
RC22658 (W0212-009) December 2, 2002
Computer Science

IBM Research Report

Edge-Server Architectures for
Enterprise JavaBeans Applications

Avraham Leff, James T. Rayfield
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Edge-Server Architectures for Enterprise JavaBeans
Applications

Avraham Leff
IBM T. J. Watson Research Center

P. O. Box 704
Yorktown Heights, NY 10598

+1 914-784-6381

avraham@us.ibm.com

James T. Rayfield
IBM T. J. Watson Research Center

P. O. Box 704
Yorktown Heights, NY 10598

+1 914-784-7559

jtray@us.ibm.com

ABSTRACT
Edge-server architectures are widely used to improve web-
application performance for non-transactional data. However,
their use with transactional data is complicated by the need to
maintain a common database that is shared among different edge-
servers. In this paper we examine alternative edge-server
architectures for transactional Enterprise JavaBeans (EJBs)
applications. We examine an architecture in which a remote
database is shared among a number of edge-servers and an
architecture in which edge-servers maintain cached copies of
transactionally-consistent EJBs. These edge-server architectures
are also compared to a classic clustered datacenter architecture.

We use a benchmark application and prototype EJB-caching
implementation to drive a performance analysis of these
architectures. We find that edge-servers enhanced with EJB
caching offer a good compromise between the high-latency
incurred with a remote-database architecture and the high-
bandwidth requirements of a traditional clustered (non-edge)
architecture. Importantly, the caching function is transparent to
applications that use it; the same programming model is used as in
non-caching architectures; and the same transactional semantics
are provided to applications.

Categories and Subject Descriptors
H.3.4 [Information Systems]: Systems and Software -
Distributed systems, Performance evaluation (efficiency and
effectiveness)

General Terms
Performance, Design.

Keywords
Edge Server, Transactional Caching, Enterprise JavaBeans,
Performance Evaluation

1. EDGE-SERVER ARCHITECTURES AND
EJB CACHING

1.1 Edge-Server Architectures
Edge-server [1,17,3,15] architectures are widely used to

improve web-application performance by moving web-content
from back-end servers to the edge of the network (e.g., internet
service providers). By caching data at the "edge", edge-servers
increase throughput (by offloading traffic from back-end servers),
and reduce application latency (by moving data closer to the
client). However, the use of edge-servers to cache transactional
data is complicated by the need to maintain consistent database
state across multiple edge-servers. While edge-servers are
currently used to assemble dynamic data in addition to static web-
content, they do not cache transactional data. This paper explores
whether the benefits of edge-server technology can be extended to
applications requiring the use of transactional data. Specifically,
we examine whether Enterprise JavaBeans [4] (EJBs)
applications can be deployed to edge-server architectures. EJBs
are an example of a transactional component model; and, while
this paper is focused on EJB technology, it applies more generally
to any framework for distributed enterprise components [11].

1.2 The Enterprise JavaBeans Component
Model

EJBs are a component model for enterprise applications. (We
refer here to the entity bean flavor of EJBs, in contrast to the
session bean flavor.) Like CORBA [14], and RMI[16], EJBs are a
distributed component model, and, as such, encapsulate both
"data" (the component's state) and "code" (business logic in the
component's methods). In addition, EJBs automatically supply
common requirements of enterprise applications such as
persistence, concurrency, transactional integrity, and security.
Bean developers focus on the business logic of their application;
when deployed to an EJB container, the components are
embedded in an infrastructure that automatically supplies the
above requirements. For example, a deployer might specify that
an Employee entity bean's state is backed by persistent storage in
the HR relational database, specifically in its Employees table.
EJBs use declarative transaction management on a per-method
basis, so that the incrementSalary method might be declared
to require a transactional scope, using the Repeatable Read
transaction isolation level.

Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

1.3 EJB Caching
While edge-servers currently cache both dynamic and static web-
content, the cached data are not transactional. Static data are
especially easy to cache because they are infrequently updated.
Even when dynamic data are cached, updates typically do not
need to be propagated atomically throughout the web cluster,
since no transactional model is provided. Web-servers can
therefore use algorithms which are expensive for write operations,
and which do not provide a traditional ACID [8] transaction mode
[9]. Such applications and environments differ greatly from that
of EJBs in which writes are frequent and strong transactional
guarantees must be provided.

Specifically, edge-server caching of EJBs faces the following
challenges:

• EJB caching must deal with read/write data as well as read-
only data.

• As a stronger requirement than read/write capability, EJB
caching must provide transactional consistency among the
cached replicas.

• "Cache-enabling" existing applications and J2EE application
servers must involve little effort. Customers should not be
forced to modify existing applications in order to improve
performance. Customers will also not want to maintain two
programming models: one, for non-cache-enabled
applications, and one for cache-enabled applications.
Specifically, an EJB caching framework should have the
following features:

• It should not inject a new application component
model, but instead use the EJB model of session and
entity beans.

• Although the runtime of cache-enabled application
servers differs from standard J2EE application
servers, the application developer should not be
forced to write new code to access the runtime.
Instead, tooling should take standard EJBs as input
and produce cache-enabled EJB implementations
with the same Java interface as output.

• The cache-enabled version of the EJBs should
support the same transactional model as described
in the EJB specification: i.e., it must provide
concurrency and transactional isolation.

Caching is a well-known technique for dealing with performance
problems, and we have previously [12] used EJB caching to
improve throughput in a low-latency, clustered, environment. In
our approach, EJB application servers are enhanced with a cache
capability such that the EJBs' persistent state continues to reside
on a database server, but transient versions of that state are cached
on the application server itself. Several such "cache-enhanced"
application servers can be deployed at the same time, all
maintaining persistent state on the same database server.
Application components can therefore reside closer to the
application and overall system load can be spread over multiple
cache-enhanced application servers. This paper examines the use
of EJB caching in a high-latency, edge-server, environment.

1.4 Relationship to Other Caching Work
We have already explained the differences between classic web-
caching and edge-server caching of EJBs. EJB-caching more
closely resembles distributed client-server database systems.
Typically, such systems use one of two approaches: function
(query) shipping and data shipping. In function-shipping systems,
operations applied to shared data are propagated to the shared
server. In data-shipping systems such as ours, the database clients
cache a portion of the database, and operations are executed
against the cached data on the client. Data-shipping systems
require the use of a transactional cache-consistency algorithm in
order to maintain ACID properties among the different client
applications. A common approach is to designate one copy of the
database as the "master" copy, and use algorithms which
synchronize access (and recovery) against this copy.

Many such algorithms have been proposed and studied for
distributed client-server database systems [6]. In terms of this
taxonomy, we use a detection-based algorithm, with deferred
validity checking, and invalidation when notified by the server
about an update. Our system is somewhat different, using a
component-server model rather than page-based models. In our
work, we have extended the transactional consistency algorithm to
include predicate-based queries, rather than simply direct access.
This forces us to deal with more complex isolation issues such as
the "phantom-read" problem. Most importantly, our work
addresses the issue of transparently cache-enabling an existing,
high-level component API such as the EJB model.

More recent work in distributed client-server caching attacks
performance issues by relaxing the consistency requirements. For
example, DBCache [13] uses the federated features of DB2 to
maintain a partial copy of a database that is weakly synchronized
with the database server. Application queries are then executed
against the cached database. DBProxy [2] retains the results of
previously executed queries in a cache; this cache is then used to
satisfy subsequent queries or subsets of the original query. Both of
these approaches improve performance at the cost of replacing the
traditional transactional guarantees with "time-based" guarantees:
the data are only guaranteed to be up-to-date within some
specified time period.

In contrast to some of this database caching work, we assume that
cached-enabled applications will expect the same transactional
model as non-cached-enabled applications (i.e. strict ACID
semantics). Furthermore, we examine the caching of transactional
data in high-latency environments such as edge-servers.

2. CACHING FRAMEWORK

2.1 Application Components
Our caching framework [12] substitutes Single Logical Image (or
SLI) Home and bean implementations for the standard JDBC [10]
Home and bean implementations used in the non-cache-enabled
application. The caching runtime copies the state of the relevant
persistent EJBs into transient EJBs as necessary, and then
transparently delegates to them. The SLI bean introduces no
business logic of its own; it simply delegates all method
invocations to the transient bean. Because the transient bean
implements the same interface as the original, JDBC, bean and
differs only in the way it accesses its datastore, the business logic
of the application is unchanged.

Since the EJB specification requires that EJBs cannot be
serialized, we must provide "value objects" that can be passed
between address spaces. We term these value objects mementos
[7]. Mementos have the same notion of "identity" as EJBs, as they
support the getPrimaryKey method. Transient EJBs introduce
two memento-related methods: create(Memento) (on the EJB
home) so that they can be created from persistent state; and
Memento getMemento() (on the Remote interface) so that
the caching runtime can update the persistent state from the
client's cached state. The memento containing the state at the
beginning of a transaction is called the before-image; the
memento containing the state at the transaction's end is called the
after-image memento. The cache-enhanced application server
maintains a transient datastore of memento instances.

The EJB container that manages the transient and SLI Homes is a
standard container. The SLI and transient beans are fully
compliant EJBs with Remote and Home interfaces and a Bean
implementation. They differ from the familiar persistent, JDBC,
beans only in that that they use a transient datastore when loading
and storing bean state. A SLI and associated transient bean share a
common identity because getPrimaryKey returns the same
value; this value is identical to that returned by persistent bean in
the original application.

2.2 Populating the Cache
The EJB cache is populated in in one of the following ways:

1. Direct application access through the bean's primary key, via
an ejbLoad or findByPrimaryKey invocation.

In this case, the cache runtime first determines whether the
bean is already cached. If a cache miss occurs, the cache
runtime fetches the before-image directly from the persistent
datastore and caches it for subsequent use.

2. Indirect application access, when the bean is part of the result
set returned by a custom finder method invocation.

Unlike a direct access, the cache runtime must first run the
query against the persistent datastore because only that
datastore is guaranteed to have the entire (potential) result set
available. The result set returned by the persistent datastore is
then used to populate the cache. However, in order to
guarantee that the application sees its prior updates, the
runtime ensures that result set elements that were cached prior
to the custom finder invocation are not overlayed with the
current persistent state. Finally, with the finder's entire result
set available in the cache, the custom finder is run against the
transient Home, and that result is returned to the application.

Other transactions may commit their state to the persistent
datastore while a given transaction executes on a cache-
enhanced application server. This implies that the algorithm
used to implement custom finders can add members to the
result set if the application executes the finder multiple times
in a single transaction. The isolation model supplied by the
framework is therefore slightly less powerful than serializable
isolation, and corresponds instead to repeatable-read
isolation [8].

3. Explicit bean creation by the application.

In this case, the appropriate create method is invoked on
the SLI home, delegated to the transient Home, and the
resulting bean is cached.

2.3 Implementing Transactions
Populating a transient EJB cache is only one part of an EJB
caching framework. The system must also provide transactional
semantics identical to that provided by a non-cache-enabled
runtime to a J2EE application. Because we want to allow inter-
transaction caching (i.e., to allow EJBs cached by one transaction
to be available to other, concurrent and subsequent, transactions)
the system uses optimistic rather than pessimistic concurrency
control [8]. Under the pessimistic approach, one transaction
cannot use data cached on behalf of another transaction because
cached data must be locked throughout the period that it's
accessed. The long duration of the lock period implied by inter-
transaction caching makes the pessimistic approach much less
feasible than the optimistic approach.

In our approach, a common transient store (not EJB-based) is
maintained alongside a per-transaction transient store. When a
direct-access operation results in a cache miss on the per-
transaction store, the common store is checked for a copy of the
EJB data before an attempt is made to access the persistent EJB.
The disadvantage of this approach is that, since each cache-
enabled application server maintains its own common transient
store, the "conflict window" (i.e., the period of time in which an
application's persistent state can be concurrently modified by
some other transaction) widens. Just as we replace the original
application's JDBC Homes and beans with their SLI equivalents,
we replace the original pessimistic JDBC Resource Manager with
an optimistic SLI Resource Manager.

Whenever the cache runtime must access the persistent EJBs (in
any of the "populate" scenarios discussed above), it creates a
separate (non-nested) short transaction for the duration of the
access. This transaction is committed immediately after the access
completes so that locks are released quickly by the persistent
store. The application-generated transactions are thus decoupled
from the datastore transactions used to provide data to the cache
and update data from the cache. A single application transaction
thus typically brackets multiple persistent datastore transactions.
Finally, when the application transaction running on the cache-
enabled application server commits, a persistent datastore
transaction is run to commit the application's state changes.

The isolation semantics provided to the application are the
following. If another transaction, t2, modifies the persistent
datastore's data from the state that existed at the beginning of the
application's transaction t1, t1 will be aborted. We implement this
behavior by comparing the before-image of every bean accessed
in the transaction to the current corresponding image in the
datastore at commit time. Only if no conflicts exist are t1's EJBs
committed to the datastore. During a successful commit, the
transaction's set of after-image mementos are written to the
datastore in a single datastore transaction. More subtly, if the
application creates an EJB, the system must also verify that no
EJB with the same key exists at commit time. Similarly, if the
application removes an EJB, the system must also verify that the
current-image still exists before deleting it and committing the
transaction.

2.4 EJB Caching Configurations
Two EJB-caching configurations are discussed in this paper. In

the split-servers configurations, the cache-enhanced application
server requires a back-end application server that is one
deployment "tier" removed from the client. The logic that handles
cache misses and the logic that implements the optimistic
concurrency control algorithm reside on the back-end server (see
Figure 1). In the combined servers configuration, the back-end-
server function is merged in the cache-enhanced application
server (see Figure 2). This has the advantage of removing cross-
address-space communication between the application servers,

which improves performance under some scenarios. The
disadvantage of the combined-servers approach is that the
communication protocol between the cache-enabled application
server and the database is whatever the JDBC driver uses to
communicate with the database. Such protocols are typically not

suitable for internet or Grid [5] usage due to firewall and security
issues. In contrast, the back-end server approach introduces a

known interface between the application server and back-end
server. The protocol used to bridge this gap can be customized
appropriately to the environment.

3. HIGH-LATENCY ARCHITECTURES
High-latency communication is a principal characteristic of
internet environments. In order to better evaluate the benefits of
edge-server use of EJB-caching, we characterize three

architectures in terms of the location of the high-latency
communication path.

1. An architecture in which a remote database is shared by a
number of edge-servers. We term this an ES/RDB architecture.

Figure 1. Split-Servers Configuration

Figure 2. Combined Server Configuration

Web
Browser

Replicated EJB Home(s)

Servlets
JSPs

SLI Home

Transient Home (Cache)

getValue() findByPrimaryKey(42)

42

42

Database Server

42

Relational Table

Cache-Miss and
Optimistic Commit Logic

Direct-to-JDBC
implementation

42

Web
Browser

Replicated EJB Home(s)

Servlets
JSPs

SLI Home

Transient Home (Cache)

getValue() findByPrimaryKey(42)

42

42

Database Server

42

Relational Table

Cache-Miss and
Optimistic Commit Logic

Direct-to-JDBC
implementation

42

In the ES/RDB architecture, the high-latency communication
path lies between the application servers and the database (see
Figure 3). Note that, when the application server uses cached
EJBs, the ES/RDB configuration corresponds to the
"combined-servers" EJB-caching configuration (Figure 2).

2. An architecture in which cache-enhanced application servers
coordinate transactional activity using a common, remote,
back-end server. The remote back-end server is closely
clustered with a database. We term this a ES/RBES
architecture.

In the ES/RBES architecture, the high-latency communication
path lies between the cache-enhanced application servers and
the back-end server that provides the cache-miss and
transaction commit logic (see Figure 4). This architecture is
meaningless to anything but a EJB-caching architecture, and
corresponds, specifically, to the the "split-servers"
configuration (Figure 1).

3. A classic clustered datacenter architecture, in which clients do
not interact with edge-servers but instead communicate
directly with remote application servers. We term this a
Clients/RAS architecture.

In the Clients/RAS architecture, the high-latency
communication path lies between the web-clients and the
remote application servers (Figure 5). In a high-latency
environment, this is an alternative to an edge-server
architecture.

4. PERFORMANCE EVALUATION
In this section we evaluate whether, and to what degree, edge-
server architectures are suitable for EJB applications. We do this
by running cache-enabled and non-cache-enabled versions of a
sample application in each of the three latency configurations
discussed in Section 3. Before describing the test application, we
describe the test configuration.

Figure 3. Edge-Servers Sharing a Remote Database (ES/RDB)

Figure 4. Edge-Servers Sharing Remote Back-End Application Server (ES/RBES)

Enterprise
Data

delay

HTTPHTTP
ServerServer

Application ServerApplication Server

Business
Data

Access

request

response

(Cached) EJBs
or JDBC

Servlets

JSPs

delay

HTTPHTTP
ServerServer

Application ServerApplication Server

Business
Data

Access

request

response

(Cached) EJBs
or JDBC

Servlets

JSPs

HTTPHTTP
ServerServer

EJB Cache + Application EJB Cache + Application
ServerServer

Business
Data

Access

request

response

Cached EJBs

Servlets

JSPs

Enterprise
Data

HTTPHTTP
ServerServer

Back-End ServerBack-End Server

Cache miss
and

commit logic

request

response

Servlets

JSPs

delay

HTTPHTTP
ServerServer

EJB Cache + Application EJB Cache + Application
ServerServer

Business
Data

Access

request

response

Cached EJBs

Servlets

JSPs

delay

Edge Servers

Back-End Server

4.1 Test Configuration

4.1.1 System Components
The application server, delay-proxy server, back-end server, and
database server run on four separate machines. Each is a uni-
processor, Pentium III, 1266MHz Intel machine with 256MB
physical memory and 1GB paging space. The machines run
RedHat Linux 7.1 (kernel 2.4.2-2), and are connected with a 100
Mbit Ethernet. DB2, version 7.2 provides the persistent datastore.
The JVM is IBM's JDK Version 1.3.1; and the J2SDKEE version
is 1.2.1. Tomcat, version 4.1.12 is used as the servlet engine. A
prototype J2EE container is used for the SLI, persistent, and
transient containers.

4.1.2 Delay Proxy
Our machines are deployed in a LAN environment with latency
of, at most, several milliseconds. Because the performance
evaluation requires that the application be deployed in an
environment with latency of tens of milliseconds, we use a delay
proxy to emulate a high-latency communication path. The delay
proxy process runs on a dedicated machine. Depending on which
communication path has high-latency, all communication between
the specified endpoints (e.g., application servers and the database
server) is intercepted by the delay proxy listening at a specific
port. The proxy reads the incoming data, interposes a specified
amount of delay, and only then writes the incoming data to the
original destination. The data interception is transparent to both
the load generation program and the application. Performance
results were generated by varying the delay injected by the proxy
and determining the resulting application latency.

4.2 Test Application
Trade2 is a publicly available application developed by IBM that
"models an online brokerage firm providing web based services
such as login, buy, sell, get quote and more". Table 1, extracted
from the application's documentation, describes the Trade2
runtime and database usage characteristics. A client interaction
with the application involves a random sequence of the "trade
actions" listed in the Table, bracketed by a "login" and "logout".
The client web-browser sends a trade action request to a servlet;

the servlet invokes the appropriate session bean method; the
method, in turn, drives methods on or more entity beans. Finally,
the result of the "trade action" is constructed in a JSP and returned
to the client browser. On average, a single session consists of
about 11 individual trade actions. We consider Trade2 to be a
sufficiently complex application to make it a suitable J2EE
benchmark. We downloaded version 2.531, cache-enabled it, and
then evaluated its performance.

Table 1. Trade Runtime and Database Usage Characteristics

Trade
Action Description

CMP
Bean

Operation

HTTP
Session

DB
Activity

(C/R/U/D)

Login User sign in,
session creation Update Create,

Update

Registry:
R, U

Account: R

Logout User sign-off,
session destroy Update Read,

Destroy
Registry:

R, U

Register
Create a new

user profile and
account

Multi-
Bean

Create

Create,
Update

Account:
C, R,

Profile: C,
Registry: C

Home

Personalized
home page
including

current market
conditions

Read Read Account: R

Account
Review current

user profile
information

Read Read Profile: R

Account
Update

"Account"
followed by user

profile update

Read/Upd
ate Read Profile: R,

U

Portfolio
View users

current security
holdings

Read Read Holding: R

Figure 5. Clients Accessing Remote Application Servers (Clients/RAS)

HTTPHTTP
ServerServer

Application ServerApplication Server

Business
Data

Access

request

response

(Cached) EJBs
or JDBC

Servlets

JSPs

Enterprise
Data

HTTPHTTP
ServerServer

Application ServerApplication Server

Business
Data

Access

request

response

(Cached) EJBs
or JDBC

Servlets

JSPs

delay

delay

Trade
Action Description

CMP
Bean

Operation

HTTP
Session

DB
Activity

(C/R/U/D)

Quote View a current
security quote Read Read Quote: R

Buy

"Quote"
followed buy a

security
purchase

Multi-
Bean

Read/Upd
ate

Read

Quote: R,
Account:

R, U,
Holding:

C, R

Sell
"Portfolio"

followed by the
sell of a holding

Multi-
Bean

Read/Upd
ate

Read

Quote: R,
Account:

R, U,
Holding:

D, R

4.3 Results Roadmap
To evaluate the effectiveness of a given architecture, we focus on
two results: the latency of a client/server interaction, and the
bandwidth required to service the client's request. These results
are presented for the performance of the Trade2 benchmark in the
three architectures discussed above.

Within a specific architecture, the effectiveness of EJB caching is
evaluated by comparing its performance against two, non-cached-
enabled, versions of the application.

• JDBC: a pure JDBC [10] implementation, included in Trade2.
We include this algorithm because JDBC implementations are
commonly understood to provide better performance than
"higher-level" implementations such as EJBs.

• Vanilla EJBs: an implementation using non-cached EJBs with
bean-managed-persistence (BMP), with persistence provided
by DB2. This corresponds to the EJB-ALT mode in Trade2.

Results were obtained in a "low-load" situation so as to factor out
queueing delay effects: specifically, one virtual client makes
repeated requests to the Trade2 running on a single application
server. The latency metric represents average latency of a round-
trip interaction between the client and the application as a
function of the (one-way) delay injected by the delay proxy at the
specified communication path. The set of possible trade actions
are those listed in Table 1. (Both latency and the delay are
specified in milliseconds.) In addition to individual data points,
we show a linear curve extrapolating the data with an R2

"goodness of fit" of 99%. Client requests are driven by a load
generator program on a dedicated machine. Reported latency is
the batched (over 20 batches) average of a run consisting of 300
sessions. Each session consists, on average, of about 11
client/server interactions. A warmup period, consisting of 400
sessions, preceded each run.

4.4 Results
Figure 7 shows the latency behavior of the application when
deployed to the three architectures; Figure 6 shows the bandwidth
required to service client requests for the architectures.

We first observe that the non-edge-server architecture
(Clients/RAS, "stars") has lower latency than either of the two

edge-server architectures. We also observe that, of the two edge-
server configurations, EJB-caching enables the ES/RBES
architecture ("triangles") to perform far better than the best
algorithm of the ES/RDB ("diamonds") architecture.

One way to understand these results is to examine latency
sensitivity (Table 2), defined as the increase in the latency of a
single interaction for each unit increase in communication delay.

Table 2. Algorithm Sensitivity to Communication Latency

ES/RDB
Configuration

ES/RBES
Configuration

Clients/RAS
Configuration

Algo-
rithm

Sensi-
tivity

Algo-
rithm

Sensi-
tivity

Algo-
rithm

Sensi-
tivity

Cached
EJBs 13.0 Cached

EJBs 3.1 Cached
EJBs 2.0

JDBC 9.4 JDBC N/A JDBC 2.0

Vanilla
EJBs 23.6 Vanilla

EJBs N/A Vanilla
EJBs 2.0

We see that the non-edge-server architecture is the least sensitive
to increases in latency: every increase in one-way latency causes a
two-fold increase in round-trip latency. This is because once the
request is received by the application server, latency does not
affect processing of the request in any way. In contrast, even the
best performing algorithm of the ES/RDB architecture is much
more affected by latency (9.4) since it incurrs this penalty every
time that a database access is performed. Note that multiple
database requests are required per client request. Also, the JDBC
implementation in the ES/RDB architecture is less affected by
latency than either vanilla or cached EJBs (see Figure 8). This is
likely because the (hand-crafted) JDBC implementation is better
optimized than the tooled EJB implementation. For example,
BMP EJBs have difficulty caching the results of a
findByPrimaryKey operation, even though such results are
typically reused immediately.

Compared to vanilla EJBs, EJB-caching is quite effective in
reducing latency sensitivity. In the ES/RDB architecture (Figure

8), sensitivity is reduced from 23.6 to 13.0; in the ES/RBES
architecture, sensitivity is reduced to 3.1. Caching is effective

Figure 7. Comparison of High-Latency Architectures

0 20 40 60 80 100

(milliseconds)
One-way delay

0

100

200

300

400

500

600

700

(m
ill

is
ec

on
ds

)
R

es
po

ns
e

tim
e

ES/RDB + JDBC
ES/RBES (cached EJBs)

Clients/RAS (cached EJBs)

because fewer calls have to be made to access data across the
high-latency path. Why is caching more effective in the ES/RBES
architecture than in ES/RDB? The reason has to do with the way
that the combined-servers (ES/RDB using cached EJBs) and split-
server (ES/RBES) architectures commit a transaction. The
combined-servers configuration requires multiple database server
accesses, one per memento image. Assuming no cache misses, the
split-server configuration requires only a single access to the
back-end server. This access is done at commit time in order to
transmit the set of memento images involved in the transaction. Of
course, the back-end server will, in turn, perform multiple
accesses to the database server. However, these occur over a low-
latency path. In contrast, the combined-servers configuration has
large delays between the cache-enhanced application server and
the database server. In consequence, the extra round-trips incurred
when a transaction commits dominates the extra address-space
crossing required by the split-server configuration.

Why do the edge-server architectures, even using EJB caching,
have greater latency than the remote data-center architecture?
With the transactional caching algorithms that we have examined,

at least one call to the database or back-end server is required for
each commit operation. In Trade2, each client request involves at
least one commit operation, because all client requests require
access to some transactional data. Therefore, each client request
involves at least one round-trip call to the back-end server, and
possibly more calls to handle cache misses. These transactional
caching algorithms cannot yield an edge-server with lower latency
than a non-edge-server configuration. Although we use optimistic
concurrency control (Section 2.3), the use of pessimistic
concurrency-control algorithms will not improve the situation.
Pessimistic concurrency control requires at least as many calls to
acquire and release locks at the back-end server.

We do not claim that non-edge-servers will always supply lower-
latency than edge-servers for transactional applications. Other
applications may not require access to transactional data on every
request. For example, workflow techniques could batch the
commit of multiple client requests as a single transaction.

Although latency performance suggests that the non-edge-server
architecture is best suited for transactional applications, Figure 6
shows the weakness of this architecture. We see that every
client/server round-trip transmits almost 8000 bytes to and from
the back-end server, while the edge-server architectures transmit
far fewer bytes. ES/RBES transmits about 3000 bytes and
ES/RDB transmits about 2000 bytes. These differences relate to
one of the basic motivations for edge-servers: to reduce the
amount of bandwidth that must be provisioned for the back-end
server. In the Clients/RAS architecture, the presentation portion
(HTML, images, JavaScript) of an application must all be
transmitted on connections to the back-end server. (Because
Trade2 does not contain images or static HTML, we expect that
other applications would show an even greater "bandwidth
effect".) In contrast, the edge-server architectures transmit this
data on smaller, local pipes, between the clients and the edge-
servers. Much smaller amounts of traffic needs to be transmitted
to the shared site (back-end server or database).

As shown by Figure 7, using EJB caching on the ES/RBES
architecture provides latency that is almost as good as
Clients/RAS -- while using much less bandwidth. We consider

Figure 6. Bandwidth

ES/RDB ES/RBES Clients/RBES
0

1

2

3

4

5

6

7

8

9

T
ho

us
an

ds
B

yt
es

 p
er

 c
lie

nt
 in

te
ra

ct
io

n
JDBC
Vanilla EJBs
Cached EJBs

Figure 8. Edge-Servers Accessing Remote Database

0 20 40 60 80 100

Delay (msec)

0

500

1000

1500

R
es

po
ns

e
tim

e
(m

se
c)

JDBC Vanilla EJBs Cached EJBs (combined
servers)

this configuration to be a superior compromise to optimize these
two goals.

5. SUMMARY
In this paper we examined the effectiveness of edge-server
architectures for transactional applications. We showed that, in
order to maintain transactional consistency, such applications
require more interaction between edge-servers and the back-end
server than non-transactional web-data. While this causes a non-
edge-server architecture to have superior latency behavior than
edge-server architectures, we showed that EJB-caching allows
edge-servers to provide almost the same latency performance as
the non-edge-server architecture, while providing much better
bandwidth behavior.

6. ACKNOWLEDGEMENTS
We would like to thank Vikaram Desai, Jiwu Tao, and Michael
Young (IBM Pittsburgh Lab) for their help in architecting and
implementing an earlier version of the ejb caching framework.

7. REFERENCES
[1] Akamai, A Distributed Infrastructure for e-Business.

http://www.akamai.com/en/html/services/white_paper_librar
y.html.

[2] Amiri, K., Tewari, R., Park S., and Padmanabhan S. On
Space Management in a Dynamic Edge Data Cache. Fifth
International Workshop on the Web and Databases (WebDB
2002).

[3] Edge Side Includes (ESI).
 http://www.esi.org/index.html. 2002.

[4] Enterprise JavaBeans Specifications.
http://java.sun.com/products/ejb/docs.html .

[5] Foster, I., Kesselman, C., and Tuecke, S. The Anatomy of
the Grid: Enabling Scalable Virtual Organizations.

International Journal of High Performance Computing
Applications, 15(3), 200-222.

[6] Franklin, M.J., Carey, M.J., and Livny, M. Transactional
Client-Server Cache Consistency: Alternatives and
Performance. ACM Transactions on Database Systems. Vol.
22, No. 3, September 1997, 315-363.

[7] Gamma, E., et al. Design Patterns. Addison Wesley
Longman, 1995.

[8] Gray, J. and Reuter, A. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[9] Gwertzman, J. and Seltzer, M. I. World Wide Web Cache
Consistency. USENIX Annual Technical Conference, 1996,
141-152.

[10] JDBC Data Acess API.
http://java.sun.com/products/jdbc/.

[11] Leff, A., Prokopek, P., Rayfield, J. T., and Silva-Lepe, I.
Enterprise JavaBeans and Microsoft Transaction Server:
Frameworks for Distributed Enterprise Components. .
Advances in Computers, Academic Press. Vol. 54, 2001, 99-
152.

[12] Leff, A. and Rayfield, J.T. Enterprise JavaBeans Caching:
Architecture and Performance. IBM Research Report,
RC22554, 2002.

[13] Luo, Q. et al. Middle-tier Database Caching for e-Business.
Proc. ACM SIGMOD International Conference on
Management of Data, 2002.

[14] OMG Specifications and Process.
 http://www.omg.org/gettingstarted/.

[15] Rabinovich, M. and Spatscheck, O. Web Caching and
Replication. Addison Wesley Professional, 2002.

[16] RMI, Java Remote Method Invocation
 http://java.sun.com/docs/books/tutorial/rmi/.

[17] WebSphere Edge Server.
http://www-3.ibm.com/software/webservers/edgeserver/.

