 

after time t to identify a completion +σ~  which allows σ  to be fathomed.  ¦  
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Figure 3. Distribution of Relative Benefit Achieved by Skill Matrices 
(Matrices are Classified According to Figure 2) 
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Table 1. Number of Different Types of Skill Matrices 

 
Where:  S(m,w)  = the number of skill matrices 

  F(m,w)  = the number of matrices that are feasible 
  M(m,w)  = the number of matrices that are s-balanced 
 W(m,w)  = the number of matrices that are sw-balanced 
 C(m,w)  = the number of matrices that are chains  
 F\MW(m,w)   = the number of matrices that are feasible but neither s-balanced nor sw-

balanced 
 M\W(m,w)  = the number of matrices that are s-balanced but not sw-balanced 
 W\M(m,w)  = the number of matrices that are sw-balanced but not s-balanced 
 MW\C(m,w)   = the number of matrices that are both s-balanced and sw-balanced but 

not chains if  chains are defined; otherwise, it is the number of matrices 
that are both s-balanced and sw-balanced 

Stations
Workers w=3 w=4 w=5 w=4 w=5 w=6 w=4 w=5 w=6
S(m,w) 84 210 462 3,060 11,628 38,760 46,376 324,632 1,947,792
F(m,w) 57 168 402 2,306 9,902 35,228 33,031 270,907 1,762,957
M(m.w) 36 66 114 682 1,884 4,700 7,211 34,772 148,102
W(m,w) 42 78 132 1,102 3,076 7,638 19,241 95,282 421,152

F\MW(m,w) 12 81 246 1,100 6,382 26,156 12,810 168,990 1,304,735
M\W(m,w) 3 9 24 104 444 1,434 980 6,635 37,070
W\M(m,w) 9 21 42 524 1,636 4,372 13,010 67,145 310,120

MW\C(m,w) 18 57 90 532 1,440 3,266 6,231 28,012 111,032
C(m,w) 15 N/A N/A 46 N/A N/A N/A 125 N/A

m=3 m=4 m=5
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Table 3. Computational Experience with Initial Set of Test Problems 

Percentage of Available Benefit 
Realized for Partial Flexibility 

Measure (φS) 

 
 

Bottleneck 
Configuration α  

Benefit of  
Complete  
Flexibility 

(%) 0.44 0.56 0.67 0.78 0.89 

 
 

Sw-balanced  
% Optimal 

 
 

Chains  
% 

Optimal 

Solution 
Quality 

for Chains 
(%) 

(1,1,1)            0.2          
0.4 
0.6 
0.8 

4.7 
8.8 

13.2 
21.2 

20 
27.8 
42.3 
38.5 

70 
83.3 
84.6 
61.5 

80 
88.9 
88.5 
87.2 

90 
94.4 
92.3 
94.9 

100 
100 
96.2 
97.4 

100 
100 
100 
100 

80 
80 
80 
60 

0.28 
0.58 
0.50 
0.31 

(1.5,1,1)         0.2 
0.4 
0.6 
0.8 

6.2 
11.2 
18.9 
30.0 

61.1 
64.5 
51.0 
42.3 

77.8 
80.6 
71.4 
71.8 

88.9 
87.1 
93.9 
88.7 

94.4 
93.5 
100 
95.8 

100 
100 
100 
100 

100 
100 
100 
100 

100 
100 
60 
80 

0.0 
0.0 

0.46 
0.47 

(1,1.5,1)         0.2 
0.4 
0.6 
0.8 

11.1 
19.2 
27.5 
39.5 

51.6 
50.0 
53.7 
46.6 

77.4 
82.0 
83.6 
80.7 

87.1 
94.0 
92.5 
94.3 

93.5 
98.0 
97.0 
97.7 

96.8 
100 
100 
100 

100 
100 
100 
100 

100 
100 
80 
60 

0.0 
0.0 

0.24 
0.93 

(1,1,1.5)         0.2 
0.4 
0.6 
0.8 

8.9 
16.6 
26.8 
37.3 

45.2 
48.1 
50.0 
52.4 

67.7 
68.5 
72.5 
75.7 

87.1 
88.9 
83.8 
92.2 

96.8 
94.4 
93.8 
96.1 

100 
96.3 
97.5 
98.1 

100 
100 
100 
100 

80 
60 
60 
20 

0.27 
0.20 
1.58 
2.55 
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Table 4. Computational Experience with Second Set of Experiments (n=5; m= w=3)  
 

Percentage of Available Benefit Realized 
for Partial Flexibility Measure (φS) 

 
 
Bottleneck 
Configuration  α  

Benefit of 
Complete 
Flexibility 

(%) 0.44 0.56 0.67 0.78 0.89 

 
 

Chains % 
Optimal 

 
Solution 

Quality for 
Chains (%) 

(1,1,1)              0.2 
0.4 
0.6 
0.8 

5.89 
11.61 
18.31 
26.85 

54.99 
48.61 
47.28 
43.18 

81.07 
79.98 
73.95 
76.34 

96.59 
91.07 
89.39 
89.48 

100 
97.15 
95.78 
97.06 

100 
99.44 
99.17 
100 

60 
52 
60 
72 

0.41 
0.70 
0.75 
1.16 

(1.5,1,1)          0.2 
0.4 
0.6 
0.8 

8.88 
16.74 
25.19 
37.14 

53.37 
56.34 
54.43 
51.91 

83.41 
83.61 
80.41 
77.93 

91.44 
93.12 
91.99 
90.60 

96.14 
97.53 
96.95 
96.24 

98.62 
99.58 
99.74 
99.68 

84 
88 
68 
68 

0.14 
0.15 
0.40 
0.54 

(1,1.5,1)          0.2 
0.4 
0.6 
0.8 

8.51 
15.97 
24.21 
34.32 

44.92 
47.18 
46.94 
44.51 

74.94 
79.57 
79.35 
79.57 

95.24 
93.01 
90.48 
91.75 

98.29 
97.59 
96.80 
97.11 

100 
99.29 
99.78 
99.59 

68 
64 
72 
64 

0.39 
0.70 
0.83 
1.20 

(1,1,1.5)          0.2 
0.4 
0.6 
0.8 

9.12 
17.56 
27.46 
39.56 

48.11 
48.92 
49.20 
50.51 

80.29 
79.89 
77.14 
80.43 

92.36 
91.57 
92.49 
93.63 

98.44 
96.04 
98.14 
97.90 

100 
99.33 
99.05 
99.69 

64 
64 
40 
48 

0.32 
0.53 
1.01 
1.58 
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Table 5. Computational Experience with Second Set of Experiments ( (n=m=w=4). 

 
 

Percentage of Available Benefit Realized  
for Partial Flexibility Measure (φS) 

 
 
Bottleneck 
Configuration α  

Benefit of 
Complete 
Flexibility 

(%) 0.31 0.38 0.44 0.50 0.56 0.63 0.69 0.75 0.81 0.88 0.94 

(1,1,1,1)          0.2 
                        0.4 
                        0.6 
                        0.8 

11.55 
22.03 
35.62 
53.40 

24.42 
24.49 
25.22 
25.33 

46.45 
50.74 
49.56 
46.99 

63.27 
66.97 
63.53 
60.63 

76.70 
77.32 
76.34 
75.02 

84.44 
88.92 
88.06 
85.89 

92.60 
96.85 
94.01 
93.86 

96.37 
99.65 
98.54 
98.43 

98.49 
100 

99.12 
100 

100 
100 
100 
100 

100 
100 
100 
100 

100 
100 
100 
100 

(1.5,1,1,1)       0.2 
                        0.4 
                        0.6 
                        0.8 

14.34 
27.97 
42.21 
61.62 

42.43 
45.55 
46.87 
46.22 

57.18 
61.11 
62.59 
59.28 

74.05 
71.23 
74.96 
70.48 

84.07 
81.93 
79.71 
80.38 

90.72 
90.76 
90.44 
88.40 

95.94 
94.28 
94.96 
95.70 

98.87 
97.28 
98.41 
98.34 

99.47 
98.63 
99.64 
99.86 

100 
100 
100 

99.86 

100 
100 
100 
100 

100 
100 
100 
100 

(1,1.5,1,1)       0.2 
                        0.4 
                        0.6 
                        0.8 

12.14 
23.72 
35.76 
52.38 

18.97 
20.14 
21.73 
22.59 

45.55 
43.92 
42.69 
42.94 

65.84 
67.73 
67.49 
63.37 

81.68 
82.72 
81.54 
75.25 

88.41 
89.93 
91.67 
85.79 

94.05 
93.75 
95.52 
94.75 

98.08 
98.47 
98.81 
98.59 

100 
99.57 
100 

99.52 

100 
100 
100 
100 

100 
100 
100 
100 

100 
100 
100 
100 

(1,1,1.5,1)       0.2 
                        0.4 
                        0.6 
                        0.8 

13.56 
26.63 
39.32 
58.56 

22.29 
24.83 
28.18 
24.73 

44.07 
45.83 
43.83 
43.14 

74.45 
68.62 
63.27 
60.88 

86.44 
77.61 
75.65 
74.13 

94.37 
87.50 
85,80 
86.93 

97.75 
93.4 
96.92 
95.69 

98.92 
98.48 
99.53 
98.73 

100 
100 
100 

99.81 

100 
100 
100 
100 

100 
100 
100 
100 

100 
100 
100 
100 

(1,1,1,1.5)       0.2 
                        0.4 
                        0.6 
                        0.8 

12.01 
23.48 
36.08 
55.34 

28.74 
26.92 
28.25 
28.31 

47.71 
44.58 
46.30 
46.87 

61.60 
59.52 
58.46 
60.97 

77.49 
74.41 
76.26 
74.81 

86.71 
84.91 
87.34 
85.94 

92.33 
92.70 
92.79 
93.21 

96.06 
95.19 
97.05 
97.44 

97.78 
97.86 
99.32 
99.41 

98.52 
100 

99.71 
100 

100 
100 
100 
100 

100 
100 
100 
100 
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Table 6.  Performance of FSPRF Branch-and-Bound Algorithm and Heuristic 
 
 

Number of 
jobs and 
Stations 

(n,m) 

 
 
Bottleneck 
Configuration   α  

Branch-and-Bound 
Algorithm 
CPU Time 

(sec) 

 
Heuristic 

CPU Time 
(sec) 

 
Heuristic 

Solution Quality 
(Percent) 

(5,3) (1,1,1)              0.2 
                         0.4 
                         0.6 
                         0.8 

102.34 
446.26 

1574.32 
3707.80 

6.60 
19.26 
30.04 
76.84 

2.66 
3.59 
3.63 
4.05 

(5,3) (1.5,1,1)           0.2 
                        0.4 
                        0.6 
                        0.8 

64.40 
252.86 

1299.78 
3191.88 

12.58 
20.72 
49.94 
92.44 

2.10 
2.77 
3.59 
3.35 

(5,3) (1,1.5,1 )         0.2 
                        0.4 
                        0.6 
                        0.8 

57.06 
247.84 

1190.50 
3828.62 

17.68 
37.66 
74.92 
44.46 

2.63 
3.38 
3.82 
4.59 

(5,3) (1,1,1.5 )         0.2 
                        0.4 
                        0.6 
                        0.8 

126.76 
499.34 

1600.38 
2688.72 

50.40 
46.58 
85.94 

131.92 

2.70 
3.19 
3.61 
3.84 

(4,4) 
 

(1,1,1,1)            0.2 
                         0.4 
                         0.6 
                         0.8 

2369.30 
5369.30 
6309.39 

13142.17 

22.09 
36.10 
68.18 
41.80 

3.38 
4.45 
4.70 
5.25 

(4,4) (1.5,1,1,1)         0.2 
                        0.4 
                        0.6 
                        0.8 

3686.13 
6400.34 
6471.77 

19792.09 

20.09 
41.56 
74.18 
96.90 

2.78 
3.50 
3.91 
4.14 

(4,4) (1,1.5,1,1)         0.2 
                        0.4 
                        0.6 
                        0.8 

5988.95 
6751.79 
9026.93 

10597.29 

22.03 
24.77 
47.50 
79.48 

1.89 
2.55 
3.95 
4.76 

(4,4) (1,1,1.5,1)         0.2 
                        0.4 
                        0.6 
                        0.8 

2793.88 
3750.91 
6434.18 

11067.11 

22.54 
36.32 
79.28 
52.84 

2.23 
3.98 
4.36 
5.33 

(4,4) (1,1,1,1.5)         0.2 
                        0.4 
                        0.6 
                        0.8 

1786.24 
2553.24 
5693.67 

10925.00 

24.67 
66.11 
89.41 

110.59 

2.50 
3.32 
3.91 
4.55 
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Table 7. Computational Experience with FSPRF Heuristic on Larger Problems (m=5). 

(Approx.) 
Percentage Complete Benefit Obtained  

with Partial Flexibility Measure (φS) 

Number 
of 

Jobs 
(n) 

 
Bottleneck 
Configuration α  

 

(Approx.) 
Benefit of  
Complete  
Flexibility 
(Percent) 0.24 0.32 0.40 0.48 0.56 0.64 0.72 0.80 0.88 0.96 

CPU 
Time 
(sec) 

10 (1,1,1,1,1)       0.2 
                        0.4 
                        0.6 
                        0.8 

3.7 
8.2 
13.6 
22.0 

0 
0 
0 
0 

0 
0 
0 

6.3 

0 
1.4 
26.8 
32.3 

0 
36.2 
36.5 
49.6 

25.0 
51.0 
76.5 
68.3 

25.0 
67.1 
93.0 
84.1 

25.0 
70.8 
93.0 
91.1 

50.0 
93.3 
97.4 
95.5 

100 
93.3 
97.4 
97.9 

100 
100 
100 
100 

230.1 
427.4 
382.0 
631.3 

10 (1.5,1,1,1,1)    0.2 
                        0.4 
                        0.6 
                        0.8 

4.0 
7.4 
15.0 
24.2 

25.0 
32.0 
12.5 
15.9 

25.0 
35.1 
20.0 
36.0 

50.0 
35.1 
20.0 
36.0 

50.0 
47.7 
58.5 
60.9 

59.1 
53.1 
66.7 
70.8 

84.1 
78.7 
75.8 
89.8 

84.1 
78.7 
81.7 
89.8 

84.1 
100 
92.4 
92.0 

100 
100 
100 
94.1 

100 
100 
100 
96.2 

210.7 
345.1 
463.7 
504.4 

10 
 

(1,1.5,1,1,1)    0.2 
                        0.4 
                        0.6 
                        0.8 

5.7 
10.1 
17.4 
26.8 

0 
0 
0 
0 

7.9 
11.1 
6.9 
10.9 

7.9 
30.9 
24.6 
42.8 

7.9 
30.9 
42.1 
50.3 

15.7 
36.1 
80.7 
73.9 

50.0 
92.3 
80.7 
83.0 

75.0 
92.3 
85.8 
85.9 

100 
92.3 
100 
91.1 

100 
100 
100 
97.7 

100 
100 
100 
98.4 

252.0 
287.0 
474.5 
794.7 

10 (1,1,1.5,1,1)    0.2 
                        0.4 
                        0.6 
                        0.8 

4.0 
10.4 
17.8 
25.7 

0 
5.4 
7.3 
11.8 

16.0 
14.2 
13.0 
29.1 

16.0 
21.5 
27.2 
47.4 

16.0 
30.6 
63.3 
62.7 

20.0 
58.8 
80.9 
76.3 

40.0 
78.8 
80.9 
82.0 

40.0 
91.1 
84.8 
86.7 

80.0 
100 
91.7 
93.8 

100 
100 
100 
99.3 

100 
100 
100 
100 

216.9 
356.8 
501.3 
636.1 

10 (1,1,1,1.5,1)    0.2 
                        0.4 
                        0.6 
                        0.8 

3.4 
8.7 
15.3 
25.1 

0 
0 
0 

5.6 

0 
7.1 
7.9 
9.1 

5.4 
7.1 
27.8 
35.0 

33.3 
16.6 
64.5 
62.0 

66.7 
50.9 
78.8 
75.1 

92.0 
92.0 
91.7 
84.6 

100 
92.0 
96.2 
89.4 

100 
100 
96.2 
92.8 

100 
100 
100 
100 

100 
100 
100 
100 

174.9 
349.6 
407.7 
614.7 

10 (1,1,1,1,1.5)    0.2 
                        0.4 
                        0.6 
                        0.8 

3.4 
11.1 
17.7 
28.7 

0 
0 

4.1 
6.2 

0 
3.6 
4.1 
20.2 

0 
12.0 
44.6 
49.4 

25.0 
30.4 
66.2 
70.1 

50.0 
63.4 
80.5 
75.9 

75.0 
63.4 
86.1 
85.3 

100 
70.4 
92.2 
94.0 

100 
88.9 
98.5 
97.0 

100 
100 
100 
100 

100 
100 
100 
100 

209.86 
334.8 
457.6 
606.6 

20 (1,1,1,1,1)       0.2 
                        0.4 
                        0.6 
                        0.8 

1.2 
2.7 
6.0 
11.8 

0 
0 
0 

9.0 

0 
0 
0 

9.0 

0 
0 

9.7 
14.3 

0 
0 

18.4 
37.2 

25.0 
20.0 
48.4 
51.8 

50.0 
46.1 
58.7 
69.3 

80.0 
66.1 
83.8 
85.9 

100 
80.0 
100 
98.6 

100 
100 
100 
98.6 

100 
100 
100 
100 

547.7 
738.5 
1040 
2040. 

20 (1.5,1,1,1,1)    0.2 
                        0.4 
                        0.6 
                        0.8 

2.6 
7.2 
12.0 
18.9 

25.0 
17.3 
11.1 
32.8 

35.1 
18.7 
18.4 
32.8 

35.1 
18.7 
21.3 
40.8 

35.1 
41.1 
41.0 
48.3 

75.0 
45.4 
44.4 
67.3 

100 
73.4 
58.1 
84.2 

100 
80.0 
75.3 
88.6 

100 
100 
81.1 
93.5 

100 
100 
98.1 
95.3 

100 
100 
100 
97.8 

525.8 
988.3 
1561. 
1886 

20 (1,1.5,1,1,1)    0.2 
                        0.4 
                        0.6 
                        0.8 

1.8 
5.3 
9.8 
16.5 

0 
0 
0 
0 

0 
0 

4.1 
11.0 

0 
0 

19.9 
25.9 

0 
8.1 
40.4 
51.3 

33.3 
27.0 
61.9 
70.9 

66.7 
32.7 
65.6 
77.0 

100 
60.4 
90.8 
88.2 

100 
88.8 
92.5 
92.5 

100 
100 
100 
97.8 

100 
100 
100 
100 

561.9 
1030. 
1505 
1779. 

20 (1,1,1.5,1,1)    0.2 
                        0.4 
                        0.6 
                        0.8 

0.5 
5.6 
7.9 
13.1 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 

8.5 
17.3 

0 
1.9 
22.6 
46.6 

25.0 
1.9 
46.0 
69.3 

50.0 
4.5 
67.3 
77.1 

50.0 
20.8 
67.3 
81.2 

100 
40.8 
80.0 
98.0 

100 
81.9 
100 
100 

100 
81.9 
100 
100 

532.4 
801.6 
1434 
1782 

20 (1,1,1,1.5,1)    0.2 
                        0.4 
                        0.6 
                        0.8 

2.6 
6.5 
12.5 
18.9 

0 
0 

13.0 
11.1 

0 
26.9 
19.5 
13.8 

8.3 
26.9 
26.2 
32.2 

8.3 
41.6 
46.2 
58.3 

41.7 
41.6 
60.5 
63.7 

60.0 
71.6 
81.2 
87.2 

66.7 
77.0 
81.2 
91.8 

66.7 
99.0 
84.8 
95.6 

100 
100 
100 
100 

100 
100 
100 
100 

457.9 
936.0 
1308 
1554 

20 (1,1,1,1,1.5)    0.2 
                        0.4 
                        0.6 
                        0.8 

4.1 
8.7 
15.4 
24.8 

0.6 
7.3 
14.5 
24.5 

0.6 
7.3 
14.5 
24.6 

0.6 
14.1 
46.1 
51.6 

10.8 
44.3 
62.8 
63.4 

10.8 
67.6 
73.6 
75.7 

30.8 
71.0 
85.5 
82.8 

40.6 
80.7 
97.0 
93.2 

80.0 
91.5 
97.0 
99.2 

100 
100 
100 
100 

100 
100 
100 
100 

726.4 
1287 
1271 
1664. 

 

 

 


