
RC22650 (W0211-226) November 22, 2002
Computer Science

IBM Research Report

Meeting Service Level Agreements In a
Commercial Grid

Avraham Leff, James T. Rayfield
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email : reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Meeting Service Level Agreements In a
Commercial Grid

Avraham Leff

IBM T.J.Watson Research Center

<avraham@us.ibm.com>

James T. Rayfield

IBM T.J.Watson Research Center

<jtray@us.ibm.com>

Abstract

In this paper we give a definition of commercial grids, and identify the need to define and satisfy
service level agreements as a requirement of commercial grids. We show that service level
agreements impose unique requirements on a commercial grid infrastructure, specifically the need
for a dynamic offload infrastructure. We discuss the requirements that such an infrastructure must
meet, and then describe a prototype implementation in detail.

Keywords

Commercial grid, service level agreements, sla, dynamic offload

Introduction

Defining a Commercial Grid

We have identified several definitions of the term commercial grid, as opposed to standard grid
[2] [3].

1. “Commercial grids charge for the service of hosting customer applications.”

Customers paying for a grid-hosted application will have different expectations than users of a
free grid-service. In contrast to commercial grids, standard grids are used in university or
national lab environments that do not run a grid "business". In addition, some companies are

- 1 -

experimenting with internal "intra-grids"; these resemble standard grids in that no real money
changes hands in exchange for the service.

2. “Commercial grids coordinate simultaneous, in contrast to sequential, sharing of resources.”

This definition emphasizes the challenge of managing competitive demands for the same set of
resources in environments where explicit negotiation between the grid's users is impractical.
The assumption is that commercial grid customers will not tolerate being denied service or
being rescheduled to some other time slot.

3. “Commercial applications (e.g., on-line transaction processing, e-commerce) run on a
commercial grid; scientific applications (e.g., numerical computation) run on a standard grid.”

This definition focuses on application type, rather than (as the first two definitions do) on
application requirements.

We believe that the last definition is accurate only to the extent that current grid applications are
"non-commercial" according to both requirements specified by the first two definitions. For
example, typical scientific grid applications include remote access to specialized scientific
facilities; pooling of computing power to solve large numerical problems; and distributed analysis
of large amounts of data. Currently, such applications are deployed in environments that do not
charge "real" money for the service (definition 1). Such applications can coordinate shared usage
of the grid fairly easily (definition 2) because the customer set is relatively small, and because
sharing can be done by forbidding simultaneous access to the resource. However, as grid usage
becomes more prevalent, we expect that the requirements of some "scientific" applications will
require deployment to a commercial grid. As an example, consider the customer requirements for
grid-deployed Monte Carlo simulations for risk analysis. The grid service-provider will likely
charge for the service, and customers will expect, in return, that the service is always available
(definition 1). Similarly, customers of the grid-service cannot be expected to negotiate among
themselves about the order or the priority in which they will be served (definition 2). The hosting
grid must transparently manage system resources such as available servers and network bandwidth
so that simultaneous customer requests are met to everyone's satisfaction. Thus, although a
"scientific" application, customer requirements imply that this application be deployed to a
commercial grid.

While not using the the third definition, this paper does use the first (customer/provider
expectations) and second (nature of customer sharing) definitions of commercial grid. However,
under either definition, no hard and fast distinction exists between commercial and standard grids:
the issue is only one of emphasis.

Commercial Grids & Service Level Agreements

Customers of a commercial grid are more likely to require a service level agreement (or SLA)
than the standard grid customer. Because a commercial grid must satisfy simultaneous, paying,

- 2 -

customer demand for shared resources, a formal agreement is needed to explicitly specify what
the grid will supply to a given customer. Informal agreements such as "you get to use these
machines in off-peak hours" do not suffice when the customer is paying to use the machines and
when other customers are using those machines at the same time. SLAs may be expressed in
terms of metrics such as the maximum application response-time or minimum application
throughput that will be provided to the grid customer.

Commercial Grids & Dynamic Offload Capability

There are several possible ways for commercial grids to meet their SLAs. In one approach, they
can make sure that each customer is provisioned with sufficient resources, e.g. CPU and
bandwidth, to fulfill the worst-case scenario guaranteed by the SLA. In certain environments, this
approach can be very inefficient because traffic to busy web-sites exhibits considerable
"burstiness", due to requests from different geographical areas or due to daily and seasonal
variation[4]. To deal with worst-case burstiness situations a grid would have to keep large
amounts of spare capacity available, with much of it unused for large periods of time. The cost of
providing the grid service will therefore not be competitive.

Alternatively, the grid provider can arrange to statically offload the demand onto idle equipment
using a manual process. This reduces the cost of provisioning each customer, but has a number of
disadvantages. First, the reprovisioning time will be fairly slow, because manual intervention is
required. This increases the chances of SLA violation. Second, the reprovisioning may result in a
temporary service interruption, itself another likely SLA violation which is unacceptable in a
commercial environment. Finally, this solution is labor-intensive, another cost factor.

- 3 -

Figure 1: Server Load Over Time

Days of the Year
0

5

10

15

20

Gi
ga

by
te

s p
er

 D
ay

Offloadable Not offloadable

Base server minimum capacity

A much more reasonable alternative is to use a dynamic, automated, offload capability. This
approach can deal efficiently with situations similar to that shown by Figure 1. This shows the
variation in a large company's workload over the course of a single year. The darkly shaded,
bottom, section represents the portion of the workload that cannot be offloaded due to such
considerations as security. At a minimum, therefore, the server must be provisioned with capacity
to meet this demand. The lighter-shaded, upper, section of the figure represents workload that
need not be satisfied by the server, and that could therefore be offloaded to other servers. The
horizontal line denotes the portion of the workload that can be met by the server's required
minimum capacity. All load positioned under this line should not be offloaded since the server
already has the capacity to meet user demand. The interesting part of the figure is the load
positioned above the horizontal line. This represents "peak" load imposed on the server on the
busiest days of the year: this load cannot be met by the server's minimum capacity. One way to
meet this peak demand is to greatly increase the server's capacity. The server could then avoid
offloading any work; but, on the other hand, the extra capacity will remain unused for most days
of the year. A more efficient approach is for the server to dynamically offload peak demand to
other servers, with no need to over-provision its capacity for less busy days.

The situation of fluctuating demand on a single company's servers is magnified in a grid
environment that hosts many applications. In the grid environment, the potential magnitude of
peak-demand for cpu and bandwidth is magnified; worst-case provisioning means that large
amounts of capacity will be wasted. Dynamic offload means that the grid can maintain a smaller
pool of unused capacity that can be dynamically shared among customers as needed.

Note that, in a non-commercial grid, dynamic offload is less of a requirement. If customers are not
paying for service, it's harder for them to demand better service. Similarly, the grid-provider is
much more likely to do "worst-case" provisioning since they're not operating in a cost-competitive
environment. This dichotomy is also true with respect to the other commercial grid definition.
When grid customers coordinate resource sharing through a policy of sequential access, the pool
of resources is fixed, and customers are simply encouraged to make the best use of the available
resources. In a commercial grid where the grid provider is penalized when it does not meet its
service commitments, dynamic offload is crucial to meeting SLAs. In Section 2 we list the
requirements of a generic dynamic offload infrastructure. In Section 3 we discuss a prototype
implementation of this infrastructure in detail.

Requirements of a Commercial Grid's Dynamic Offload
Infrastructure

In this section we list, and motivate, the requirements of a dynamic offload infrastructure: these
requirements are motivated by the grid-provider's need to efficiently meet SLAs. Specifically, we
focus on the dynamic offload infrastructure needed to meet SLAs related to varying workload
conditions. We assume that a pool of servers and bandwidth exists from which the commercial
grid can draw resources under high load conditions, and to which it returns resources when the
load decreases. The components include:

- 4 -

1. Ability to formally define a service level agreement.

SLAs must be defined in a manner that allows for as little ambiguity as possible. Ideally, a
SLA's definition should be directly readable by the code that predicts or detects violation of the
SLA (see below).

2. Ability to predict that a SLA violation will occur, or at least to detect that a SLA violation has
occurred. Otherwise, the grid cannot respond to the SLA violation.

3. Ability to transparently, and dynamically, scale up the resources in use (e.g., increase the
number of servers) in response to a SLA violation (e.g., increased workload). This capability
can be broken down further:

a. Acquire the resource from a common resource pool.

b. Provision the resource with the necessary software and configuration data. For certain
resources, such as bandwidth, this step is fairly simple. For other resources, such as
application servers, this step can be quite complex.

c. Transfer load to the newly added resource.

4. If and when the workload decreases, the commercial grid must be able to transparently return
resources to the pool so that it be used to meet another grid customer's requests.

- 5 -

Prototype Dynamic Offload Infrastructure

We have built a prototype that implements the above requirements for a commercial grid's
dynamic offload infrastructure. We downloaded Trade2, a J2EE application publicly available
from IBM [9] and deployed it to our prototype. As described in its documentation, Trade2
“models an online brokerage firm providing Web based services such as login, buy, sell, get quote
and more”. We added a client-side HTTP load-generator program to enable us to dynamically
adjust the load, defined as the number of concurrent requests to Trade2. As shown in Figure 2,
multiple web-clients access Trade2; the application is running on two active application servers in
the grid that access a shared database. The prototype infrastructure manages a single resource
pool: a set of servers, each of which is pre-configured to run the application.

Defining the SLA

We use the WSLA framework [5] to define SLAs using XML. One advantage is that the SLA
definition is considerably less ambiguous than a natural-language specification.

Example 1 shows the grid-provider's obligation to the customer with whom it has contracted to
host Trade2. The xml states that the grid guarantees that no client interaction will exceed 200
milliseconds. Example 2 states that a violation notification notice should be sent to registered
participants whenever a client interaction does exceed the specified threshold. Trade2-specific
code is registered to deal with such SLA violations (see below).

- 6 -

Figure 2: Dynamic Offload Prototype

42

Relational
Table

Database
Server

Browser

Execution

Application Server

Trade2
Application

PlanningW
SL

A

Response-time
Measurement

Browser

Network
Dispatcher

1

2

3

4

5

Application Server

Trade2
Application

Application Server

Trade2
Application

Both the "obligation" and "action guarantee" contain references to WSLA elements defined
elsewhere in the document: e.g., ResponseTimeSLA. Note that the SLA does not specify what
actions should be taken in response to a SLA violation. SLAs are a contract between the

customer and the grid-provider. The SLA specifies what the problem is. It is the grid-provider's
responsibility to fix the problem.

- 7 -

<Obligations>
 <ServiceLevelObjective name="maxResponseTime">
 <Obliged>ACMEProvider</Obliged>
 <Validity>
 <Start>2001-11-30T14:00:00.000-05:00</Start>
 <End>2003-12-31T14:00:00.000-05:00</End>
 </Validity>
 <Expression>
 <Predicate xsi:type="Less">
 <SLAParameter>ResponseTimeSLA</SLAParameter>
 <Value>200.0</Value>
 </Predicate>
 </Expression>
 <EvaluationEvent>NewValue</EvaluationEvent>
 </ServiceLevelObjective>
</Obligations>

Example 1: Defining a Response-Time Obligation

<ActionGuarantee name="increaseServers">
 <Obliged>ZAuditing</Obliged>
 <Expression>
 <Predicate xsi:type="Violation">
 <ServiceLevelObjective>maxResponseTime</ServiceLevelObjective>
 </Predicate>
 </Expression>
 <EvaluationEvent>NewValue</EvaluationEvent>
 <QualifiedAction>
 <Party>XInc</Party>
 <Action actionName="notification" xsi:type="Notification">
 <NotificationType>Violation</NotificationType>
 <CausingGuarantee>maxResponseTime</CausingGuarantee>
 <SLAParameter>ResponseTimeSLA</SLAParameter>
 </Action>
 </QualifiedAction>
 <ExecutionModality>OnEnteringCondition</ExecutionModality>
</ActionGuarantee>

Example 2: Defining the Response to a Max-Response-Time Violation

Monitoring & Enforcing the SLA

Another reason to define SLAs through the WSLA framework is that our system can benefit from
the WSLA runtime that includes several SLA monitoring services [11]. These monitoring services
receive a SLA specification as input, and in response, are automatically configured to enforce the
SLA.

This part of our system (see Figure 2) consists of:

S A measurement module that collects data about the relevant SLA metric. In our system,
the metric we need to monitor is the end-to-end response time of a single client request to
Trade2. We implemented this function by re-using the client code used by the load-
generator program. A measurement is performed by periodically interacting with the
application, in exactly the same way that an actual application client does.

A WSLA monitoring service polls the measurement module, and, based on the observed
data, determines whether an undershot minimum-response-time or an exceeded maximum-
response-time event has occurred. If either event occurred, the monitoring service informs
the planning module (below).

S A planning module that is responsible for determining what action to take, if any, given
the observed event.

The logic in our prototype's planning module is straightforward. If an "exceeded" event
occurred, it infers that not enough servers are currently assigned to the Trade2 application.
Therefore, if the server pool contains an unassigned server, it should be assigned to host
the application. Conversely, if an "undershot" event occurred, it infers that the grid has
assigned too many servers to the Trade2 application. Therefore, a server currently hosting
the application should be deactivated and returned to the grid pool.

S An execution module that is responsible for allocating a server from, or deallocating a
server to, the grid server pool.

The WSLA monitoring service, the Trade2 measurement module, and Trade2 planning module all
execute in the same address-space; they interact via standard Java method calls.

Server Pool Allocation & Deallocation

As mentioned above, the dynamic offload infrastructure manages a set of servers to keep the
application's response time behavior between the "high" and "low" response-time thresholds
defined in the SLA. This function is implemented in the following way. All client interaction with
Trade2 is routed through a Network Dispatcher (or ND) [6]. Using one of several routing
algorithms (e.g., round-robin) the ND maps a cluster address to an individual server in the cluster
set.

- 8 -

ND has an API that allows servers to be dynamically added or removed from a given cluster. We
implemented a shallow wrapping of this API using the Apache Axis [1] toolkit, because calls to
this API need to occur across address-spaces. The web-services API was defined in WSDL [10],
which enables automatic generation of the application-dependent client and server stubs. At
runtime, the execution module sends SOAP [8] messages which are transported over HTTP to the
ND web-services wrapper. By adding or removing servers from the grid pool, the execution
module dynamically spreads the workload over more or fewer servers. This enables it to tune the
response-time behavior of Trade2.

Putting it All Together

Referring back to Figure 2, the dynamic offload process flow proceeds as follows:

1. A response time probe is converted to an undershot minimum-response-time or an exceeded
maximum-response-time event.

2. This event is delivered to the planning module which instructs the execution module to either
allocate a server from, or deallocate a server to, the grid's server pool.

3. The execution module sends the corresponding web-service call to the Network Dispatcher.

4. The Network Dispatcher redefines the Trade2 server cluster as appropriate: subsequent client
requests will be processed by servers in the redefined cluster.

An important feature of our prototype is that the application is developed independently of the
dynamic offload infrastructure. In fact, the application is even developed independently of the
commercial grid itself. The grid simply hosts the application on one or more of its servers, and the
dynamic offload infrastructure manages the grid's server pool to meet the grid's SLA
commitments.

Summary and Future Work

In this paper we defined the special characteristics of commercial, as opposed to standard, grids.
One requirement of commercial grids in the ability to meet service level agreements. We showed
that a dynamic offload infrastructure is critical for a commercial grid to meet its service level
agreements. Finally, we described a prototype implementation of a dynamic offload infrastructure,
and our experiences in deploying a web-application to this infrastructure.

We made a number of simplifying assumptions for our prototype. First, that all the servers in the
pool were pre-installed and pre-configured with the application server (Apache Tomcat) and
application software (Trade2). Further, we start the servers manually, and must keep them
running throughout the grid's operation. The dynamic offload infrastructure simply manages
which servers in the Network Dispatcher cluster are configured to run the application: the
infrastructure does not actively manage the servers themselves. We are currently investigating the

- 9 -

use of OGSA [7] to provision and start servers dynamically.

In addition, we use a very simplistic service level agreement, consisting only of "minimum" and
"maximum" response time thresholds. In a real commercial agreement, the response time
guarantee would only apply if the request rate remains below a certain threshold. That is, if
system load exceeds a given threshold, the grid provider need not satisfy the response-time
criterion. This is because customers typically will not want to pay achieve good response time
under unbounded or very high load conditions.

Also, we currently react only when an SLA is violated. Ideally, imminent SLA violations should
be predicted, and the system should act proactively. This requires analytical modeling of the
application as a function of system resources and load, and using past load observations to predict
future load.

The final challenge we are investigating is how to manage server and application allocation in the
presence of multiple customers and/or multiple types of applications. For example, if there are
multiple customers, how can all the SLAs be efficiently satisfied simultaneously? Further, if
insufficient resources are available to satisfy all SLAs, which SLAs should be violated first? These
problems are quite difficult, although some initial work has been done in this area [12].

Addressing and solving such issues will be critical if commercial grid use is to become prevalent.

References
1. Apache Axis. http://xml.apache.org/axis/.

2. Ian Foster, Carl Kesselman. The Grid: Blueprint for a New Computing Infrastructure. Morgan
Kaufmann Publishers. 1998.

3. Ian Foster, Carl Kesselman, and Steve Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual
Organizations . International J. Supercomputer Applications. 15. 3. 2001.

4. Arun K. Iyengar, Mark S. Squillante, and Li Zhang. Analysis and Characterization of Large-Scale
Web Server Access Patterns and Performance . World Wide Web. 2, 1, June 1999.

5. Alexander Keller and Heiko Ludwig. The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services. IBM Research Report. RC22456. 25-32. 2002.

6. IBM Network Dispatcher features. http://www-
3.ibm.com/software/network/dispatcher/about/features/keyfeatures.html.

7. The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration.
Ian Foster. Carl Kesselman. Jeffrey Nick. Steven Tuecke.
http://www.globus.org/research/papers.html#OGSA. June 2002.

- 10 -

8. Simple Object Access Protocol (SOAP) 1.1. http://www.w3.org/TR/SOAP/.

9. WebSphere Performance Benchmark Sample (Trade 2 Application) Download. http://www-
4.ibm.com/software/webservers/appserv/wpbs_download.html.

10. Web Services Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl.

11. Web-Services Toolkit. http://www.alphaworks.ibm.com/tech/webservicestoolkit.

12. On Maximizing Service-Level-Agreement Profits. Zhen Liu, Mark S. Squillante, and Joel L. Wolf.
IBM Research Report, RC22271, http://domino.watson.ibm.com/library/cyberdig.nsf/Home.

- 11 -

