
RC22630 (W0211-054) November 6, 2002
Computer Science

IBM Research Report

Multi-Personality Network Interfaces

Eric Van Hensbergen, Freeman L. Rawson
Austin Research Laboratory

International Business Machines
Austin, TX 78758

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Multi-Personality Network Interfaces

Eric Van Hensbergen Freeman Rawson
evanhensbergen@us.ibm.com frawson@us.ibm.com

Austin Research Laboratory
International Business Machines

Austin, TX 78758

October 31, 2002

Abstract

This report investigates the use of network interface (NIC) programming to provide multiple per-
sonalities or styles for the network interface, including ones that are similar to traditional storage and
serial device interfaces. Doing so simplifies the implementation of other types of I/O access over the
network at the link layer and helps advance the notion that the network can become the “I/O bus” of
clustered systems such as blade servers. This type of support is unnecessary for traditional network
environments in which all network access is done through the TCP/IP protocol stack. However, when
using link-layer protocols and working directly with commodity network hardware, the mismatch be-
tween some types of I/O traffic and the behavior of the network interface becomes apparent, and it
is then that the notion of alternative interface personalities becomes valuable. Although there are
emerging interconnection architectures such as InfiniBand that offer solutions to this problem, they
are currently beyond the range of commodity hardware. In addition, a previous, related effort on link-
layer access to remote storage devices, the Ethernet Block Device (EBD), motivates this research. In
the course of prototyping EBD, some of the obvious, but often overlooked, differences between net-
work I/O and storage I/O became very apparent, and this effort attempts to solve these problems by
concurrently offering multiple interface styles for the network adapter, including one that is better
suited for block I/O operations.

1 Introduction

Some recent server blade designs [2], in the interest of minimizing the amount of hardware and the
overall complexity of the system design, have had just one input/output connection, the Ethernet in-
terface. This means that the blades are dependent on other server systems for all of their storage
resources as well as console access and any other I/O services required. By adding additional hard-
ware and software to certain blades, the system designer can specialize them, creating blades that
offer a particular type of I/O service such as storage or console. The resulting hardware, its operating
system and the clustering software increasingly treat the network connection as though it were an I/O
bus.

Unfortunately, there are some important differences between the way in which traditional network
interface hardware operates and the interfaces exported over the I/O bus by storage adapters and
consoles. For example, work on the Ethernet Block Device (EBD) [13], which is a link-layer remote
storage protocol, highlighted the tendency of an aggressive block device driver to flood the network

1

transmitter when under heavy I/O loads. The flooding is exacerbated by the requirement that the
driver decluster write operations, turning one logical output operation created by the operating system
to optimize disk operation, into a much larger number of separate network transmissions. Reads do
not suffer from this problem since only the request is transmitted, and a single read receives a number
of responses that is equal to the total number of blocks that it requests. The relatively small default
size of the Linux network transmission queue makes the flooding problem even worse. In addition,
while the network driver must provide buffers in advance to hold the unexpected and unsolicited
arrival of packets, the natural buffering scheme for storage drivers is to provide all buffers only when
the driver makes a request for either input or output. Disk input does not show up unannounced.
Changing the personality of the network interface to be more like a storage interface allows the EBD
implementation, for example, to send all requests to the device in clustered form and to use the block
buffers that it already has rather than allocating and using a separate set of network buffers.

On a blade server with the network interface as the only I/O device, another critical device that it must
emulate using the network interface is the console. Although the standard keyboard/video/mouse
(KVM) is complex, it is also unnecessary since operating systems and firmware generally support
flowing all console traffic over a serial interface. Thus, the problem becomes one of providing enough
of a serial interface over the Ethernet network that the serial console code simply works. But the need
for console access by very low-level and primitive code such as firmware and early operating system
initialization leads to two important requirements. First, the Ethernet interface must offer a serial
device emulation that is both detailed, in the sense that the primitives provided are those of the serial
hardware, and faithful, in the sense that the apparent behavior is close to that of the serial device.
Second, the network interface must do the serial device emulation with essentially no assistance from
the host system or the host system’s firmware.

Since modern network interfaces, especially ones for gigabit Ethernets, are often programmable and
have one or more relatively fast processors and a significant amount of memory, it is now possible
to program them to offer more than one personality or style of interface. This research explores the
architecture and design of network interface programming that offers multiple interface styles or per-
sonalities that operate concurrently over the same physical interface. One may also consider this as
a form of hardware/software architectural morphing or configuration to fit the intended use of the
network interface.

This report considers the architecture of the network interface software required to support this en-
vironment as well as two important, specific personalities – the traditional Ethernet interface and a
storage interface. Additionally, it discusses serial device emulation briefly. The report defines a sim-
ple strategy for prototyping and evaluating this idea as well as discussing related and possible future
work.

2 Architecture

To architect a multiple-personality network interface, one must understand, in general terms, the
types of personalities required. Additionally, there are a number of common details that one must
specify including

� the programming environment on the network interface device

2

� the manner in which the network interface presents the personalities to the host operating sys-
tem

� the way in which the personalities share the network interface hardware
� the mechanism for error reporting and management
� the relationship to related features such as VLANs [5] and channel bonding.

2.1 Personality Types

As sketched in Section 1, the motivation for this work is to distinguish among different types of I/O
especially traditional network I/O, storage access and console support) that have to be done over the
network interface on a server blade whose only I/O connection is the network. A number of these
differences are readily apparent from prototyping EBD and writing storage networking code at the
link layer. More generally, this work identifies three important categories of personality.

� unsolicited I/O
� solicited I/O
� device emulation

Unsolicited I/O is the traditional form of network I/O where incoming traffic arrives asynchronously
and without an explicit request from the device or the host. In addition, unsolicited I/O is assumed to
do an inline transmission, leading to a significant limitation on the number of transmission requests
that the interface processes in a single burst. Solicited I/O models traditional storage I/O, in which
the host and the device initiate all I/O transfers, both incoming and outgoing Moreover, solicited I/O
does out-of-line transmission and does not such a strict limit on the number of requests that the host
can queue to it. Finally, device emulation provides a low-level interface that so closely resembles
some other I/O device that device drivers and firmware written for the device being emulated operate
properly using it. The only example of device emulation considered in this report is that of a serial
device. The fact that the architecture targets three important personality types is not meant to limit
it to just those three although detailed consideration of other, radically different I/O personalities is
beyond the scope of the current effort.

2.2 Programming Environment

Supporting multiple network interface personalities requires an environment capable of exporting all
of them concurrently and in such a way as to manage how the different interfaces interfere with each
other. The problem is not to avoid interference, since that, obviously, is not possible, but rather to
manage it in a disciplined way.

Since the network interface exports the multiple personalities, it must run some type of programming
environment such as a very simple operating system. Section 4 discusses the current state of such
programming environments, but they clearly exist and have for some time. All that the architecture
requires is a programming environment on the network interface card that allows the concurrent
execution of code for each of the personalities and a set of common services including

� interface and packet classification

3

� configuration management
� packet scheduling and bandwidth management
� error reporting and management.

For reasons described in Section 2.2.2, the personalities require some form of encapsulation, isolating
them from each other.

2.2.1 Interface and Packet Classification

For each concurrently executing personality, the network interface programming offers a separate set
of interfaces to and from the host system. In particular, this means that the programming environment
separates or classifies the requests coming from the host and assigns them to the correct personality
based on personality-specific information that is passed with each request. It is as if the network
interface were a server running several daemon RPC server processes, each with separate sets of
entry points for each personality. Figure 1 illustrates this idea, one that is commonly used in other
types of distributed storage implementations.

Figure 1: The Network Interface as a Remote Procedure Call Server

In reality of course, there is only one physical interface, and the programming environment contains
enough programming logic to assign each host-initiated request to the correct personality. Similarly,
the programming environment contains a classifier for frames arriving from the network that allows
it, based on the frame type, to assign the frame to a particular personality. Unclassifiable frames on
either end are dropped. Figure 2 shows the programming environment’s classification scheme.

The frame types used by the different personalities must not overlap to allow the network interface to
classify them correctly and route them to the correct personality for presentation to the host. From the
perspective of the host operating system, each personality is a separate device with a separate set of
apparently independent device resources. This assists in the host-side classification. The programming

4

environment manages the flow of packets through the network interface using a separate flow for each
personality. In many ways, this design resembles that of a router with multiple flows, representing
different traffic types, across it ([11], [8]). In fact, one interesting way to view a network interface
that supports multiple personalities with different types of traffic in an intelligent fashion is as a
router between the memory of the host and the network switch. Much of this architecture rests on
that analogy. There is another useful analogy between network interfaces with multiple personalities
and routers. One can think of each personality as representing a separate logical data plane on the
interface while the configuration mechanisms described in Section 2.2.2 constitute the control plane of
the interface.

2.2.2 Configuration Management

The term configuration management in this context means controlling how many and what personali-
ties the card offers as well as dealing with firmware downloads from the host. The required personality
management functions include

� defining what personalities the card offers
� loading the code for a personality
� starting a personality
� stopping a personality
� unloading the code for a stopped personality.

One complicating factor is that many network device drivers assume that they can, at initialization,
freely download software onto a network interface card, and their implementations may well depend
on the details of the software that they download. This suggests that the best form of programming
environment exhibits some hypervisor-like characteristics in that it provides a safe environment for

Figure 2: Classification by the Network Interface Programming Environment

5

the execution of the download without excessive interference with the other, concurrently executing
personalities. It is extremely important, for example, that the initialization of the host’s network
driver not destroy the serial device emulation already set up to service the serial console, but at the
same time, it is equally important that the use of multiple interface personalities not require any
change to standard, OS-provided, network device drivers.

2.2.3 Resource Allocation and Packet Scheduling

The initial architecture of the multiple-personality network interface does not attempt to specify how
the programming environment allocates resources among the personalities. All of the flows are best
effort and have limited and fixed queue sizes. Transmission and reception traffic rates which exceed
the capacity of the queues and the ability of the network interface to clear them using best effort means
cause dropped packets. On the host side, these are reported as queuing errors to the calling program.
To reduce the load caused by dropped packets, the packet dropping logic occurs early in the processing
sequence. Clearly, there are other packet scheduling approaches worthy of exploration, and Section 5
offers some ideas along these lines.

2.2.4 Error Reporting and Management

Since the personalities share a single set of network interface hardware, except in the channel bonding
case considered later, the software environment must report errors to the correct personality based on
the operation and frame incurring the error. This means that the programming environment must cor-
rectly classify the personality incurring the error and pass the error indication to the personality logic.
How the personality handles the error and presents it to the host is personality-dependent. Certain
errors are adapter-wide and must be reported through the configuration management subsystem.

2.3 Standard Personalities

To illustrate these concepts, this document describes, from the perspective of the host operating sys-
tem, the interfaces offered by two of the three personalities that motivate this work.

2.3.1 Traditional Network Interface

The traditional network interface is completely unchanged with the exception that certain Ethernet
frame types, those used by the other personalities, are illegal. Currently, only two frames types fall
under this restriction, 0x666 and 0x667.

2.3.2 Storage Interface

The overall goal of the storage interface personality is to simplify the code required to implement
link-layer network block drivers such as EBD. In particular, this means

� providing solicited I/O for both input and output

6

� making it possible for the driver to work in terms of storage buffers such as the Linux 2.4
buffer head structures and the Linux 2.5 bio structures

� supporting zero-copy input and output by the driver
� offering a simple way to determine how many requests the device can hold in its queue before

dropping one
� having a way of notifying a device driver when there is space on the personality’s queue
� giving device drivers a simple way to receive responses to their requests.

These features are implemented using a number of interfaces. The interfaces architected here are
somewhat Linux-specific although they should move easily to another operating system with different
internal representations of block I/O requests and network device structures.

I/O Initiation Using the storage interface, drivers initiate I/O requests with
dev st queue xmit. The dev st queue xmit function which accepts as its arguments a struct

net st device*, a pointer to the storage interface’s extension of the standard struct net device

structure, and a struct request* which points to the block I/O request structure to be queued. This
function returns 0 if the request is successfully queued to the device, 1 if the queue is full and other
values indicating various types of permanent errors. It is the responsibility of the storage personality
to notify the caller by presenting an error response to each buffer passed if there is a transmission error
subsequent to the queuing operation. Drivers use this interface to pass both read and write requests
to the storage personality.

Queue Management The storage personality presents a set of three queue management primitives
that block drivers use to determine the capacity and manage their use of the transmission queue. (It
is not entirely clear that the third interface, the upcall registration for space available, is necessary.)
The first interface, dev st get max queuelen, retrieves the maximum size of the storage personal-
ity’s transmission queue while the second, dev st get current queuelen, returns the number of
request elements on the queue. Finally, dev st register queue callback registers a function in
the block driver that the storage personality invokes when there is available space in the queue: a
parameter that is passed to the function indicates the number of available slots. The frames delivered
to the storage personality by the standard network device driver drive the invocation of the registered
function.

Request Completion Finally, the storage personality must have some way of indicating that a
request, or part of a request, is complete. Rather than working on the basis of a whole request,
since the operating system may batch unrelated buffers into a single block I/O request, it reports a
response on the completion of each buffer of the request, allowing the driver to indicate to the op-
erating system that the buffer is complete. To receive the completion indications, the block device
driver uses the dev st register completion callback function, which accepts three arguments,
a net st device*, a two-byte frame type and a pointer to the function that the storage personality
calls on receiving an incoming frame of the appropriate type. The prototype of the callback function is
void (*dev st completion callback)(struct net st device*, void*). When the storage
personality receives a frame of the registered type, it invokes the callback function, passing the in-
coming packet to the driver. The device driver must cast the packet to the appropriate data type.

7

2.3.3 Serial Console Emulation

The serial console emulation is naturally very device dependent and requires trapping accesses to the
I/O addresses (and ports on the x86) that represent the serial device resources as well as presenting
interrupts in the same manner and using the same IRQs as the serial hardware.

2.4 VLANs and Channel Bonding

This architecture does not depend on the use of either VLANs [5] or channel bonding. However, the
use of VLANs, especially those that frame packets with the IEEE-specified VLAN framing, makes
classification much simpler if the personalities map one-to-one to the defined VLANs. This is clearly
the preferred configuration. Cisco/Intel-style VLANs that do not use the IEEE-defined VLAN framing
have no impact on this architecture.

Channel bonding is ignored by the all personalities in this architecture: they treat the bond device as
a standard network device with standard driver interfaces. However, if present, channel bonding may
be used in future extensions that do the type of resource management suggested in Section 5.

3 Prototype

Given the complexity of programming the network interface and the limited amount of time to devote
to doing a prototype of the multiple personality concept, the implementation proposed below runs en-
tirely on the host system as a Linux 2.4 kernel module. It creates a second set of device interfaces
to the network driver and encapsulates the logic that hides the differences between traditional net-
work I/O and storage I/O. Since this section describes only a proposed prototype, it describes only the
personalities that the prototype provides and the execution model. The proposed prototype offers the
traditional network interface personality and the storage personality. The current design does not
include a personality for serial device emulation.

3.1 Storage Personality Data Structures

The data structures that the storage personality prototype maintains provide link-layer storage net-
work drivers to operate solely in terms of the buffer head and request structures. The storage
personality uses a structure net st device that describes the personality and its current state. It
includes a list head for a chain of request structures that are currently outstanding as well as
current and maximum count values that simplify the implementation of the queue management func-
tions. It also contains a pointer to the net device structure for the network device itself. The intent
of the design of the data structures is to allow the direct use of the request structure to manage the
transmission of storage network requests. To reduce the number and complexity of retransmission,
the maximum number of queued request structures is large, generally much larger than the number
of network transmissions that the network driver can queue.

8

3.2 Storage Request Initiation

When the storage network driver calls dev st queue xmit, the storage personality determines if
there is space on the queue of pending requests. If not, it returns 1 immediately. It then checks
the actual network device queue. If there is space for the request, declustered if necessary, it does any
declustering required, allocates the required sk buff structures and puts the request or requests on
the queue. It also saves a list of the requests queued to the network device along with the addresses
of the associated buffers: this list is used to fill the storage network device driver’s buffers on reads
from the incoming packets. During this time, the code must ensure that there are no other callers
putting elements on the queue. Otherwise, if the queue is full, the network code guarantees that
NET TX ACTION will run when the next TX interrupt arrives from the device. If there is not enough
space on the queue, the request is placed on the internal list. In either case, the code returns 0 to the
caller.

On every NET TX ACTION, the logic implementing it calls a function provided by the storage device
personality that determines if there is space on the device queue for the next request, declustered if
necessary, and if so, allocates any sk buff structure required and queues them to the device. In the
prototype, the storage personality maintains the driver’s requeust ordering although it is by no means
clear that this is the optimal design choice.

3.3 Storage Response Delivery

The storage personality acts as a packet handler for frame type 0x667 received on the underlying
network device by using the standard packet handling mechanisms provided by the Linux kernel. The
kernel invokes the packet handler under the control of the NET RX ACTION tasklet upon receiption of
an RX interrupt from the network interface device. To emulate the behavior of a storage personality
running on the network interface hardware, the personality code also copies any incoming data from
the standard Linux sk buff structures to the buffer pointed to by the buffer head by matching the
incoming packet with an entry on the list of previously sent requests. If all of the expected responses
have been received, it retires the request from the list.

3.4 Execution Model

The storage personality executes as in two different environments. On initial entry, when the code is
able to queue the decluster request to the real network device, it runs completely under the control of
the disk task queue since EBD is a pluggable block driver and does all of its request queue processing
when the disk task queue runs. Otherwise, for transmission operations, it runs, as mentioned in Sec-
tion 3.2, under the control of the NET TX ACTION tasklet. On the receive side, the storage personality
always runs under the control of the NET RX ACTION tasklet.

3.5 Relationship to Packet Scheduling and Traffic Control

In addition to CPU scheduling, the behavior of the storage personality is also affected by the packet
scheduling done by the kernel in its attempt to shape network traffic and do traffic control. This code
can change the order in which the system processes packets as well as dropping packets in certain

9

circumstances. As indicated in Section 2.2.3, the current architecture and prototype attempt only best
effort, FIFO scheduling on both transmission and reception. Thus, on transmission, the code uses the
default FIFO packet scheduler. On reception, packets are passed to the storage personality and the
traditional network interface personality in the order received. Clearly, this is an area that merits
further investigation as discussed in Section 5.

3.6 EBD Changes

Adding the storage personality requires a number of changes to EBD, most of them involving the
removal of existing code that is replaced by functions in the storage personality. In particular, all of the
tasklet scheduling code and essentially all of the code dealing with transmitter flooding disappears. In
addition, EBD no longer registers as the packet handler for frame type 0x667. Instead, it registers two
callbacks, one to handle situations in which space becomes available on the transmission queue and
one to receive responses from the server. When processing incoming requests, EBD queues them to the
storage personality until the queuing operation returns 1, at which point it turns on flow control. When
the storage personality calls the queue space callback, it turns flow control off and resumes queuing
to the storage personality for transmission. The buffering inside the storage personality should make
this a relatively rare event. The storage interface invokes the second registered callback on the arrival
of a response to a previous request. When the callback gets control, any data returned by the server
is already in the buffer originally passed on the request. As a result, EBD is able to do “zero-copy”
input and output, and there is no need for the code in the current implementation that does zero-copy
output using paged sk buffs. In fact, with the storage personality, EBD no longer contains any code
for dealing with sk buff structures or directly with the standard network device.

3.7 Evaluation

There are two ways in which one should evaluate this prototype. The first is in terms of the changes
made to EBD outlined above. As should be apparent from the previous section, using the storage
personality reduces the complexity of the EBD code and allows it to manage only a single type of
buffer, the one used by the block I/O subsystem.

The second form of evaluation, one that assesses the performance impact, is more difficult to do since
the prototype runs on the CPU with the revised EBD driver. To quantify the performance effect of
the storage personality, one may use a scheme that assigns time to EBD and the storage personality.
First, one executes a workload using the original EBD driver and determines the amount of time spent
inside the driver by instrumenting it with code that records the value of the CPU timestamp counter
on driver entry and exit. Then one repeats the experiment with the revised EBD driver. The difference
in the time spent inside the driver is an approximate measure of the performance benefit of the storage
personality.

3.8 Current Status

The prototype described here has yet to be implemented and evaluated.

10

4 Related Work

With the advent of network interfaces with powerful on-board processors and relatively large amounts
of memory, there have been a number of research and commercial projects that attempt to make use
of them to offload the host system or to offer functional enhancements.

4.1 Programming Environments

To take advantage of the newer, more powerful network interface adapters, researchers and developers
have written a number of programming environments for use on them. Two early examples of such
programming environments are the programming environment for Myrinet developed as part of the
Princeton Shrimp project [1] and Spine [3], an extensible operating system for a programmable gigabit
Ethernet card. More recently, there is continuing, but as-yet unpublished, work at Rice University on
an FPGA-based gigabit Ethernet card that is programmable by the host operating system. Finally,
there is a set of emerging commercial products that do TCP/IP and iSCSI [12] off-load, presumably
concurrently, so that both standard TCP/IP and iSCSI traffic can share the same physical network
interface.

4.2 The Network Interface as an Asymmetric Multiprocessor

Magoutis and others [10] are developing open source implementations of the Direct Access File System
(DAFS) [6] on commodity hardware and operating systems. In a related paper ([9]) Magoutis suggests
treating the CPU of a commodity system and the processor on the network interface card as an asym-
metric multiprocessing system and modifying the interface to the network adapter by splitting the
programming logic between the CPU and the network adapter’s processor in a non-standard way.

4.3 Uses of Programmable Network Interfaces

There are a number of proposals and projects that present novel uses for programmable network in-
terfaces. A good example is the recent work of Kim, Pai and Rixner [7]. They use part of the memory
of the network adapter as a cache to speed the delivery of static web content. As a second example, the
purpose of the Shrimp work cited above is to support high-speed user-level communication between
machines in a Shrimp cluster.

4.4 More Expressive Device Interfaces

A recent paper by Ganger [4] suggests using firmware programming on disk adapters to support more
expressive interfaces than the standard read and write operations between operating systems and
storage devices. One can apply the same idea to the storage personality by modifying the personality
code that runs on the network interface.

11

5 Future Work

Beyond the implementation of multiple personalities on network interface hardware, the most impor-
tant area for further exploration is that of packet scheduling and traffic control. The architecture and
prototype discussed above use best effort techniques for handling the traffic associated with each per-
sonality and combine them using a first-come, first-served scheme. However, there is no guarantee
that this is optimal, and there may even be situations in which this causes incorrect system behavior.
Previously, the different types of traffic went over different I/O devices, but with multiple interface
personalities and the network as the only I/O device, they are multiplexed onto a single physical con-
nection. This makes it possible, for example, for one type of traffic to starve another. Even if the
system behaves correctly, more sophisticated packet scheduling among the personalities may yield
performance benefits on important classes of workloads.

Doing sophisticated packet scheduling and traffic management in the context of multiple network
interface personalities requires two types of research. First, one needs a way to translate the desired
I/O and system characteristics into a set of policies for the traffic flows associated with the individual
personalities. Second, the programming environment on the network interface card (or, in the case of
the prototype, inside the Linux kernel) must be able to translate these policies into a set of resource
allocation and scheduling decisions for the network interface’s processor, memory, transmitter and
DMA hardware. The paper by Qie et al [11] offers some interesting suggestions along similar lines in
the context of network routers.

However, such work offers significant benefits. In particular, it goes even further than the current
design does by preventing, rather than merely hiding, the tendency of aggressive link-layer network
block drivers like EBD to flood the transmitter hardware. Moreover, with the appropriate policies, a
storage personality can incorporate some information about the capacity of the server as well, reducing
the complexity of the flow control logic in the device driver.

Another possible area for future investigation is the development of more sophisticated and cooperative
interfaces between the operating system and the network interface personalities. As mentioned in
Section 4 Ganger [4] recently proposed a research program on cooperative interfaces between operating
systems and storage devices that relies on programming disk adapter firmware to pass additional
information and operation types between operating systems and storage devices. Similar ideas are
applicable to all of the personalities offered by a multi-personality network interface.

6 Conclusions

The work described here provides the basis for prototyping multiple interface styles or personalities
on a network adapter. However, until the implementation of the prototype described in Section 3 is
complete, it is difficult to judge the value of these ideas. If the prototype shows that is is possible to
simplify the implementation of link-layer storage networking drivers and indicates that a complete
implementation on the network interface would offer superior performance, the idea merits a more
thorough study. If, on the other hand, there is no reduction in code complexity or some indication of a
performance loss, there is no reason for further investigation.

12

References

[1] C. Dubnicki, A. Bilas, K. Li, and J. Philbin. Design and implementation of virtual memory-
mapped communication on myrinet. In Proceedings of the 1997 International Parallel Processing
Symposium, April 1997.

[2] W. Felter, T. Keller, M. Kistler, C. Lefurgy, K. Rajamani, R. Rajamony, F. Rawson, B. Smith, and
E. VanHensbergen. On the performance and use of dense servers. Submitted to the IBM Journal
of Research and Development, 2002.

[3] M. Fiuczynski, R. Martin, T. Owa, and B. Bershad. Spine: A safe programmable and integrated
network environment. In Eight ACM SIGOPS European Workshop, September 1998.

[4] G. Ganger. Blurring the line between oses and storage devices. Technical report, Carnegie Mellon
University, December 2001.

[5] IEEE. IEEE standards for local and metropolitan area networks: Virtual bridge local area net-
works, IEEE Standard 802.1Q-1998, 1998.

[6] J. Katcher and S. Kleiman. An introduction to the direct access file system.
http://www.dafscollaborative.org, June 2000.

[7] H. Kim, V. Pai, and S. Rixner. Increasing web server throughput with network interface data
caching. In Proceedings of the Tenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, October 2002.

[8] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. The click
moduler router. ACM Transactions on Computer Systems, 18(3), August 2000.

[9] K. Magoutis. Design and implementation of a direct access file system (dafs) kernel server for
freebsd. In Proceedings of the BSDCon 2002 Conference, 2002.

[10] K. Magoutis, S. Addetia, A. Fedorova, M. Seltzer, J. Chase, A. Gallatin, R. Kisley, R. Wick-
remesinghe, and E. Gabber. Structure and performance of the direct access file system. In Pro-
ceedings of the 2002 USENIX Annual Technical Conference, 2002.

[11] Xiaohu Qie, Andy Bavier, Larry Peterson, and Scott Karlin. Scheduling Computations on a
Software-Based Router. In Proceedings of the ACM SIGMETRICS 2001 Conference, pages 13–
24, June 2001.

[12] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E. Zeidner. iscsi.
http://www.ieft.org/internet-drafts/draft-ietf-ips-iSCSI-17.txt, September 2002.

[13] E. Van Hensbergen and F. Rawson. Revisiting link-layer storage networking. Technical Report
RC22609, IBM Research, October 2002.

13

