
RC22644 (W0211-186) November 19, 2002
Computer Science

IBM Research Report

Who Speaks for Wolf

John C. Thomas, Catalina M. Danis, Alison Lee
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

WHO SPEAKS FOR WOLF?
John Thomas, Catalina Danis, and Alison Lee

jcthomas, danis, alee @us.ibm.com
IBM T. J. Watson Research Center

We are exploring and developing the seeds of a socio-technical Pattern Language as well
as associated tools and methodologies to support their use in software design, and
developing software components that can be used to develop applications based on the
Pattern Language. A Pattern is the named solution to a recurring problem. A Pattern
Language is a lattice of such Patterns that cover a coherent field. The socio-technical
domain includes groupware, community websites, team ware, and chat. More generally,
the socio-technical domain includes a consideration of how technology and social
factors interact.

 We see many uses for a Pattern Language in this domain; for instance, it can provide
support throughout the software development process. It can help developers understand
and analyze problems and create designs. Because a Pattern tends to collect together
those sub-problems that must be dealt with in concert, a Pattern Language can also serve
as a useful guide for project management structure, for testing and debugging, for
maintenance, for documentation, and for migration; indeed, it can even help guide
marketing and sales efforts by providing a succinct way of relating functionality to
benefits. Theoretically, any form of “design rationale” might be useful in these same
ways throughout the software life cycle. Inducing developers to write detailed “design
rationale” documents de novo, however, has in practice proven extremely difficult. By
contrast, once a community of practice becomes familiar with a Pattern Language, it is
much easier to simply refer to the utilized Patterns and add a few notations.
 Although we feel that our Pattern Language may prove quite useful in software
development, its use is certainly not limited to that domain. Such a Pattern Language
should also prove useful for groups and communities trying to self-organize and become
more effective as well as managers and consultants; anyone who needs to work
collaboratively. More broadly, the planet faces problems such as global warming and
overpopulation; these require that we find ways to organize collective intelligence and
action more urgently than ever before (Thomas, 2001).

 We focus on the socio-technical domain partly because it matches our own previous
research and experience (e.g., Thomas, 1996; Lee, et. al. 2001; Danis, et. al., 2002) but
mainly because we feel this particular domain is timely; considerable knowledge
relevant to designing such systems exist, but that knowledge does not yet exist in a form
that is very useful or usable for the typical software developer or other practitioner or for
communities interested in self-improvement and self-organization.

 A Pattern Language can provide useful information for a designer because it focuses
on problems in particular contexts and their solutions (Bayle, et. al. 1997). We believe it
can also serve as a bridge between the requirements of users and designers, helping to
discover many of the unspoken requirements that are otherwise often hard to surface
early in design (Thomas and Carroll, 1978). If these requirements are not surfaced,
people may be led into finding (and even testing) an optimal solution to a problem that is
not the real problem (Thomas and Kellogg, 1989) because it avoids subtle differences in

 2

context, users, or tasks. Moreover, a Pattern Language can also serve as a lingua franca
among the many stakeholders in complex design situations (Erickson, 2000) where the
communication process is not ‘simply’ one between users on the one hand and designers
on the other.

 Our Pattern Language is currently organized at the top level with reference to four
basic human drives postulated by Lawrence and Nohria (2002). These are the drive to
acquire things and experiences, the drive to defend, the drive to bond and the drive to
learn. Any given group may be interested in any combination of these, but our working
hypothesis is that a designer will typically be trying to focus on one of these issues at a
time and this focus can help determine which portion of the Pattern Language to
consider. We further break down the drive to acquire into those situations that relate to
productivity (i.e., the emphasis is on the product of the activity) and those situations
where the greater emphasis is on the pleasure of the process itself. At this point, we’ve
constructed about 75 patterns and are viewing these merely as a seed for a community to
further add to as well as discuss the process of building Pattern Languages.

 We are attempting to create patterns using several heuristics. One is to deconstruct
existing social applications to see what patterns are implicit in their design. A second is
to explore mapping Alexander’s (Alexander, et. al., 1977) patterns from the physical
world to the virtual world. A third heuristic, however, is to look at effective social
practices in a variety of cultures. It is in this context that the pattern “Who Speaks for
Wolf?” arose.

Problem: Problem solving or design that proceeds down the wrong path can be costly or
impossible to correct later. As the inconvenience and cost of a major change in direction
mount, cognitive dissonance theory (Festinger, 1957) makes it somewhat likely that the
new information will be ignored or devalued so that continuance along the wrong path is
likely.

Context: Complex problems such as the construction of new social institutions or the
design of complex interactive systems require that a multitude of viewpoints be brought
to bear. Unfortunately, this is all too often not the case. One group builds a "solution" for
another group without fully understanding the culture, the user needs, the extreme cases,
and so on. The result is often a "system" whether technical or social, that creates as
many problems as it solves.
 The idea for this pattern comes from a Native American (Iroquois) story transcribed
by Paula Underwood (1983). In brief, the story goes as follows. The tribe had as one of
its members, a man who took it upon himself to learn all that he could about wolves. He
became such an expert, that his fellow tribespeople called him “Wolf.” While Wolf and
several other braves were out on a long hunting expedition, it became clear to the tribe
that they would have to move to a new location. After various reconnaisance missions, a
new site was selected and the tribe moved.
 Shortly thereafter, it became clear that a mistake had been made. The new location
was in the middle of the wolves’ breeding ground. The wolves were threatening the
children and stealing the drying meat. Now, the tribe was faced with a hard decision.
Should they move again? Should they post guards all day and night? Or, should they
destroy the wolves? And, did they even want to be the sort of people who would kill off

 3

another species for their own convenience?
 At last it was decided they would move to yet another new location. But as was their
custom, they also asked themselves, “What did we learn from this? How can we prevent
making such mistakes in the future.” Someone said, “Well, if Wolf would have been at
our first council meeting, he would have prevented this mistake.”
 “True enough,” they all agreed. “Therefore, from now on, whenever we meet to make
a decision, we shall ask ourselves, ‘Who speaks for Wolf’ to remind us that someone
must be capable and delegated to bring to bear the knowledge and interests of any
missing stakeholders.”

Forces:
 * Gaps in requirements are most cheaply repaired early in development; it is important
for this and for reasons of acceptance (as well as ethics!) by all parties that all
stakeholders have a say throughout any development or change process.
 *Logistical difficulties make the representation of all stakeholder groups at every
meeting difficult.
 *A new social institution or design will be both better in quality and more easily
accepted if all relevant parties have input.

* Once a wrong path is chosen, both social forces and individual cognitive dissonance
make it difficult to begin over, change direction or retrace steps.

 4

Solution: Provide automated remindings of stakeholders who are not present. These
could be procedural (certain Native Americans always ask, "Who Speaks for Wolf" to
remind them) or visual or auditory with technological support.

Examples: Some groups make it a practice to “check in” at the beginning of any meeting
to see whether any group members have an issue that they would like to have discussed.
In “User Centered Design”, and “Contextual Design” methodologies, an attempt is made
to get input from the intended users of the system early on in the design process.

Resulting Context: When every stakeholder’s views are taken into account, the solution
will be improved in quality and in addition, there will be less resistance to implementing
the solution.

Rationale: Much of the failure of "process re-engineering" can be attributed to the fact
that "models" of the "is" process were developed based on some executive's notion of
how things were done rather than a study of how they were actually done or asking the
people who actually did the work how they were done. A "should be" process was
designed to be a more efficient version of the "is" process and then implementation was
pushed down on workers. However, since the original "is" model was not based on a very
complete picture of reality, the "more efficient" solution often left out vital elements. We
hope that this type of mistake is not being remade in the field of knowledge management,
but fear that many such systems are attempts to provide a purely technological solution in
a situation that calls for a socio-technical approach (Thomas, Kellogg, and Erickson,
2001).

 In any complex human endeavor, once a wrong path is initiated, it becomes
progressively more difficult to change. For instance, in “A behavioral analysis of the
Hobbit-Orcs problem”, (Thomas, 1973), people found it difficult to solve a simple
puzzle when it appeared that they had to “undo” progress that has already been made. In
more complex endeavors, not only does individual cognitive dissonance make changing
direction difficult. In addition, social and logistical factors multiply the difficulties of
changing paths.
 Technological and sociological "imperialism" provide many additional examples
where the input of all the stakeholders is not taken into account. Of course, much of the
history of the US government's treatment of the Native Americans was an avoidance of
truly including all the stakeholders.
 A challenge in applying the "Who Speaks for Wolf" pattern is to judge honestly and
correctly whether, indeed, someone does have the knowledge and delegation to "speak
for Wolf." If such a person is not present, we may do well to put off design or decision
until such a person, or better, "Wolf" can be present.

Known Uses: As a variant of this, a prototype creativity tool has been created. The idea
is to have a "board of directors" consisting of famous people. When you have a problem
to solve, you are supposed to be reminded of, and think about, how various people would
approach this problem. Ask yourself, "What would Einstein have said?" "How would
Ghandi have approached this problem?" And so on. This prototype can be viewed at the
following:
www.research.ibm.com/knowsoc/

 5

In a previously published study (Desurvire & Thomas, 1993), Human Computer
Interaction specialists, computer programmers, and individuals with a background in
neither field were asked to do a kind of “heuristic evaluation” of a user interface design
under one of two conditions. In one condition, they were simply asked to find as many
potential problems as possible and to suggest new features. In a second condition, they
were successively asked to try to find potential problems and suggest new features from
various perspectives including a cognitive psychologist, a behavioristic psychologist, an
occupational therapist, a worried mother, and so on. Subjects in the various conditions
had equal amounts of time, but those subjects who were specifically asked to take
different perspectives, on average, found more actual usability problems and made a
greater number of suggestions than those who were not given the suggestion to look at
the problem from these various perspectives.

Discussion. In the case of the tribal experience that gave rise to the story and subsequent
heuristic pattern, “Who Speaks for Wolf?”, the people of the tribe knew every member of
the tribe. That is, all the stakeholders were known, even if all were not present.
Furthermore, because of the nature of their culture, it was presumed that each person
would have to “live with” the consequences of every other person and their family and
friends continuing to be a part of that tribe. Thus, not only were all the stakeholders
known, but every stakeholder was likely to remain a stakeholder with continuing
influence. Under these circumstances, everyone is wise to consider quite seriously the
concerns and perspectives of every other stakeholder, not only because greater overall
wisdom will result, but also because of future negative consequences that would occur if
someone’s concerns were not at least respectfully considered. In many circumstances
today, we live under more complex circumstances. During discussions at the DIAC02
conference, it was brought up that we may not always know who all the relevant
stakeholders are. Furthermore, because of complex property rights and power
relationships, some people may believe that some stakeholders may be ignored without
consequence. Arguably, history has repeatedly shown that, in the long term, the belief
that some stakeholders may be ignored without consequence, is delusional. Ultimately,
those people whose concerns are not addressed because of power relationships will be
heard and there will be a reckoning. It is beyond the scope of this paper, however, to
present such a case.

 6

What we will address in the remaining paper are strategies for dealing with situations in
which a group of people genuinely does want to know who all the relevant stakeholders
are but finding out is complex and uncertain. For example, when one of us (JT) worked
for a telecommunications company, he worked on a project to automate the re-routing of
“intercept calls” via a combination of voice recognition and keypad presses. In this case,
we worked closely with the network people, the budget people, the operators, the union,
the management and so on. We thought we had thought of every relevant stakeholder
and brought them into the process. Then, when we actually went to install the system,
the people in charge of the various physical locations (“Branch Offices”) where they
equipment had to go, refused to allow the systems to be installed unless all of our
documentation was reformatted into one that a hardware vendor used (and, therefore one
that the maintenance people were familiar with). We agreed to do this and reformatted
all our documentation only to discover that the corporate lawyers told us we would not be
allowed to publish such documentation because the vendor had copyrighted their format.

 Eventually, these issues were resolved, the system was deployed for several years and
saved the company money. Clearly, however, we could have avoided a lot of anguish, as
well as time delays, if we had extended our circle of stakeholders. In this case, we were
simply ignorant of who the complete set of those stakeholders were. There are certainly
many similar stories in today’s complex society wherein people really do want to include
all relevant stakeholders but finding them can be challenging. The following related
patterns are meant to offer various suggestions relevant in such situations.

Related Patterns. Radical Co-location. In Radical Co-location, all the people working
on a project move to a large team room. Providing a space for all stakeholders to be
together in one place tends to insure that their input will be given at appropriate times.
The more complete pattern is given in the Appendix below.

Advocates. In this pattern, rather than each individual being on the look-out for activities,
changes, and situations that may be highly relevant to their concerns (which would be
extremely time consuming), a single person (or small group) is charged with the task of
understanding the concerns of a related group of individuals and making it their business
to watch the environment for situations in which this group should be considered as
stakeholders. Examples include public advocates, lobbyists, and activists.

Honeypot. In this pattern, the systems designers, in order to attract the input of all
relevant stakeholders, produce an event, or a thing which has extremely wide appeal and
wide publicity; e.g., a party, a fair, a website, a free gift. Associated with this is an
appeal for input from anyone who has an interest in doing so.

 7

Exploring the Formal Organization. In this pattern, one finds a person or small group of
people who know the entire formal organization, or one uses a tool that displays the
entire formal organiztion and then explores links to any functions that may be relevant to
the situation at hand, contacting those people whose job title, interests, or function may
relate. Not all of these will be stakeholders, but clusters who are stakeholders may be
revealed with minimal effort or disruption. For example, IBM has a world-wide
directory called “Blue Pages” that allows one to search not only by name, but also by job
responsibility, project, expertise and interests. This still does not solve the problem that
you may not know or recognize the correct term to indicate an important relationship.

Exploring the Informal Organization via Chaining. Here, one begins with people one
knows and asks them who they know who would be most likely to be a stakeholder or
know a stakeholder relevant to the situation you describe. By working in this recursive
fashion, one can connect to relevant stakeholders fairly quickly.

Gaming Scenarios. In this technique, one assigns separate known stakeholder roles to
each of several people on the project team. Each is given a different perspective to take
and a different set of payoffs. They begin to “play” through a scenario and begin
negotiating requirements. In the process of doing this, however, people will be on the
look-out for “missing players.” Once people begin to confront a concrete (though
imagined) reality, other stakeholders who are not being represented become clear.

Hypothesized Anti-Hero. In writing good fiction, it is important, not just to have good
heroes, but, perhaps even more important to create interesting, powerful, and believable
villains. It is natural in undertaking a project to think of all the benefits of the project and
to imagine ourselves as systems designers as the “heroes.” Step back and try to imagine
that there is someone completely opposed to the system you are designing. What would
this person be like? Try to avoid the temptation to imagine them as idiotic, misinformed,
or evil (although that can also be a useful exercise). Instead, try to imagine a smart, well-
informed, good-intentioned person who is against the project. Why? What is their
perspective? What history led to their view?

Multiple Agents. Although so-called “intelligent agents” have not really reached the point
where they exhibit intelligence in the human sense, multiple agents can help remind
people of sources of knowledge and viewpoints that they might not have otherwise
considered.

Public Notice. It might seem too obvious to mention, but of course, wherever feasible,
projects whose implications are widespread should be given public notice in appropriate
forums; in some, but not all cases, this is a legal requirement. However, the utility of
public notice goes beyond the avoidance of a lawsuit. It can result in better design.

Environment Change. Typically, a design is produced for a specific context. One way to
test the robustness of design is to imagine a change in the envisioned environment. As a
part of that thought experiment, a new set of stakeholders may come to mind as well.
Some of these same stakeholders may well be relevant to the project as it stands; they are
simply more saliently relevant in the changed environment.

 8

Extreme Characters. Just as stories typically portray the edges of human social and
emotional experience, and for that reason we find them fascinating and instructive, we
also find extreme characters to be interesting. Djajadinangrat, Gaver, and Frens (2000)
from the Royal College of Art have been using a technique during design of imaginging
some extreme but very different characters and then building scenarios for how those
characters would react to a design; how they might use it; what their concerns might be.

Similar Past Experience. Although it may well be the case that no-one on the design
team has experience with exactly the current set of circumstances, it may prove
worthwhile to exchange stories of past design projects in which there were forgotten
stakeholders; how those stakeholders could have been found earlier. Then, the team can
reflect on how that knowledge might apply to the current situation.

 Of course, designing any new socio-technical system is a difficult undertaking and
none of the methods expressed in these patterns can guarantee that all relevant
stakeholders will be discovered ahead of time. Taken together, however, we believe such
methods have three important effects. First, the methods increase the chances of finding
previously undisclosed stakeholders. Second, the methods generally increase the
sensitivity of the design team to potential “side-effects” of their design. Third, such
actions demonstrate a values-based design process and if and when new stakeholders are
found, negative reactions are more likely to be restricted to material concerns and not
include emotional negativity due to being ignored.

Appendix: Radical Co-location Pattern.

Created by John C. Thomas on 5th Sept., 2001

Revised by JCT on June 14, 2002

Synonyms:

“Put the team in one room for the duration of the project”, “War rooms”

Abstract:

When small to medium teams of people need to solve a problem or design a novel
solution and there are many highly interactive parts, it is useful for the people to work in
one large room where people have easy access to each other and shared work objects can
be easily viewed, modified, and refered to when necessary.

Problem:

Some problems are amenable to decomposition; that is, the overall problem can be
broken down into a series of subproblems and when each of the subproblems is solved,
the overall problem will be solved, possibly with slight modification to some of the
subsolutions.

 9

In other cases, especially problems that are relatively novel, complex, or “wicked”, such
decomposition is not possible. If a decomposition is attempted and each of the
subproblems is solved, the resulting composition of subsolutions will not be anything
close to an overall solution. Under these circumstances, people working alone on their
subproblem will become frustrated because all the progress they thought they had made
will prove illusory. Morale will suffer. Management will become upset that the apparent
progress has not been real and typically attempt a variety of counter-productive measures
such as requiring more frequent reports and adding new personnel to meet a schedule.

Context:

In the design of complex systems with many interacting parts, it is often the case that
understanding how best to “decompose” a problem cannot be determined ahead of time.
Examples include complex software systems, especially where the overall system
includes human-human and human-computer interaction, new machinery, novel nuclear
power plant designs, complex military operations.

In such a context, handing out separate “assignments” to various individuals or small
teams will at first seem to produce progress as each individual or small team carries out
their assignment. Unfortunately, when an attempt is made to compose or integrate these
subsolutions into an overall solution, the result doesn’t work because of unanticipated
interactions.

For instance, suppose that a software development team is designing an integrated office
support package. Independently, various teams or individuals design various functions.
Each of these may be well-designed in itself. However, the combination will be flawed
on at least three counts. First, numerous functions will have been duplicated in separate
modules. Second, some functionality that would have been useful for the whole package
will not have been implemented at all because it would have been too much work for any
one team. Third, the user experience will be scattered and inconsistent as separate
designers make independent choices about what the user experience will be. In addition,
it is quite likely that hard bugs will also be in the design due to the inconsistent treatment
of data objects, deadlocks, infinite loops, etc.

There are two main general solutions common in the software development community.
First, there may be an attempt to set “ground rules” or “style guides” that everyone is
supposed to follow. These will help ameliorate the problem but cannot solve it entirely.
Second, there may be overall project meet-ings where people report on progress or even
do mutual design reviews. Again, this helps but even if problems are found and resolved,
the resolution will require considerable rework.

Forces:

* Most people are naturally gregarious.

* People can concentrate better on difficult mental tasks when it is quiet and when there
are a minimum of interruptions.

* Some problems are amenable to decomposition into relatively independent sub-
problems; others are not.

 10

* Social cues can be used to guide the interruptability of others.

* Having work-related shared artifacts that can be viewed and understood by others
continually leads to productivity.

* Shuffling work artifacts in and out of view in a small space takes time.

* Space costs money and is therefore limited.

* A group will tend to develop useful social conventions when they are co-located.

* Noticing and resolving conflicts among subsolutions early will result in minimizing
rework.

* Noticing common problems and solving them collectively as soon as possible will
result in maximum efficiency.

* Human performance often shows a “social facilitation” effect; that is, people perform
better in the presence of others.

Solution:

When small to medium sized teams work on non-decomposable problems, it is useful for
them to be radically co-located in one large room. This room should provide each person
some private space and individual work tools (e.g., a computer, a drawing table) as well
as numerous spaces for public display of large scale work artifacts (e.g., designs, work
plans, diagrams, decisions, group rules, etc.).

Examples:

In the Manhattan Project, people from all over the country were relocated to a relatively
remote and isolated area. There they had large workrooms to work on complex problems
together.

Recently, automobile companies have empirically compared software work teams that
were radically co-located with traditional software development and found the former to
be significantly more productive. Interestingly, although before the experience, people
thought that they would hate working in a single room, afterwards they said they
preferred it (Olson & Olson, 2000).

Resulting Context:

Prior to the experiments at the auto companies, developers were afraid that they would be
too distracted by noise and interruptions to get much work done. In fact, social cues can
be read fairly well and a potential interrupter can gauge the time to interrupt. In radical
co-location, a person might have to wait minutes or hours to resolve an issue by
conversation and mutual problem solving. In traditional software development, they may
have to wait for a weekly meeting or not discover a problem until integration testing.

People working under conditions of radical co-location tend to develop common
vocabulary and artifacts quickly and can easily and efficiently refer to these artifacts.
Motivationally, it is also easier to see where the individual’s work fits into the larger
whole.

Rationale:

 11

In a complex problem solving process, it is most efficient to solve the most difficult
constraints first. Similarly, the sooner potential design conflicts or potential design
commonalities are discovered, the more efficient the global optimization.

Social groups that work together can rely on subtle cues about whether to interrupt or not.
Being alone in the office may seem more conducive to concentration but is still amenable
to a knock on the door or a phone call; in this case, the person interrupting generally does
not know the state of concentration of the person being interrupted.

When we work separately, it is easy to imagine that others are “slacking off.” If we
actually see all of our colleagues working, it tends to motivate us to work harder as well.

Related Patterns:

Conversational Support at the Boundaries.

Who Speaks for Wolf?

References:

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl, I. And Agnel, S.
(1977) A Pattern Language. New York: Oxford University Press.

Bayle, E., Bellamy, R., Casaday, G., Erickson, T., Fincher, S., Grinter, B., Gross, B.,
Lehder, D., Marmolin, H., Potts, C., Skousen, G. & Thomas, J. (1997) Putting It All
Together: Towards a Pattern Language for Interaction Design. Summary Report of the
CHI '97 Workshop. SIGCHI Bulletin. New York: ACM.

Danis, C., Lee, A., Karadkar, U., Zhang, J, and Girgensohn. (2002) Getting to Know
People: Social Browsing to Support Emerging Community. Manuscript under review.

Desurvire, H. and Thomas, J. (1993). Enhancing the performance of interface evaluators
using non-empirical evaluation methods. Proceedings of the 37th Annual Meeting of the
Human Factors and Ergonomics Society, 1132-1136. Santa Monica, CA: Human Factors
and Ergonomic Society.

Djajadiningrat, J., Gaver, W., and Frens, J. (2000). Interaction relabelling and extreme
characters: Methods for exploring aesthetic interaction. In Proceedings of DIS 2000, 66-
71. New York: ACM Press.

Erickson, T. (2000) Lingua Francas for Design: Sacred Places and Pattern Languages. In
the Proceedings of DIS 2000. New York: ACM Press, pp. 357-368.

Festinger, L. (1957) A theory of cognitive dissonance. New York: Harper.

Lawrence, P. and Nohria, N. (2002). Driven: How Human Nature Shapes our Choices.
New York: Jossey Bass.

Lee, A., Danis, C., Miller, T., and Jung, Y. (2001) Fostering Social Interaction in Online
Spaces. In Proceedings of INTERACT, '01 (Tokyo, Japan, July 2001), IOS Press, 59-66.

Olson, G. and Olson, J. (2000) Distance matters, Human-Computer Interaction, 15, 2-3,
107-137.

 12

Thomas, J. and Carroll, J. (1978). The Psychological Study of Design. Design Studies,
1(1), 5-11.

Thomas, J. and Kellogg, W. (1989). Minimizing Ecological Gaps in Interface Design.
IEEE Software, pp. 78-86.

Thomas, J. (1996). The Long-Term Social Implications of New Information Technology.
In R. Dholakia, N. Mundorf, and N. Dholakia (Eds.), New Infotainment Technologies in
the Home: Demand Side Perspectives. Hillsdale, NJ: Erlbaum.

Thomas, J. (2001). An HCI Agenda for the Next Millennium: Emergent Global
Intelligence. In R. Earnshaw, R. Guedj, A. Van Dam and J. Vince (Eds.), Frontiers of
Human-Centered Computing, Online Communities, and Virtual environments. London:
Springer.

Thomas, J., Kellogg, W.A. and Erickson, T. (2001). The Knowledge Management
Puzzle: Human and Social Factors in Knowledge Management. The IBM Systems
Journal, 40(4).

Underwood, P. (1983). Who speaks for Wolf: A Native American Learning Story.
Georgetown TX (now San Anselmo, CA): A Tribe of Two Press.

