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Abstract

Multiattribute auctions extend traditional auction settings. In ad-

dition to price, multiattribute auctions allow negotiation over non-price

attributes such as weight, color, terms-of-delivery, and promise to improve

market eÆciency in markets with con�gurable goods. Multiattribute auc-

tions also provide quite general purpose negotiation mechanisms, for ex-

ample over the terms of a contracting relationship. We propose a family

of iterative primal-dual based multiattribute auction mechanisms, for re-

verse auction settings with one buyer and many sellers. The auctions

support incremental preference revelation from both the buyer and the

sellers. The auctions are price-directed, and a straightforward myopic

best-response strategy is in equilibrium for sellers, assuming a class of

consistent buyer strategies. Moreover, the auctions are eÆcient with a

truthful buyer, and we quantify the maximal possible gain to a buyer

from deviating from a truthful strategy.
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1 Background

Multiattribute auctions [5] extend the traditional auction setting to allow ne-
gotiation over price and attributes, with the �nal characteristics of the item, as
well as the price, determined dynamically through agents' bids. For example,
in a procurement problem, a multiattribute auction can allow di�erent suppli-
ers to compete over both attributes values and price. To the extent that other
negotiation problems can be formulated as multiattribute allocation problems,
multiattribute auction mechanisms also provide mechanisms for automated ne-
gotiation outside of e-commerce, such as bargaining over shared resources be-
tween distributed computational agents [12, 10], and automated negotiation
over the terms of a contracting relationship.

In this paper we apply a linear-programming based methodology to develop
a family of iterative multiattribute auctions. Primal-dual analysis is used to
construct an iterative auction that terminates with the outcome of a modi�ed
Vickrey-Clarke-Groves (VCG) [22, 6, 8] mechanism for the multiattribute allo-
cation problem. A similar approach has yielded successful designs for eÆcient
ascending-price combinatorial auctions, in which bidders demand di�erent com-
binations of items [18, 2, 20]. The primary di�erence between the multiattribute
allocation problem and the combinatorial allocation problem is that there is pri-
vate information on both sides of the auction in the multiattribute setting. This
complicates the incentive structure of the mechanism design problem, because
the winner determination problem in each round of the auction depends on the
preferences of the buyer and the sellers.

Iterative mechanisms, that allow participants to provide incremental infor-
mation about their preferences, are especially important in applications of multi-
attribute auctions to procurement settings. First, preference elicitation is often
costly in procurement problems, and bidders would prefer not to have to deter-
mine an exact value tradeo� across all di�erent combinations of attribute levels
if that can be avoided. Second, it is often important to reveal as little infor-
mation as possible about costs and preferences in a strategic situation such as
procurement, because participants are in a long-term competitive relationship.

One could imagine two reasonable goals for multiattribute auction design:
buyer payo� maximization, or alternatively allocative eÆciency, which selects
the outcome that maximizes the di�erence between the value of the buyer and
the cost of the seller, across all attribute levels and all sellers. It is well known
from classic auction theory that the two goals of payo� maximization and ef-
�ciency are typically incompatible [13]. Earlier designs for multiattribute auc-
tions emphasized optimal auction design, maximizing the �nal payo� to the
buyer in the auction. Che [5] proposed a buyer payo�-maximizing one-shot
sealed-bid two-attribute auction protocol with a �rst price and a second price
payo� function. Assuming that buyers announce a scoring function (not nec-
essarily truthful) he shows that the equilibrium behavior for the supplier is to
supply at a quality level that maximizes the score minus the true cost to achieve
that score. He also derives the optimal scoring functions for the buyer (both
for �rst price and second price protocols) where a quality penalty is applied as
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a function of the distribution of the cost parameter (which is assumed to be
common knowledge). Branco [4] extends this protocol to the case where the
seller cost functions are correlated.

Recently, Beil & Wein [1] have proposed an iterative payo�-maximizing auc-
tion procedure, for a class of parameterized utility functions (with K param-
eters) with known functional forms and naive suppliers. The buyers uses K
rounds to estimate the seller costs functions deterministically. For the �nal
(K+1th) round they design a scoring function so as to maximize buyer payo�
by essentially reporting the same score (within �) for the top two suppliers.
They assume that the buyer scoring function does not need to be consistent
across rounds.

We propose multiattribute auction mechanisms that are eÆcient under rea-
sonable assumptions about bidder strategies. This goal is similar to the one
in the paper by Vulkan & Jennings [23]. We believe that eÆciency is a more
appropriate goal than utility-maximization for stable long-term market design.
We expect that eÆcient markets will come to dominate the electronic market
landscape [?]. Buyer payo� maximization is perhaps more appropriate for a one-
shot procurement problem, and in a setting in which the buyer has considerable
market power [5, 1].

We formulate and solve two variations on the one-buyer many-seller mul-
tiattribute allocation problem. In the �rst, and more general variation, we
assume discrete attribute levels and non-linear valuation and cost functions
across attributes. In the second variation we assume discrete attribute lev-
els and preferential-independence, which is equivalent to an assumption that
sellers and the buyer have linear-additive cost and valuation functions across
di�erent attribute types. Iterative auctions are proposed for both variations,
that maintain prices on di�erent combinations of attribute values and adjust
prices across rounds based on bids from sellers and information from the buyer.
Prices are non-linear but anonymous in the problem with general agent prefer-
ences, and prices cannot be represented as a linear sum over prices on individual
levels of each attribute type. The auction for the special case of preferential-
independence maintains two separable price components, comprised of linear
prices and an individualized price penalty for each seller.

We prove that straightforward myopic best-response is an ex post Nash equi-
librium for sellers against a class of consistent buyer strategies. A consistent
strategy for the buyer is any strategy that can be represented as a straight-
forward myopic best-response strategy for some ex ante �xed, but perhaps un-
truthful, cost function. In particular, if the buyer follows a truthful consistent
strategy, then the auction terminates with the eÆcient outcome. We are also
able to characterize the maximal bene�t to the buyer for a non-truthful strategy,
consistent or otherwise.

1.1 Outline

Section 2 formulates the multiattribute allocation problem, and introduces linear
program formulations for general non-linear preferences, and for the special case
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of preferential-independence. A simple example is provided to illustrate each
variation. We then establish the integrality of the formulations, and demonstrate
that the dual programs compute competitive equilibrium prices. Continuing, in
Section 3 we de�ne the VCG mechanism for the eÆcient multiattribute alloca-
tion problem, and demonstrate that it is not budget-balanced. We introduce
a budget-balanced approximate VCG mechanism, that remains strategyproof
for the sellers but is not strategyproof for the buyer, and bound the e�ect of
manipulation on the eÆciency. Finally, we relate the Vickrey payments with
the competitive equilibrium prices developed in the LP analysis.

Section 4 introduces the primal-dual based auction for the general multiat-
tribute allocation problem, with non-linear preferences. Theoretical and compu-
tational analysis is presented to characterize the performance of the auction. We
also present a worked example, and relate the design of the auction to existing
designs for iterative combinatorial auctions. Section 5 de�nes a simpler auction
for the case of preferential-independence, with a smaller price space composed
of a linear component with a simple additive penalty term.

2 The Multiattribute Allocation Problem

In the multiattribute allocation problem (MAP) there are N sellers, one buyer,
and M attributes. Let I denote the set of sellers, and J denote the set of
attributes. Each attribute, j 2 J , has a domain of possible attribute values (or
levels), denoted with abstract set �j ; for example �1 = fred,yellow,greeng if
attribute 1 is the color of an item. The joint domain, across all attributes, is
denoted � = �1��M . Each seller, i 2 I, has a cost function, ci(�) � 0, for an
attribute bundle, � 2 �, and the buyer has a valuation function, v(�) � 0. For
simplicity, it is useful to assume that � contains a null attribute bundle, �, for
which v(�) = 0 and ci(�) = 0 for all i 2 I.

De�nition 1 (multiattribute allocation problem). Select attribute bundle,
��, and seller, i�, to maximize the di�erence between buyer value and seller cost:

V (I) = max
�2�;i2I

v(�)� ci(�) [map(I)]

The solution to the MAP problem, map(I), is the eÆcient allocation, de-
noted (��; i�). In later sections, when we introduce incentive-compatible mech-
anisms for MAP, it will be useful to consider the MAP problem restricted to
(I n i) agents. We write, [map(I n i)], to denote this restricted problem, and
V (I n i) to denote the value of the solution to [map(I n i)].

In this paper we assume that agents have quasilinear utility functions. The
utility to seller, i, for selling an item with attribute bundle, �, at price p is the
di�erence between the price and its cost, i.e. ui(�; p) = p� ci(�). Similarly, the
utility to the buyer for buying an item with attribute bundle, �, at price p is
simply the di�erence between its value and the price, i.e. uB(�; p) = v(�) � p.

Notice that we restrict our attention to multiattribute allocation problems in
which a single buyer negotiates with multiple sellers in a reverse auction, and will
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eventually select a single seller. This assumption is common in the literature [5,
4, 1], and the single-seller outcome remains important in practical e-commerce
applications [1]. Extensions to allow aggregation across multiple sellers, and
combinatorial e�ects, signi�cantly complicate incentive considerations and are
left for future work. In particular, the Vickrey payo� to the winning sellers can
no longer be supported in competitive equilibrium when the �nal trade involves
multiple sellers.

In general the abstract attribute domains, �j , can allow for both discrete and
continuous attribute values. In this paper we focus on the discrete attribute case,
and consider two main variations. The �rst variation, MAP-1, formulates the
MAP with general non-linear agent preferences. The second variation, MAP-
2, makes a preferential-independence assumption about the valuation and cost
functions of agents. In the following sections we introduce each variation, and
use primal-dual analysis to characterize the space of competitive equilibrium
(CE) prices. In competitive equilibrium, the outcome maximizes the surplus
for every seller and the buyer, given the prices. This characterization is useful
for the design of iterative mechanisms, because we can design auctions that
terminate in competitive equilibrium, and support the eÆcient allocation.

2.1 MAP-1: General Preferences

To apply a primal-dual auction design methodology we need an appropriate
linear-programming formulation of the MAP problem. The formulation must
be integral, provide enough structure to make an equivalence between the dual
solution and competitive equilibrium prices, and also have a useful correspon-
dence to VCG payments. Unlike the combinatorial allocation problem [21, 7],
integrality is quite straightforward in the MAP problem. The trick in the formu-
lation is to introduce additional structure, through valid inequalities and lifting,
to achieve a useful price structure.

First consider a simple formulation. Introduce variable, xi(�) � 0, to indi-
cate that attribute bundle, �, is purchased from seller i at level xi(�). Of course,
in an integral solution this will be a 0/1 value.

max
xi(�)

X
i2I

X
�2�

(v(�) � ci(�))xi(�)

s:t:
X
i2I

X
�2�

xi(�) � 1

xi(�) � 0

The dual formulation to this LP provides no useful structure, simply reducing
to [min� : � � v(�) � ci(�); 8i;8�], with dual variable, � � 0.

Following the second-order formulation for the combinatorial allocation prob-
lem, introduced in Bikchandani & Ostroy [3], we might consider the following
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LP formulation, in which additional variables, xB(�) � 0 are introduced.

max
xi(�);xB(�)

X
i2I

X
�2�

(v(�) � ci(�))xi(�)

s:t:
X
�2�

xi(�) � 1; 8i 2 I (1)

X
i2I

xi(�) � xB(�); 8� 2 � (2)

X
�2�

xB(�) � 1 (3)

xi(�); x
B(�) � 0

The corresponding dual formulation for this LP has some additional struc-
ture, but is still not suÆcient for primal-dual auction design. Introduce dual
variable, �i, for constraints (1), dual variable, �

B , for constraint (3), and dual
variable, p(�), for constraints (2).

min
�i;�B;p(�)

X
i2I

�i + �B

s:t: �i + p(�) � v(�) � ci(�); 8i 2 I;8� 2 � (4)

�p(�) + �B � 0; 8� 2 � (5)

�i; �
B ; p(�) � 0

We would like to interpret dual variables as competitive equilibrium prices,
via complementary slackness (CS) conditions. Although variables, p(�), can
be interpreted as prices, the problem with this primal/dual formulation is that
the complementary slackness (CS) conditions do not separate the information
about the buyer's valuation function from the information about the sellers' cost
functions. This information must be separated across di�erent CS conditions,
because we would like to test whether a particular CS condition holds with
best-response information from a single agent at the prices.

As an example, the information about the valuation, v(�), and the cost,
ci(�), of seller i is required to evaluate the following CS condition.

xi(�) > 0 ) �i + p(�) = v(�) � ci(�)

Combined with dual constraint (4), this implies that if attribute bundle, �0, from
seller i is the eÆcient outcome then it is necessary that v(�0)� ci(�

0)� p(�0) =
max�2�(v(�) � ci(�) � p(�)). In otherwords, it is necessary that �0 maximizes
the price-adjusted surplus over all outcomes involving seller i. But the valuation
function is private to the buyer, and the cost function is private to the seller, so
this property cannot be tested by announcing price p(�) and asking the buyer
and seller for their best-response at the price.

Linear program formulation, MAP-1, resolves this problem. The formulation
separates the valuation of the buyer and the costs of the sellers in the objective
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function, and leads to a useful set of CS conditions.

max
xi(�);xB(�)

X
�2�

v(�)xB(�)�
X
i2I

X
�2�

ci(�)xi(�) [MAP-1]

s:t:
X
�2�

xi(�) � 1; 8i 2 I (6)

X
i2I

xi(�) � xB(�); 8� 2 � (7)

X
�2�

xB(�) � 1 (8)

xi(�); x
B(�) � 0

Notice that constraint (7) is reversed from (2) in this formulation, although it is
straightforward to demonstrate that constraints (7) and (2) hold with equality
for all � 2 � at the optimal solution to both formulations.

Before continuing, it is useful to verify that MAP-1 is indeed integral. First
notice that the choice of xB(�) is extremal with respect to the choice of xi(�),
which is to say that xB(�) =

P
i xi(�) for all � in an optimal solution. The prob-

lem reduces to [maxxi(�)
P

i2I

P
�2�(v(�) � ci(�))xi(�) :

P
i2I

P
�2� xi(�) �

1], and integrality of xi(�) and xB(�) follows.
The dual LP formulation becomes:

min
�i;�B;p(�)

X
i2I

�i + �B [DMAP-1]

s:t: p(�) + �B � v(�); 8� 2 � (9)

�i � p(�) � �ci(�); 8i 2 I;8� 2 � (10)

�i; �
B ; p(�) � 0

Looking now at the CS conditions for MAP-1 and DMAP-1, we can interpret
the values of variables, p(�), in an optimal dual solution as non-linear compet-
itive equilibrium prices. First, notice that once values, p(�), are de�ned, call
them prices, the optimal values for �i and �B with respect to those prices are
easy to state.

�i = max
�2�

[p(�)� ci(�); 0] (11)

�B = max
�2�

[v(�)� p(�); 0] (12)

In words, �i, is the maximal utility to seller i at prices p(�) and �B is the
maximal utility to the buyer, since we assume quasilinear utility functions.

Then, the �rst pair of interesting CS conditions, that relate to the preferences
of seller i, are:

�i > 0)
X
�2�

xi(�) = 1 (CS-1)

xi(�) > 0) �i � p(�) = �ci(�) (CS-2)
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Given (11), condition (CS-1) states that if a seller has positive utility for some
outcome at the prices, then the seller must win the auction. In particular,
condition (CS-2) states that the attribute bundle must maximize the seller's
utility at the prices.

The second pair of interesting CS conditions, that relate to the preferences
of the buyer, are:

�B > 0)
X
�2�

xB(�) = 1 (CS-3)

xB(�) > 0) p(�) + �B = v(�) (CS-4)

Given (12), condition (CS-3) states that if the buyer has positive utility for some
outcome at the prices, then some trade must occur. In particular, condition
(CS-4) states that the attribute bundle must maximize the buyer's utility at
the prices.

This analysis demonstrates that prices, p(�), in an optimal dual solution cor-
respond to competitive equilibrium prices. The eÆciency of the corresponding
allocation follows immediately from the CS conditions.

De�nition 2 (competitive equilibrium). Prices, p(�), are competitive equi-
librium prices, if there is an allocation (��; i�) that maximizes the utility of the
buyer, and the utility of every seller, at the prices.

Proposition 1 (eÆciency). The allocation, (��; i�), that is supported in com-
petitive equilibrium is eÆcient.

Formulation MAP-1 succeeds in separating the preference information of
the buyer from that of the sellers; individual agents, namely the buyer and the
sellers, can provide suÆcient information in best-response bids to prices to verify
CS conditions.

In general, there are many possible CE prices for a given instance of the
MAP problem. It is useful to characterize the range of CE prices, because the
incentive properties of the auction depend on the actual prices selected when
the auction terminates.

First, feasibility constraint (10), with �i = 0 for i 6= i�, reduces to:

p(�) � min

�
min
i6=i�

ci(�); �i� + ci�(�)

�
; 8� 2 �

Combining this with constraint (9), we need:

�B � max
�2�

�
v(�) �min

�
min
i6=i�

ci(�); �i� + ci�(�)

��
(*)

We �rst show that this condition trivially holds whenever the expression is
maximized for some �0 2 � for which �i� + ci�(�

0) < mini6=i� ci(�
0). In this

case, we require �B � v(�0)� �i� � ci�(�
0), which is satis�ed for any �0 because

�B + �i� = v(��) � ci�(�
�) in equilibrium, and (i�; ��) is the eÆcient solution.
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Now, writing (~�;~i) to denote the second-best allocation, i.e. the solution to
[map(I n i�)], condition (*) simpli�es to:

�B � max
�2�

�
v(�)�min

i6=i�
ci(�)

�
= v(~�)� c~i(

~�) (13)

Competitive equilibrium also requires, �i� � 0, that together with �B + �i� =
v(��)� ci�(�

�), becomes:

�B � v(��)� ci�(�
�) (14)

Finally, substituting p(��) = v(��) � �B , and constructing the prices on
attribute bundles, � 6= ��, to give �i � 0 for all i 6= i�, and also to ensure that
the buyer prefers attributes �� to any other attributes, then the space of optimal
dual solutions corresponds to:

ci�(�
�) � p(��) � v(��)� (v(~�)� c~i(

~�)) (15)

v(�) � v(��) + p(��) � p(�) � min
i6=i�

ci(�); 8� (16)

It is trivial to check that (16) holds for any values, p(��), that satisfy (15).
We can now de�ne the maximal CE prices, which are prices that maximize

the payment to the eÆcient seller across all competitive equilibrium prices.
In Section 3 we relate the maximal CE prices to the payments in the VCG
mechanism for the MAP problem.

Lemma 1 (maximal CE prices). The maximal CE prices, given eÆcient
solution (��; i�) and second-best solution, (~�;~i), set price p(��) = v(��)�(v(~�)�
c~i(

~�)) and p(�) for � 6= �� to satisfy (16).

The maximal CE prices are characterized by the property that the second-
best seller, ~i, is pivotal, in that its maximal utility across all attributes is exactly
zero. We will see this characteristic again in the next section, when we derive
maximal CE prices for the preferential-independence MAP problem.

Lemma 2 (second-best utility). The utility of the second-best seller, ~i, is
exactly zero for the second-best attribute bundle, ~�, at the maximal CE prices.

Proof. Substitute, p(��) = v(��)� (v(~�)� c~i(
~�)), into (16). ut

Later, it is useful to write, pce(�), to denote the particular maximal CE prices
in which the price on attributes, � 6= ��, is maximized, i.e. pce(�) = mini6=i� ci(�)

for all � 6= ��, and pce(�
�) = v(��)� (v(~�)� c~i(

~�)).

2.2 MAP-2: Preferential-Independence

A classic assumption in multiattribute utility theory [11] is that agents' utilities
satisfy preferential-independence. An attribute j 2 J is said to be preferentially
independent of j0 6= j if preferences for speci�c levels of �j do not depend on
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the level of attribute �j0 . Let k 2 �j denote the k
th level of attribute j, and let

xjk 2 f0; 1g equal 1 if level k of attribute j is selected in attribute bundle �. It
is required that

P
k2�j

xjk � 1 for all attributes, j 2 J .
A cost function for seller i that satis�es preferential independence can be

expressed as:

ci(�) =
X
j2J

X
k2�j

cijkxjk

where cijk is the marginal cost to seller i if level k of attribute j is selected.
Similarly, the buyer's valuation function can be expressed as

v(�) =
X
j2J

X
k2�j

vjkxjk

where vjk is the marginal value to seller i if level k of attribute j is selected.
Introduce variables xijk , x

B
jk , and yi. Perhaps the most natural formulation

of the preferential-independence special case, given MAP-1, is as follows:

max
xijk;xBjk;yi

X
j2J

X
k2�j

vjkx
B
jk �

X
i2I

X
j2J

X
k2�j

cijkxijk

s:t:
X
k2�j

xijk � yi; 8i 2 I;8j 2 J (17)

X
i2I

yi � 1 (18)

X
i2I

xijk � xBjk ; 8j 2 J ;8k 2 K (19)

xijk ; x
B
jk ; yi � 0

Constraints (17) correspond to constraints (6) in MAP-1, and constraints
(19) correspond to constraints (7). The additional constraint, (18), is intro-
duced to ensure that at most one seller is selected in the outcome, which makes
constraints that correspond to constraints (8) in MAP-1 redundant. Although
the dual formulation for this LP has some useful price structure, it is not quite
suitable for primal-dual auction design. To see this, introduce dual variables,
�ij , for constraints (17), dual variable, �, for constraint (18), and dual variables,
pjk, for constraints (19). Variables, pjk can be interpreted as prices, with �ij
representing the maximal utility of seller i on attribute j at prices pjk , and the
dual problem is to set prices that minimize the maximal total utility, across all
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sellers:

min�

s:t: pjk � vjk ; 8j 2 J ;8k 2 �j

�ij � pjk � �cijk ; 8i 2 I;8j 2 J ;8k 2 �j

�
X
j2J

�ij + � � 0; 8i 2 I

�ij ; �; pjk � 0

There are two problems with this formulation. First, the prices do not achieve
the goal of solving the MAP with incomplete preference revelation from the
buyer. Notice that the complementary slackness conditions for primal variable,
xBjk , state that xBjk > 0 ) pjk = vjk ; in other words, these attribute levels
must be priced at the value of the buyer. Second, there are no optimal dual
prices that support the VCG payments, which we will need to de�ne an iterative
primal-dual based auction with useful incentive properties.

We introduce linear program MAP-2 to resolve these problems. MAP-2
introduces an additional variable, xi � 0, and replaces constraints (17) with
constraints (20) and (21). Secondly, MAP-2 introduces valid inequalities, (22)
and (23); note that (22) is redundant given (18) and (21), and (23) is redundant
given (18), (19), (20) and (21).

max
xijk;xBjk;xi;yi

X
j2J

X
k2�j

vjkx
B
jk �

X
i2I

X
j2J

X
k2�j

cijkxijk [MAP-2]

s:t:
X
k2�j

xijk � xi; 8i 2 I;8j 2 J (20)

xi � yi; 8i 2 I (21)X
i2I

yi � 1 (18)

X
i2I

xijk � xBjk ; 8j 2 J ;8k 2 K (19)

xi � 1; 8i 2 I (22)X
k2�j

xBjk �
X
i2I

yi; 8j 2 J (23)

xijk ; x
B
jk ; xi; yi � 0

Proposition 2 (integrality). Linear program, MAP-2, is integral.

Proof. Ignoring redundant constraints (22) and (23), we �rst note that xBjk =P
i2I xijk in the optimal solution. Let uijk = vjk � cijk and suppose, w.o.l.g.,

an ordering over k s.t. uij1 � uij2 � : : :, for all i; j. Then, the optimal setting is
xij1 = xi = yi when uij1 � 0, for all i; j, with xij1 = 0 otherwise, and xijk = 0
for all k 6= 1, all i; j. Taking the interesting case, that xij1 = yi for all yi,
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the problem now reduces to maxyi
P

i2I

�P
j2J uij1

�
yi =

P
i2I Viyi, where

Vi =
P

j2J uij1. Integrality of yi, xijk , and xBjk , follows. ut

To construct the dual, introduce variables �ij , �i, �
B , pjk, �i, and �Bj , to

correspond to primal constraints (20), (21), (18), (19), (22), and (23) respec-
tively.

min
�ij ;�i;�B;pjk;�i;�Bj

�B +
X
i2I

�i [DMAP-2]

s:t: �B �
X
j2J

�Bj +�i; 8i 2 I (24)

�Bj � vjk � pjk; 8j 2 J ;8k 2 �j (25)

�i �
X
j2J

�ij ��i; 8i 2 I (26)

�ij � pjk � cijk ; 8i 2 I;8j 2 J ;8k 2 �j (27)

�ij ;�i; �
B ; pjk; �i; �

B
j � 0

Taken together, variables pjk and �i can be interpreted as providing prices
for attribute bundle � 2 �. The prices have an additive linear component,
de�ned across pjk , and a non-linear and non-anonymous component, de�ned as
penalty, �i. The e�ective price for attribute bundle, �, from seller i is

pi(�) =
X
j2J

X
k2�j

�jkpjk ��i

where �jk = 1 if and only if the value of attribute j is assigned to the kth level
in the domain for that attribute. The term, �i � 0, represents a price penalty
from the base prices for seller i.

As before, once values on prices pjk and �i are de�ned, then the optimal
values for �i; �ij ; �

B and �Bj are easy to state.

�i = max[
X
j2J

�ij ��i; 0] (28)

�ij = max
k2�j

[pjk � cijk ; 0] (29)

�B =
X
j2J

�Bj +max
i

�i (30)

�Bj = max
k2�j

[vjk � pjk ; 0] (31)

In words, �i is the maximal utility to seller i at prices pjk ;�i, which is
evaluated as the sum over the seller's maximal utility for each attribute, �ij ,
and �B is the maximal utility to the buyer, which is evaluated as the sum over
the buyer's maximal utility for each attribute, �Bj , plus the maximum over all

12



penalties. Notice that the buyer gets to select both the best linear price terms
and the best penalty terms.

As desired, the CS conditions demonstrate that an allocation is eÆcient if
and only if there is a dual solution that corresponds to prices that support the
allocation in competitive equilibrium. The interesting CS conditions that relate
to the preferences of seller i are:

�ij > 0)
X
k2�j

xijk = xi (CS-1)

�i > 0) xi = 1 (CS-2)

xi > 0) �i =
X
j2J

�ij ��i (CS-3)

xijk > 0) �ij = pjk � cijk (CS-4)

Given (28) and (29), these conditions state that if seller i has positive overall
utility for some trade, given prices (pjk ;�i), then the seller should win the
auction, and the attribute bundle should maximize its utility.

The interesting CS conditions that relate to the preferences of the buyer are:

�Bj > 0)
X
k2�j

xBjk =
X
i2I

yi (CS-5)

�B > 0)
X
i2I

yi = 1 (CS-6)

yi > 0) �B =
X
j2J

�Bj +�i (CS-7)

xBjk > 0) �Bj = vjk � pjk (CS-8)

Given (30) and (31), if a buyer has positive utility for some attribute bundle
at prices pjk, and taking the maximal penalty term across all sellers, then the
eÆcient trade is the attribute bundle that maximizes its utility.

Then, since xi = yi and xBjk =
P

i xijk in the optimal solution, the CS
conditions provide the following interpretation of competitive equilibrium prices.

De�nition 3 (MAP-2 competitive equilibrium). Prices, (pjk ;�i), are com-
petitive equilibrium prices, if and only if there is an allocation, (��; i�), such that
attribute bundle, ��, maximizes both the utility of the seller, i�, and the utility of
the buyer at the prices, and no other seller has positive utility for any attribute
bundle.

An immediate implication is that it is necessary that the penalty that cor-
responds to the eÆcient seller is maximal across all seller penalties.

Proposition 3 (eÆciency). The allocation that is supported in competitive
equilibrium is eÆcient.

13



There are many possible CE prices for a given instance of the preferen-
tial independence MAP problem. In general, CE prices for the preferential-
independence special case can be non-anonymous, with penalty �i 6= �j for
some sellers i 6= j, although it is always possible to construct anonymous CE
prices by increasing �i to all losing sellers, to equal the penalty associated with
the winning seller.

We formulate a restricted dual problem to better understand the role of
price penalties, and also to characterize the maximal CE prices. We show that
penalty terms are necessary when the winning seller does not dominate the other
sellers, in terms of cost, across all attribute types. Completely linear CE prices
only exist when this dominance condition holds.

Let i� denote the eÆcient seller, and k�j denote the eÆcient level of attribute
j, denoted k� when the context of attribute j is clear. Let � enumerate the
space of feasible attribute bundles.

The restricted dual, [RDMAP-2], computes the maximal CE prices, that
maximize the payment to the seller across all CE prices. The constraints are
constructed to make prices satisfy the CS conditions with the eÆcient attribute
bundle and eÆcient seller.

max
pjk ;�i

X
j2J

pjk� � �i� [RDMAP-2]

s:t: vjk� � pjk� � ci�jk� ; 8j 2 J (32)

vjk�
j
� pjk�

j
� vjk � pjk ; 8j 2 J ;8k 6= k�j (33)

pjk�
j
� ci�jk�

j
� pjk � ci�jk ; 8j 2 J ;8k 6= k�j (34)X

j2J

pjk� � ci�jk� � �i� (35)

�i� � �i; 8i 6= i� (36)

�i �
X

(j;k)2

pjk � cijk ; 8 2 �;8i 6= i� (37)

pjk;�i � 0

There are always CE prices in which the penalty is the same across all
sellers. As a simple example, prices pjk = vjk and penalty � = V (I n i�)
de�ne anonymous CE prices for the preferential-independence MAP problem;
constraints (32) to (35) in [RDMAP-2] hold with these prices. However, non-
zero penalty terms are required whenever the eÆcient seller does not dominate
the other sellers, in terms of value�cost, across all attribute types.

De�nition 4 (cost-dominates). Seller i is said to cost-dominate seller i0 if

max[0;max
k2�j

vjk � cijk ] � max[0;max
k2�j

vjk � ci0jk]; 8j 2 J

Proposition 4 (linear prices). Linear CE prices, with zero penalty terms,
exist in the preferential-independence MAP problem if and only if the eÆcient
seller cost-dominates every other seller.

14



Proof. Assume penalty, �i = 0, for all sellers i. Conditions (36) and (35) hold,
but (37) requires 0 �

P
(j;k)2 pjk � cijk , for all  2 �, and all i 6= i�, which

implies pjk � mini6=i� cijk for all j; k. To construct minimal prices, pjk , and
satisfy (32) and (33), set pjk�

j
= ci�jk�

j
and pjk = vjk � vjk�

j
+ ci�jk�

j
, for all j,

all k 6= k�j . Putting this together, we require, vjk� � ci�jk� � vjk �mini6=i� cijk ,
for all j; k, which is equivalent to vjk� � ci�jk� � maxi6=i�;k2�j

vjk � cijk , for all
j; in other words seller i� must dominate all other sellers. ut

To characterize the set of maximal CE prices it is useful to reformulate [RDMAP-
2] as:

max
pjk�

0
@X
j2J

pjk� �max
i6=i�

X
j2J

max

�
0;max

k2�j

(vjk � vjk� + pjk� � cijk)

�1
A
[RD]

s:t: ci�jk� � pjk� � vjk� ; 8j 2 J

Constraints (32) in [RDMAP-2] are explicitly maintained in this formulation.
Then, we �x values for pjk , and assign values �i = max2�

P
(j;k)2 pjk � cijk

and �i� = maxi6=i� �i. This provides penalties, �i, that minimize �i� and
satisfy (36) and (37). Assume for now that (35) holds. Now, �x values for pjk� ,
and assign prices pjk = max(0; vjk � vjk� + pjk� ), for k 6= k�. These are the
minimal prices that satisfy (33), and selected to minimize �i� . Constraint (34)
also holds with these prices. To see this, we must showmax(0; vjk�vjk�+pjk�) �
pjk� � ci�jk� + ci�jk , for all k 6= k� and all j. Case (i), with vjk�vjk� +pjk� � 0
holds because vjk� � ci�jk� � vjk � ci�jk . Case (ii), with vjk � vjk� + pjk� < 0
holds because pjk� � ci�jk� ) pjk� � ci�jk� + ci�jk � 0.

To show (35), we need maxi6=i�
h
max2�

P
(j;k)2 pjk � cijk

i
�
P

j2J pjk��

ci�jk� Consider seller i0 6= i�, and the worst-case scenario in which pjk =
max(0; vjk�vjk�+pjk�) = vjk�vjk�+pjk� for all k 6= k�. But, max2�

P
(j;k)2(vjk�

vjk� + pjk� � ci0jk) �
P

j2J pjk� � ci�jk� because max2�
P

(j;k)2 vjk � ci0jk �P
j2J vjk� �ci�jk� for all i

0 6= i�. Turning to the objective function, the penalty
to the winning seller, i�, �i� = maxi6=i�;2�

P
(j;k)2(pjk� cijk) is equivalent to

maxi6=i�
P

j2J max
�
0;maxk2�j

(max(0; vjk � vjk� + pjk�)� cijk)
�
. The nested

max in this expression is redundant.
As before, let ~i denote the second-best seller, and let (~k1; : : : ; ~km) denote the

second-best attribute bundle. Often we write ~k as shorthand for ~kj , when the
context of attribute j is clear.

Lemma 3 (maximal CE prices). Given the eÆcient outcome, (i�; k�1 ; : : : ; k
�
m),

and the second-best outcome, (~i; ~k1; : : : ; ~km), prices that satisfy:

max[ci�jk� ; vjk� � (vj~k � c~ij~k)] � pjk� � vjk� ; 8j 2 J (38)

�i� = �~i =
X
j2J

pj~k � c~ij~k (39)

pj~kj = vj~kj � vjk�
j
+ pjk�

j
; 8j 2 J ;8~kj 6= k�j (40)
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de�ne maximal CE prices for the preferential-independence MAP problem.

Proof. First, if seller i0 maximizes the second term in the objective in [RD], then
maximal CE prices, pjk� , must set maxk2�j

(vjk � vjk� + pjk� � ci0jk� ) � 0 for
all j. Otherwise, if this fails from some j0, then a small, � > 0, increase to pj0k�
increase the objective value by �. Let P denote the set of prices that satisfy this
condition. With this, the problem reduces to

max
pjk�2P

X
j2J

pjk� �max
i6=i�

X
j2J

max
k2�j

(vjk � vjk� + pjk� � cijk)

Prices,
P

j pjk� , cancel, and we �nd that all solutions that satisfy P have the
same value. To characterize prices that satisfy P , note that we need pjk� �
vjk� � (vj~k � c~ij~k), so that seller the second-best seller, ~i, has positive surplus
at prices pj~k . ut

At the maximal CE prices, the maximal utility to the second-best seller is
exactly zero.

Lemma 4. The second-best seller has zero utility for the second-best attributes,
(~k1; : : : ; ~km), at the maximal CE prices.

Proof. First, substitute pjk� = max[ci�jk� ; vjk� � (vj~k � c~ij~k)] into pj~kj = vj~kj �

vjk�
j
+ pjk�

j
to verify that pj~kj � c~ij~kj for all j. Then,

P
j �ij =

P
j pj~kj � c~ij~k =

�~i. ut

To complete the description of maximal CE prices, we construct the prices,
pjk, on attribute levels other than k� and ~k, and the penalties, �i, for sellers
other than i� and ~i, as:

�~i � �i �
X
j2J

max[0;max
k2�j

(pjk � cijk)]

; 8i =2 fi�;~ig (41)

max[0; vjk � vjk� + pjk� ] � pjk � pjk� � ci�jk� + ci�jk

; 8j 2 J ;8k =2 f~kj ; k
�
j g (42)

There is some exibility in setting the remaining values, �i, for i 6= i�;~i, and
pjk, for k 6= k�; ~k. Constraints (41) make the penalty, �i, large enough to satisfy
(37), so that seller i 6= i� does not want to trade at the adjusted prices, but
no larger than the critical penalty value, �~i, de�ned by the second-best seller.
Constraints (42) �x the prices to maintain (33) and (34), and CS conditions for
the buyer and the winning seller.

As a special case, we can set:

�i =
X
j2J

pj~k � c~ij~k ; 8i 2 I (43)

pjk = max[0; vjk � vjk� + pjk� ]; 8j 2 J ;8k =2 f~kj ; k
�
j g (44)
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It follows that the simple CE prices introduced earlier, pjk = vjk for all j; k and
�i = V (I n i�), are themselves maximal CE prices.

We can check that these prices (43) and (44) satisfy conditions (41) and (42).
First, constraint (42) holds because pjk� � ci�jk� and vjk��ci�jk� � vjk�ci�jk .
For (41), assume otherwise, that

P
j2J max[0;maxk2�j

(vjk � vjk� + pjk� �

ci0jk)] > �~i for some i0 =2 fi�;~ig, and prove a contradiction. Let k0j (or k0

where the context is clear) denote the eÆcient level of attribute j for seller i0.
Consider new prices, p0jk� = max(ci0jk0 + vjk� � vjk0 ; pjk�). Then, substituting
for �~i and replacing pjk� with p0jk� , we have

P
j2J (vjk0 �vjk� +p0jk� � ci0jk0 ) >P

j2J (vj~k � c~ij~k + p0jk� � vjk� ). This is a contradiction, because
P

j2J (vj~k �

c~ij~k) �
P

j2J (maxk2�j
(vjk � cijk)) for all i =2 fi�;~ig.

The following lemma provides conditions for the existence of linear maximal
CE prices, in which the penalty terms are all zero.

Lemma 5 (maximal and linear CE prices). It is necessary and suÆcient
for the eÆcient seller to cost-dominate the second-best seller, and for the second-
best seller to cost-dominate every other seller, for the existence of linear and
maximal CE prices, i.e. with the penalty set to zero for all sellers.

Proof. We already know that it is necessary for the eÆcient seller to dominate
the other sellers for anonymous CE prices with zero penalty. So, assume this,
and assume �i = 0, for all i, which implies that pj~kj = c~ij~kj , for all j 2 J and

~kj 6= k�j . Then, to minimize prices pjkj on kj 6= k�j , set pjk� = vjk��(vj~k�c~ij~k),

for all j. This satis�es (38) because seller i� dominates seller ~i. Finally, this
implies that pjk = max(0; vjk�(vjk�

j
�pjk�

j
)), for all j 2 J , and all k =2 f~kj ; k�j g.

We need pjk = max(0; vjk � (vjk�
j
� pjk�

j
)), satisfy pjk � cijk , for all i 6= i�;~i

and all j; k, so that (41) holds. Substituting for pjk�
j
, and taking the interesting

case that vjk � (vj~kj � c~ij~kj ) > 0, we need vjk � (vj~kj � c~ij~kj ) � cijk , for all

i =2 fi�;~ig. This holds if and only if the second-best seller ~i dominates every
other seller on all attributes. ut

Notice that a stronger dominance requirement than that for the existence of
linear CE prices is required for the existence of linear and maximal CE prices.

In the next section we establish an equivalence between maximal CE prices
and VCG payments, both for the non-linear MAP problem and this preferential-
independence variation.

3 The MAP Mechanism Design Problem

Mechanism design addresses the problem of implementing an outcome in a dis-
tributed problem to maximize an objective function, where the optimal solution
depends on private information held by individual participants and individual
participants are self-interested and willing to misrepresent their private infor-
mation if that is to their own personal advantage. Jackson [9] provides a useful
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review of mechanism design theory, describing important characterization re-
sults, both positive and negative, for the classes of social choice functions that
can be implemented in equilibrium.

Auctions are mechanisms for resource allocation problems, in which the pri-
vate information of participants represents their preferences over di�erent allo-
cations and prices. Desirable equilibrium properties of a multiattribute auction
mechanism include:

� EÆciency. The outcome solves the MAP problem, selecting the seller,
and attribute levels, that maximize the di�erence between the value of
the buyer and the cost of the seller, over all possible outcomes.

� Buyer-optimality. The outcome maximizes the expected utility of the
buyer, the di�erence between its value for the item and the price that it
pays given sellers with cost functions drawn from a particular distribution.

� Individual-rationality. The utility of the buyer and every seller is non-
negative.

� Budget-balance. The total payment made by the buyer equals the pay-
ments received by the sellers.

Taking eÆciency as the primary goal, one positive result, for the general
MAP problem, is provided by the VCG [22, 6, 8] mechanism. The VCG mech-
anism is eÆcient and individual-rational, and implements the outcome in a
dominant-strategy equilibrium. This is a robust solution concept because truth-
ful bidding is a dominant strategy for each agent irrespective of the preferences
and strategies of other agents. However, the VCG mechanism has two main
problems as a mechanism for multiattribute auctions. First, the VCG mecha-
nism is not budget-balanced; the payment by the buyer is typically less than
the payment received by the winning seller, and the VCG requires a subsidy
from the auctioneer. Second, the VCG mechanism is a direct revelation mech-
anism, which requires that agents reveal, and compute, complete information
about their preferences. This is often undesirable in practice, both because
participants are in long-term strategic relationships and also because preference
evaluation can be quite costly in industrial settings.

Indeed, a classic result in mechanism design, the Myerson-Satterthwaite im-
possibility result [14], states that we cannot expect an eÆcient and budget-
balanced mechanism, even in Bayesian-Nash equilibrium, for problems with pri-
vate information on two sides of a market. Thus, unlike the combinatorial
allocation problem, in which it is a common assumption that the seller has no
reservation price for items [7], we must expect budget-balance to fail for any
eÆcient mechanism for the MAP problem.

Taking buyer-optimality as the primal goal, and holding budget-balance as
a constant, Che [5] describes an optimal multiattribute auction mechanism for
a special case, with two attributes and continuous attribute levels. Following
the optimal auction design approach introduced in Myerson's [13] classic pa-
per, Che formulates an optimal reservation price to incorporate into the VCG
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mechanism. Truth-revelation remains a dominant strategy for sellers in Che's
auction, although the buyer selects an optimal reservation price in a Bayes-Nash
equilibrium, given a belief about the costs of suppliers. The e�ect of the reser-
vation price is to decrease the average payment received by the winning seller,
at the cost of an occasional forfeiting of an eÆcient trade.

3.1 A Modi�ed VCG Mechanism

We propose a modi�ed VCGmechanism, in which the buyer's payment is de�ned
to equal the payment received by the seller. In general, this payment is greater
than its VCG payment, this di�erence opens up an opportunity to the buyer for
non-truthful preference revelation. In the following we use v̂, ĉ1, etc. to indicate
that the sellers and the buyer are not assumed to follow truthful strategies; the
intention is to allow v̂ 6= v and ĉi 6= ci.

De�nition 5 (modified-VCG). Given bids (ĉ1; : : : ; ĉn) from the sellers, and
ask v̂ from the buyer, the modi�ed VCG implements the outcome that solves

max
�2�;i2I

v̂(�) � ĉi(�)

and the buyer makes payment

p̂mvick(v̂; ĉ) = ĉî(�̂) + (V̂ (I) � V̂ (I n î)

to the winning seller, where (�̂; î) denotes the outcome, V̂ (I) the reported value
minus cost of this outcome, and V̂ (I n i) the reported value minus cost of the
best outcome without seller i.

Proposition 5. Truthful bidding is a weakly dominant strategy for a seller in
the modi�ed VCG mechanism.

Proof. Consider seller 1, with bid, ĉ1(�), and �x the bids from the other sellers
and the ask from the buyer. First, suppose that seller 1 is selected in the
outcome. Then the seller's utility is u1(�̂; p) = �c1(�̂) + p̂mvick = �c1(�̂) +

ĉ1(�̂) + V̂ (I) � V̂ (I n 1), which reduces to u1(�̂; p) = �c1(�̂) + v̂(�̂)� V̂ (I n 1).
The seller's bid has no e�ect on the value of the last term, but determines the
value of the �rst two terms indirectly via the choice of �̂. Because this attribute
value is selected in the mechanism to maximize the di�erence between reported
value and reported cost, the seller's dominant strategy is to report a truthful
cost function. The utility from this outcome is non-negative, and the seller
should submit this bid rather some bid that leaves it out of the outcome. ut

As a special case, notice that if the buyer is truthful and the eÆcient and
second-best sellers compete on the same attribute bundle, i.e. �� = ~�, then
pmvick = c~i(�

�), and the lowest cost seller receives a payment that is equal to
the minimal price that the second-best seller was willing to accept. As another
special case, notice that if V (I n i�) = 0, but V (I) > 0, that pmvick = v(��),
and the winning seller extracts all the surplus from the buyer.
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Theorem 1. The modi�ed-VCG is budget-balanced and eÆcient with a truthful
buyer.

Proof. Immediate, because the dominant strategy for sellers is truthful revela-
tion of costs, and the outcome is selected to maximize the di�erence between
reported value and reported cost. Budget-balance holds by construction. ut

Lemma 6 (seller individual-rational). The modi�ed VCG mechanism is ex
post individual-rational for a rational seller, whatever the strategy of the other
agents.

Proof. The winning seller, î, has utility �î = pmvick � cî(�̂) = V̂ (I) � V̂ (I n î),
which is non-negative for any strategies, and preferences, of the other sellers
and the buyer. ut

Lemma 7 (buyer individual-rational). The modi�ed VCG mechanism is ex
post individual-rational for any buyer strategy that is truthful, or under-reports
its value.

Proof. If the buyer is truthful, then its utility, �B = v(�̂)� pmvick = V̂ (I n î), is
non-negative for any seller strategies. Similarly, if v̂(�) � v(�) for all �, then the

buyer's utility for the outcome, (v(�̂)� v̂(�̂)) + V̂ (I n î), remains non-negative.
ut

Following the direction of Che [5], having shown that truthful bidding is a
weakly dominant strategy for sellers, we could at this stage compute a Bayesian-
Nash equilibrium, in which the buyer determines a reported value, v̂, to maxi-
mize her expected payo� with respect to beliefs about the distribution over the
cost functions of the sellers.

However, our main goal in this paper is to derive iterative variations on these
modi�ed VCG mechanisms, and we leave the full analysis of a Bayesian-Nash
equilibrium for future work. Instead, we make a reasonable assumption about
the class of buyer strategies in the iterative auctions, and then characterize seller
equilibrium strategies with respect to that assumption. For now, we choose to
bound the maximal ex post bene�t to a perfectly informed buyer for deviation
from truthful bidding.1

De�nition 6 (value of manipulation). The value of manipulation is the
maximal ex post utility gain available to an agent in a mechanism in comparison
to a truthful strategy.

The payo� to the winning seller for a truthful bid is V (I) � V (I n i�), and
the payo� to the buyer in this equilibrium is V (I n i�). The winning seller and
the buyer share the overall surplus in the system, V (I).

1Parkes et al. [17, 16] introduce a similar analysis of VCG-based budget-balanced mecha-
nisms to clear combinatorial exchanges, referring to the degree of manipulation freedom of a
mechanism.
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Proposition 6. The value of manipulation to the buyer in the modi�ed VCG
is V (I)� V (I n i�).

Proof. Fix the bids, (ĉ1; : : : ; ĉn), from the sellers, and construct the ex post
decision problem facing the buyer. The buyer should report a valuation to solve

max
v̂2V

[v(�mvick(v̂; ĉ))� pmvick(v̂; ĉ)]

where V is the space of valuation functions. In the best case, there exists a bid
that equates V̂ (I) and V (I n i�), where V̂ (I) denotes the reported surplus of
the optimal solution. In this case, the optimal strategy, v̂, selects the eÆcient
outcome, to maximize v(�̂)� cî(�̂), and the maximal gain in surplus is V (I)�
V (I n i�). ut

As a simple special case, the following buyer strategy is ex post rational for
a buyer whenever the second-best seller, ~i, has a lower cost than the eÆcient
seller, i�, on the second-best attribute bundle, ~�.

vmanip(�) =

�
v(�) , 8� 6= ��
v(��) + Æ; ,otherwise

for Æ = (V (I) � V (I n i)) � max(0; c~i(
~�) � ci�(~�)). To verify this, show that

V̂ (I) = V (I) � V̂ (I n i�) = V (I n i�) + Æ after the adjustment. We have
Æ = V (I)� V (I n i), and V̂ (I) = V (I) = V̂ (I n i�). Thus, pmvick = ci�(�

�) and
�B = v(��)� ci�(�

�) = V (I).
Notice that the value of manipulation to the buyer can be expected to be

considerably less than the buyer's surplus from truthful bidding, V (I) in many
problems. As the auction becomes more competitive, and V (I)�V (I n i�)! 0,
then the gains from manipulation available to the seller tend to zero. Together
with the reality of risk-averse and poorly-informed buyers, this provides some
support for buyer truth-revelation in the iterative multiattribute reverse auc-
tions that we propose in Sections 4 and 5.

3.2 Dual Prices and Vickrey Payments

In this section we show an equivalence between VCG payments and maximal
CE prices. This equivalence is critical in the theoretical analysis of the iterative
multiattribute auctions that we propose in the following sections.

First, consider the dual prices in DMAP-1, that are non-linear prices, p(�),
for attribute levels � = (�1; : : : ; �m).

Theorem 2. The Vickrey payment in problem MAP-1 is supported in the max-
imal competitive equilibrium.

Proof. From Lemma 1, we have p(��) = v(��)� (v(~�)� c~i(
~�)), which is exactly

ci(�
�) + V (I)� V (I n i�), since (~i; ~�) is the second-best solution. ut

Now, consider the dual prices in DMAP-2, in which agent values and costs
satisfy the preferential-independence conditions.
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Theorem 3. The Vickrey payment in problem MAP-2 is supported in the max-
imal competitive equilibrium.

Proof. The payment made to seller i� at maximal CE prices is
P

j2J vjk� �P
j2J vj~k � c~ij~kj , where (

~i; ~k1; : : : ; ~km) is the second-best solution. Again, this

is exactly ci(�
�) + V (I)� V (I n i�). ut

4 Auction 1: Non-Linear Preferences

In this section we propose auction,NonLinear&Discrete, which is a descending-
price multiattribute auction. The auction implements a primal-dual algorithm
for the MAP-1/DMAP-1 formulation of the MAP problem, and terminates with
the outcome of the modi�ed VCG mechanism when agents follow straightfor-
ward bidding strategies. We show that straightforward bidding is an ex post
best-response strategy for sellers, for a reasonable class of buyer strategies.

We initially assume that V (I n i�) > 0, i.e. that there is an eÆcient trade
without the optimal seller. This assumption will be relaxed in Section 4.4, in
which we provide a slight variation of the auction to handle this special case.

Figure 1 provides the top-level structure of the auction. The auction pro-
ceeds in rounds t � 1, and maintains ask prices, pt(�) � 0, on every attribute
bundle � 2 �. These prices are anonymous, so that every seller faces the same
prices, but can be completely non-linear, with p(�) 6= p(�1) + p(�2), for some
partition of � 2 � into �1 and �2. The auction also maintains a provisional
allocation, alloc, which indicates the current winning seller, attribute bundle,
and price. Auction NonLinear&Discrete is parameterized with a minimal
bid increment, �, which determines the rate at which prices are decreased across
rounds. Prices are initialized to a set of high ask prices, denoted p1(�) p1(�).
It is suÆcient that the initial ask price, p1(�), on attributes � is at least as large
as mini 6=i� ci(�) for the analysis in Section 4.1 to hold.

AUCTION NonLinear&Discrete:
t 0; p1(�) p1(�); alloc  ;;
while (:quiescence) f

t t+ 1;
bidi  BIDi(p

t);
alloc  ASK(bid1,...,bidn);

pt+1  update prices(pt,bid1; : : :,bidn,alloc)
g
return(alloc);

Figure 1: Auction Non-linear&Discrete.

In each round a seller can submit bids, represented bidi  BIDi(p
t) in

Figure 1, on multiple attribute bundles. Each attribute bundle, �0, within a
bid is associated with a bid price, which indicates that the seller is prepared to
provide attributes, �0, for any price greater than or equal to that price.
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The bid price must be less than or equal to the ask price for the attribute
bundle, except in two special cases: (1) a seller can repeat a bid that is successful
in the current provisional allocation at the same price, even if the ask price has
decreased across rounds; (2) a seller can take an \�-discount", and bid at � above
the ask price, on any attribute bundle and in any round, but can never bid a
lower price on that attribute bundle in any future round.

The bids (bid1; : : : ; bidn) are collected from the sellers, and then passed
to the buyer. In this step, denoted alloc  ASK(bid1; : : : ; bidn), the buyer
is asked for its preferred bid across all bid sets. We discuss a general method
in Section 4.5 to introduce a proxy agent, to reduce the extent to which the
buyer must be active in this winner-determination step. The new provisional
allocation, alloc, stores the winning bid (the attribute bundle and the bid
price), and the index of the winning bidder.

The ask prices are updated at the end of each round, in step pt+1  
update prices(pt; bid1; : : : ; bidn; alloc). The price changes are based on bids
from sellers that are not in the current provisional allocation, call these the
unsuccessful agents. The new ask prices, pt+1, are reduced to �, the minimal
bid increment, below the lowest unsuccessful bid price, as follows:

pt+1(�) = min

�
pt(�); min

i=2alloc
ptbid;i(�) � �

�
; 8� 2 �

where i =2 alloc indicates that seller i is not in the current allocation, and
ptbid;i(�) is the bid price from seller i in the current round, for any attribute
bundle, �, for which the seller submitted a bid in the current round, and 1
otherwise.

The auction terminates whenever it is in quiescence, which is de�ned to
hold whenever the ask prices have not changed for two consecutive rounds. At
termination, the provisional allocation becomes the �nal allocation. For now,
because we assume, V (I n i�), this �nal allocation will always be individual-
rational for a truthful buyer with equilibrium seller strategies.

4.1 Primal-Dual Analysis

To continue, we assume that every seller, and the buyer, follow a straightforward
myopic best-response bidding strategy. Just as in iBundle [15, 18], we use duality
theory to establish the eÆciency of the auction for this straightforward bidding
strategy. Later, in Section 4.2, we will establish that myopic best-response is an
ex post best-response for sellers against a reasonable class of buyer strategies.
This set, the consistent strategies, includes a myopic best-response strategy for
the buyer.

We will assume that the buyer follows a truthful and consistent strategy, i.e.
myopic best-response. The analysis trivially extends to the case in which the
buyer follows some non-truthful consistent strategy, for a valuation v̂ 6= v. In
this case the auction implements a primal-dual algorithm for the MAP problem
instance de�ned on valuation v̂ and seller cost functions. At this stage we also
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assume that there is a second-best solution, i.e. V (I n i�) > 0. We discuss a
simple extension to the auction to handle this special case, when there is only
one seller that can provide services for less cost than the buyer's value in Section
4.4.

De�nition 7 (seller myopic best-response). Bids, BIDi(p
t), are myopic

best-response from seller i, given minimal bid increment, �, when

BIDi(p
t) = f(�; pt(�)) : pt(�) � ci(�) + � � max[0;max

�02�
(pt(�0)� ci(�

0))]g

De�nition 8 (buyer myopic best-response). Strategy, ASK(bid1; : : : ; bidn),
is a myopic best-response for the buyer, when the provisional outcome, (sellert; attrt; pricet),
satis�es

v(attrt)� pricet + � � max
i2I

max
(�;p)2bidi

(v(�) � p)

and (attrt; pricet) 2 bidsellert .

In other words, in myopic best-response (MBR), seller i takes prices as given
and bids for the attribute bundles that �-maximize its surplus, and the buyer
selects the utility-maximizing bid.

Recall that pce(�) denotes the set of maximal CE prices, given an instance
of the MAP problem. Ask prices, pt(�), in round t of the auction, are said to
�-dominate the maximal CE prices, pce(�), if p

t(�) + � � pce(�); 8� 2 �.

Lemma 8. Auction Non-linear&Discrete maintains ask prices that �-dominate
the maximal CE prices if agents follow MBR strategies.

Proof. By induction, with induction hypothesis (i.h.) that pt(�) � pce(�) for
all � in round t � 1. The base case is trivial, as long as p1(�) � ci(�) for at
least two sellers, for every � � �. Prove the inductive case by case analysis on
conditions for prices to decrease from round t to t + 1. First, the ask price is
reduced on vectors that receive unsuccessful bids from sellers i 6= ît. Consider
bid (�0; i0), some i0 6= ît, and suppose pt(�0) < pce(�

0). Now, by the i.h. the
seller will continue to �-prefer vector �0 at all CE prices with pt(�0); similarly,

the buyer will continue to �-prefer vector �̂t. Thus, this price cannot be part
of a set of CE prices, a contradiction, and the i.h. is established for this case.
A similar argument can be made for the second case, in which the ask price is
reduced on vectors o�ered by the one remaining successful seller. ut

The allocation selected at each round in the auction is a feasible primal
solution and the ask prices are a feasible dual solution. Notice that CS conditions
(CS-2) and (CS-3) always hold, in every round, and that (CS-1) holds when the
auction terminates because there is then only one seller with non-negative utility
for some outcome and that seller is in the provisional allocation.

Let (��; i�) denote the eÆcient outcome, and (~�;~i) denote the second-best
outcome.
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Lemma 9. At termination the ask prices on bundles, �� and ~�, equal the max-
imal CE prices on those bundles.

Proof. Given Lemma 8, we show that termination implies p(��) � pce(�
�) and

p(~�) � pce(
~�). First, assume p(��) > pce(�

�), and prove a contradiction. This
implies that p(��) > v(��)� (v(~�)� c~i(

~�)), that agent i� is still bidding. Given

termination, we must have p(~�) � c~i(
~�) so that the second-best agent is not

still bidding. In addition, we need v(��) � p(��) � v(~i) � p(~�), so that the
buyer selects �� over ~i. This is not trivially satis�ed because we assume that
V (I n i�), which implies that v~i(

~�) � p(~�) > 0. This gives a contradiction

with p(��) > v(��) � (v(~�) � c~i(
~�)), and p(~�) � c~i(

~�). Second, assume that

p(~�) > pce(
~�), and prove a contradiction. Termination requires, p(��) � ci�(�

�),
else seller i� still bids, and we have p(~�) > c~i(

~�) and v(��)�p(��) � v(~�)�p(~�).

This implies v(��)� ci�(�
�) � v(~�)� c~i(

~�), a contradiction. ut

Finally, we show (CS-4), which requires that the buyer maximizes its utility
with attribute �� across all possible attributes. It is useful to express (CS-4) as
two conditions:

xB(�) > 0 ) v(�) � p(�) = max
�02�

[v(�0)� p(�0)] (CS-4a)

xB(�) > 0 ) v(�) � p(�) � 0 (CS-4b)

Clearly, (CS-4a) and (CS-4b) imply (CS-4). We have (CS-4b) at the end of the
auction, by Lemma 9. Let �c � � denote the set of attribute bundles that have
changed in price during the auction, and de�ne a relaxed (CS-4a):

xB(�) > 0 ) v(�)� p(�) = max
�2�c

[v(�)� p(�)] (CS-4a')

Lemma 10. Condition (CS-4a) holds at the end of the auction.

Proof. First, prove by induction on rounds, t, that (CS-4a') holds. The base
case, in round t = 1, is trivial. Then, to prove the inductive case, note that
the seller in the current provisional allocation continues to bid for the same
attribute bundle across rounds, and that the ask price is only decreased on a
bundle with less utility than the attribute bundle in the provisional allocation.
Finally, at the end of the auction, we show that (CS-4a') implies (CS-4a). As
long as the initial prices, p1(�) � pce(�), then the buyer has more utility from
attributes �� at pce(�

�) than on any bundles that have not changed price. This
follows immediately from CE, because the buyer has more utility for �� than
other attribute vectors at the CE prices, and therefore also at higher prices. ut

Lemma 11 (termination). Auction Non-linear&Discrete terminates with
consistent agent strategies.

Proof. While the auction is open the price, pt(�), is reduced on at least one
attribute bundle, �, for which at least one seller, i, has ci(�) � pt(�) by MBR.
Termination follows, because I and � are �nite, and ci(�) � 0, 8�;8i. ut
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Putting this all together, we have the main result.

Theorem 4 (Vickrey outcome). Auction Non-linear&Discrete termi-
nates with the outcome of the modi�ed VCG mechanism for agents that follow
MBR strategies, as �! 0.

Proof. The auction terminates with prices and an allocation that satisfy CS
conditions (CS1)-(CS4), and with the price on the eÆcient attribute bundle
equal to the Vickrey payment. ut

A more careful analysis can also consider the � approximation within the
myopic best-response agent strategies, and derive corresponding bounds on the
quality of the approximation to the eÆcient allocation.

4.2 Game-Theoretic Analysis

In this section we justify the assumption of seller MBR. We show that the set
of ex ante consistent strategies form a space of reasonable strategies for a buyer
in Auction NonLinear&Discrete. In these strategies the buyer follows a
myopic best-response strategy for some, perhaps untruthful valuation function,
and chooses this valuation before the auction begins and not during the auction
as information is revealed about seller cost functions via their bids. Let V
denote the space of valuation functions.

De�nition 9 (ex ante consistent strategy). The buyer follows an ex ante
consistent strategy if she chooses a misrepresentation function, f : V ! V ,
at the start of the auction, and then follows a MBR strategy with respect to
valuation f(v) during the auction.

Given a consistent buyer strategy, then myopic best-response is an ex post
Nash equilibrium for sellers in Auction NonLinear&Discrete, without plac-
ing any restrictions on the space of seller strategies. This robustness to ma-
nipulation is inherited from the seller strategyproofness of the modi�ed VCG
mechanism.

Theorem 5 (ex post Nash equilibrium). Myopic best-response is an ex
post Nash equilibrium for sellers in Auction NonLinear&Discrete against a
buyer that follows an ex ante consistent strategy.

Proof. Assume a consistent buyer strategy, for some v̂, and with out loss of
generality assume that sellers follow MBR for some cost functions, c2; : : : ; cn.
We show that for any strategy, ŝ1 selected by seller 1, we can construct an
equivalent MBR strategy for some cost function, ĉ1 6= c1, and that implements
the same outcome. This implies that strategy, ŝ1, selects the VCG outcome for
a reported cost function, ĉ1, and because truthful bidding is an ex post Nash
equilibrium for sellers in the modi�ed VCG the seller can do no better than
following a truthful MBR strategy. To construct the equivalent cost function, ĉ1,
given strategy, ŝ1, suppose that the auction terminations with seller 1 providing
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attributes �̂ at price p̂. Cost function ĉ1(�̂) = p̂ � �, ĉ1(�
0) = 1 for all �0 6= �̂,

and a small � > 0 selects the same outcome. The maximum CE price is de�ned
by the other agents, and this cost function will satisfy (CS-1) and (CS-2) with
the same prices and allocation. ut

This analysis shows that myopic best-response is a sequential best-response
of a seller, against any consistent buyer strategy, and against the MBR strategies
of other sellers, whatever their cost functions. Although not a dominant strategy
for sellers, as it require MBR by other sellers and also a consistent buyer strategy,
this is quite a strong solution concept because MBR form a Nash equilibrium
whatever the costs of other sellers. MBR is not a dominant strategy for sellers,
even against a consistent buyer strategy, because other sellers can condition
their strategies on information revealed during the auction. Similarly, MBR
strategy is not an ex post best-response for a seller against any buyer strategy,
because the buyer can condition her strategy on information revealed during
the auction.

Proposition 7 (value of manipulation). The maximal value of manipula-
tion to the buyer in the modi�ed VCG, with sellers that follow myopic best-
response strategies, is V (I)� V (I n i�).

Proof. This follows from the analysis of the modi�ed-VCG mechanism. ut

4.3 Computational Analysis

Consider a problem with m = jJ j attributes and l = maxj j�j j attribute-levels,
such that j�j = O(lm). Let Vmax = maxi2I [max� p1(�)� ci(�)].

Theorem 6 (complexity). Auction Non-linear&Discrete converges in

O
�
lmVmax

�

�
rounds, with minimal bid increment �.

Proof. The maximal number of rounds that seller i can be unsuccessful in the
auction and still have non-negative surplus at the prices isNi = [lmmax�(p1(�)� ci(�))=�].
After Nmax = maxiNi rounds, at most Nmax valid price decreases remain, one
for each provisional winner in each round. Running for a further Nmax rounds
must take care of this. ut

In otherwords, the number of rounds to convergence ofNon-linear&Discrete
is worst-case exponential in m, the number of attributes.

4.4 Special Case: Limited Competition

In this section we briey consider an auction variation that is required to handle
the case in which there is no positive surplus outcome without the eÆcient seller,
i.e. V (I n i�) = 0. It is also possible that V (I) = 0, and that \no trade" is the
eÆcient outcome. In both of these cases, the bid selected at the end of auction
NonLinear&Discrete will be priced above the value of the buyer.
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We propose a simple extension to the auction NonLinear&Discrete to
handle this case. Once the regular auction terminates, the buyer is asked to sub-
mit a reported valuation function, v̂. The auction then continues, implementing
a myopic best response strategy for the buyer, with valuation v̂, until: (1) either
the seller walks away because the ask price drops to low; or, (2) until the bid
price �rst drops below the reported value on some attribute bundle. In case (1)
the auction terminates with no trade. In case (2) the auction terminates with
the payment in the modi�ed VCG mechanism.

We implement the �nal stage of this extended auction with a sealed-bid from
the buyer because at this stage the negotiation is 1:1, between the buyer and
the �nal seller, and we wish to prevent adaptive buyer strategies that seek to
extract more surplus from the seller and drive the price down below that in the
modi�ed VCG mechanism. This sealed-bid stage forces the buyer to select a
consistent strategy for this �nal phase. Instead, we could simply continue to
assume a buyer-consistent strategy for this �nal phase of the auction.

4.5 Acceleration: Proxy Buyer Agents

The basic auction, described in Figure 1, includes the step alloc ASK(bid1;
: : : ; bidn), in which the buyer is asked to select a bid from the bids submitted by
sellers at the current ask prices. The buyer is involved in this winner determina-
tion step because the best outcome depends not only on the bid price, but also
on the buyer's value for di�erent outcomes. At one extreme, if the auctioneer
had complete information about the valuation function of the buyer, then this
winner determination step could be completed automated. However, this would
require that the buyer provides complete information about her valuations for
di�erent outcomes at the start of the auction, and we would like to avoid this
preference elicitation cost.

As an intermediate method, we propose to introduce a proxy agent, between
the buyer and the auction. A similar idea was proposed in Parkes & Ungar
[19] in the context of an iterative combinatorial auction. The role of the proxy
buyer agent is to maintain approximate and incomplete information about the
valuation function of the buyer, and automate the winner-determination step
as much as possible. Simply observing the choices of the buyer in each round,
and assuming a consistent strategy, the proxy agent could build up a constraint
network to represent the buyer's valuation. For example, if the buyer chooses
attributes �1 over �2 in some round, at prices p1 and p2, then this implies that
v(�1)�p1 � v(�2)�p2, and provides value information. The constraint network
could then be used to prune bids that cannot be in the MBR set for the buyer,
and send only the undominated set of bids to the buyer.

In addition to reducing the preference elicitation cost in the auction, for ex-
ample by carefully structuring elicitation queries to the buyer to collect enough
preference information to follow a MBR strategy, proxy agents may also be use-
ful in reducing the strategy space available to the buyer, and also in speeding-up
the auction. First, a proxy agent can enforce ex post consistency across rounds,
so that the buyer at least follows a strategy that is consistent with some �xed
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valuation function{ even if this valuation is not selected by the buyer before the
start of the auction. The extent to which enforcing ex post consistency is re-
duces agents' ability to manipulate the outcome of the auction is an interesting
empirical question.

Second, even incomplete information about the preferences of the buyer can
be used to speed-up the progress of the auction by the automatic propagation
of price changes on one attribute bundle to price changes on other attribute
bundles in anticipation of the valuation function of the buyer. In the earlier
example, if �1 is selected over �2, at prices p1 and p2, and the price on �1 then
drops in a future round, to p01, then any CE prices must set the price on �2, to
no greater than p01� (p1� p2). Thus, the price decrease on �1 propagates to �2,
and price changes are accelerated.

5 Auction 2: Preferential-Independence

In this section we �rst propose a simple auction for a special case of the preferential-
independence MAP problem, in which there are linear maximal CE prices, and
no penalty terms are required. Then, we propose a primal-dual based auction
design for the general preferential-independence setting, and present a partial
theoretical analysis of its properties.

5.1 Special Case: Cost-Dominance and Linear Prices

In problems in which the eÆcient seller cost-dominates the second-best seller,
and the second-best seller cost-dominates all other sellers, the MAP problem
decouples across attribute types and can be solved withm independent auctions,
one for each attribute. In addition, the auction problem for each attribute type
can be solved with the auction for the general non-linear MAP problem, applied
to the special case of a single attribute.

AUCTION Linear&Discrete:
t 0; p1(j; k) p1(j; k); �i  0; allocj  ;;
while (:quiescence) f

t t+ 1;
for each j 2 J f

bidi(j) BIDi(p
t(j); j);

allocj  ASK(bid1(j),...,bidn(j));
pt+1(j) update prices(pt(j),bid1(j); : : :,bidn(j),allocj);

g
g
return(alloc);

Figure 2: Auction Linear&Discrete.

Figure 2 illustrates the structure of Auction Linear&Discrete, which is
a simultaneous descending price auction, with one auction for each attribute
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type.
The auction maintains separate prices, (pt(j; 1); : : : ; pt(j;m)), for each at-

tribute, and holds the penalty terms at zero. The price adjustment and winner-
determination process is fully decoupled across attribute types, although no
auction for a single attribute terminates until all auctions are in quiescence.
Consider the auction for attribute j. In each round, bids bidi(j), are received
from sellers on attribute levels, and the buyer is asked to select a bid, which is
assigned to allocj . The ask price for level k0 of attribute j is decreased at the
end of a round whenever some seller submits an unsuccessful bid on k0. The
new ask price is set to the minimal bid increment, �, below the minimal price
across all such unsuccessful bids.

From the perspective of the buyer, she can mix-and-match bids in any par-
ticular round from across multiple sellers. No explicit coordination is required
across the attributes, because at the end of the auction the eÆcient seller wins
the auction for each attribute, and the same second-best seller sets the price
that the winning seller receives. This follows from the seller cost-dominance
property.

Theorem 7. Auction Linear&Discrete terminates with an eÆcient attribute
bundle and CE prices in the preferential-independence MAP problem, when the
eÆcient seller cost-dominates all other sellers.

Furthermore, the auction terminates with maximal CE prices. As discussed
earlier, this requires a slightly stronger dominance requirement.

Theorem 8. Auction Linear&Discrete terminates with the outcome of the
modi�ed VCG mechanism in the preferential-independence MAP problem, when
the eÆcient seller cost-dominates the second-best seller, and the second-best
seller cost-dominates all other sellers.

Proof. Maximal CE prices for the non-linear MAP problem set the price, p(��) =
v(��)�(v(~�)�c~i(

~�)), on the eÆcient attribute bundle, ��. This is the price that
just leaves the buyer indi�erent between that attribute bundle, and the eÆcient
outcome without seller, i�, i.e. outcome (~�;~i). For a single attribute, j, this
reduces to the expression, pjk� = vjk� � (vj~k � c~ij~k), which de�nes maximal CE
prices for the preferential-independence MAP problem. ut

5.2 General Case

Figure 3 provides the top-level structure of an auction design,Additive&Discrete,
for the general preferential-independence MAP problem.

The auction proceeds in rounds, t � 1, and maintains linear price terms,
pt(j; k), on level k 2 �j , and a single price penalty term that applies to all
sellers. We know that this is suÆcient for the existence of CE prices. The
overall ask price to seller i in round t, on attribute bundle, (k1; : : : ; km) 2 �, is
determined as:

pti(k1; : : : ; km) =
X
j2J

pt(j; kj)��t
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Auction Additive&Discrete maintains a provisional allocation, alloc, which
indicates the current winning seller, attribute bundle, and price. Prices are
initialized to a set of high ask prices, p1(j; k), which must be at least as large
as maximal CE prices, for example greater than the value, vj;k, of the buyer.
The initial penalty term, �1, is set to zero.

AUCTION Additive&Discrete:
t 0; p1(j; k) p1(j; k); �1  0; alloc  ;;
while (:quiescence) f

t t+ 1;
bidi  BIDi(p

t;�t);
(alloc,best1; : : :,bestm)  ASK(bid1,...,bidn);

(pt+1;�t+1) update prices(pt,�t,bid,alloc,best)

g
return(alloc);

Figure 3: Auction Additive&Discrete.

In each round a seller can submit bids, represented bidi  BIDi(p
t;�t).

Each bid, bidi = (bidi1; : : : ; bidim), can include multiple attribute-levels and
bid prices for each attribute, with bidij = f(k1; pbid;i(j; 1)); : : : ; (kl; pbid;i(j; l))g,
with the levels kl 2 �j . A seller must also state an overall bid penalty, �bid;i.

Taken together, a bid indicates that a seller will provide an attribute bundle,
(k1; : : : ; km), composed of attributes included in its bid, at price:

pbid;i(k1; : : : ; km) =
X
j2J

pbid;i(j; kj)��bid;i (45)

The bid price, pbid;i(j; k), on level k 2 �j of attribute j, must be less than or
equal to the ask price, ptj;k, except in two special cases: (1) a seller can repeat a
bid for an attribute level that is successful in the current provisional allocation
at the same price, even if the ask price has decreased across rounds; (2) a seller
can take an �-discount, and bid at �-above the ask price, on any attribute level
in any round, but can never bid a lower price on that attribute level in any
future round.

The bid penalty, �bid;i, must be greater than or equal to the ask penalty,
�t, except that a seller can take an �-discount, and bid a penalty at � below �t.
This can be used in any round, but once exercised a seller can never submit a
higher bid penalty in any future round, and will be excluded from the auction
if the ask penalty increases.

The bids, (bid1; : : : ; bidn), are collected from the sellers, and then passed to
the buyer. In this step, denoted (alloc; best1; : : : ; bestm) ASK(bid1; : : : ; bidn),
the buyer is asked for the following information:

� the provisional allocation, alloc, which must consist of a combination of
attribute levels from a single seller, and is priced at the penalty-adjusted
overall bid price for that seller.
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� the set of utility-maximizing bid components, bestj , for each attribute
type, j 2 J , drawn across the bids from all sellers, and selected at bid
prices before penalties. Multiple components indicates indi�erence across
the components at the current prices.

While, alloc, is used to update the provisional allocation, and to deter-
mine the attribute bundle when the auction terminates, the auction also uses
the additional information to determine price updates. At the end of each
round, in step (pt+1;�t+1)  update prices(pt;�t; bid; alloc; best), prices
are decreased based on bids from sellers that are not in the current provisional
allocation, alloc. Call these sellers the unsuccessful sellers.

The price-update rule is de�ned as:

� for any unsuccessful seller, i0, and for any attribute, j, for which the
current winning seller, i 2 alloc, is also submitting a bid within the
preferred set, bestj , decrease the price on all levels that receive a bid
from i0 (except the level that receives a bid from the current winning
seller), to the minimum of the current bid price and � below the bid price
of the unsuccessful seller.

� for any seller that only submits bids at or below the ask price on an
attribute for which the current winning seller is not best, then increase
the penalty to the maximum of the current penalty and � above the bid
penalty of the seller.

Notice that the �rst part of this price-update rule is di�erent than that
presented for the dominance special case. In this variation, the price pt(j; k) on
the level of an attribute is only decreased for attributes in which the current
best overall seller, i 2 alloc, is also in the utility-maximizing set, bestj , for
each attribute j. The price penalty is used to ensure progress is made toward
CE prices when a seller only submits competitive bids on attributes for which
the seller in alloc is not in the utility-maximizing set.

5.2.1 Theoretical Analysis

We �rst assume that bidders and the seller follow a straightforward MBR bid-
ding strategy in the auction. We prove that the auction terminates with the
eÆcient attribute bundle, maximal CE prices, and therefore the outcome of the
modi�ed VCG mechanism. As before, this then provides incentives to make
MBR an ex post equilibrium for the sellers.

Let pt(�) denote short-hand for the sum of the linear ask prices on attribute
bundle �, similarly for ci(�), v(�), and pbid;i(�) (which denotes the bid price
before the penalty is applied). Also, let bidi(j) denote the bids from seller i on
attribute j. We �rst de�ne the MBR strategies in this auction.

De�nition 10 (seller myopic best-response). Bids, BIDi(p
t;�t), are my-

opic best-response from seller i, given minimal bid increment, �, when

BIDi(p
t;�t) = f(�; pt(�);�t) : pt(�)��t�ci(�)+� � max[0;max

�02�
(pt(�0)�ci(�

0))��t]g
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De�nition 11 (buyer myopic best-response). Strategy, ASK(bid1; : : : ; bidn),
is a myopic best-response for the buyer, when the provisional allocation alloc,
speci�es attribute bundle �̂ and seller î that solves:

v(�̂)� pbid;̂i(�̂)��bid;̂i + � � max[0; max
i2I;�2�

v(�) � pbid;i(�)]

and for every attribute j, the set, bestj , solves:

(k0j ; i
0) 2 bestj ) vjk0

j
�pbid;i0(j; k

0)+ � � max[0; max
i2I;k2bidi(j)

(vjk �pbid;i(j; k))]

It is easy to see that conditions (CS-1), (CS-3), (CS-4), (CS-5), (CS-6), and
(CS-7), hold in each round. Notice that (CS-7) holds because all penalty terms
are equal in each round. On termination it is immediate that (CS-2) also holds.

We must establish (CS-8) to prove that the auction terminates in competitive
equilibrium. This condition requires that the �nal level selected in the bid of
the last remaining seller in the auction maximizes the buyer's utility across all
attribute levels, and not just across levels restricted to seller bids.

First, we will assume that (CS-8) holds on termination, and prove that it
follows that the auction will terminate with maximal CE prices, out of the space
of all possible CE prices.

Lemma 12. At the end of the auction the prices, pjk, on the levels k =2 fk�j ;
~kjg,

satisfy conditions (41) and (42), that are required conditions for maximal CE
prices, if agents follow MBR strategies and preferential-independence holds.

Proof. Condition (CS-8) implies that the best seller is also best on each at-
tribute, and from the price-update rule this implies that the other prices are bid
down until the buyer is indi�erent between the eÆcient level and the alternative
levels. ut

Lemma 13. At least two sellers have a non-negative utility at the penalty-
adjusted prices in every round, if agents follow MBR strategies and preferential-
independence holds.

Proof. The price penalty is only increased when there is an unsuccessful seller
that faces the same linear price components in the next round. The best seller
in each round also faces the same linear price components. Furthermore, both
these sellers have non-negative surplus at the current prices, and continue to
bid in the next round. ut

Lemma 14. At termination, the prices on the eÆcient attribute levels, and the
penalty term, satisfy the conditions (38), (39) and (40), that are required for
maximal CE prices, if agents follow MBR strategies and preferential indepen-
dence holds.

Proof. From Lemma 13, at termination the penalty is just enough to leave the
second-best seller with zero utility at the adjusted prices. This is the require-
ment on the penalty term for maximal CE prices. Secondly, because the �nal
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prices are CE, then the linear price terms on the eÆcient attribute levels and
the second-best attribute levels are both greater than cost, for the eÆcient
and second-best sellers respectively. Combined with the conditions on the non-
eÆcient price levels, (41) and (42) this is suÆcient to show that these prices are
within the required range. ut

We have an outline of a proof that condition (CS-8) holds on termination.
First, de�ne a relaxed de�nition of (CS-8):

xBjk > 0) vjk � pjk = max
k02�j

vjk0 � pjk0 ; 8j 2 C (CS-8a)

xBjk > 0) vjk � pjk � 0; 8j (CS-8b)

where C � J . Taken together, (CS-8a), for C = J , and (CS-8b) imply condi-
tion (CS-8).

Claim. Condition (CS-8) holds at the end of the auction, if agents follow MBR
strategies and preferential-independence holds.

The proof structure will �rst demonstrate that (CS-8a) holds for a mono-
tonically increasing set, C, over the course of the auction. This step uses the
fact that linear price terms are only increased on attribute levels for which the
winning seller is submitting the best attribute level. Then we show that (CS-8b)
and C = J hold at the end of the auction.

Finally, we present the main result for this auction. At present we present
this result as a claim, as a complete proof depends on establishing the previous
claim.

Claim. Auction Additive&Discrete terminates, and computes the eÆcient
outcome and Vickrey payo� to the winner seller, if the agents follow MBR, as
�! 0, in the preferential independence MAP problem.

Proof. (outline) The auction maintains a feasible primal (the o�ers of ît) and
a feasible dual solution in each round. The auction terminates with solutions
that satisfy CS conditions. Combining the earlier lemmas, at termination the
prices satisfy the conditions for maximal CE prices, and therefore support the
payment in the modi�ed-VCG mechanism. ut

As before, we can justify the MBR strategy of sellers for any consistent
buyer strategy during the auction (De�nition 9). We choose to omit this proof,
which is very similar to the proof for ex post truth-revelation in Auction Non-
Linear&Discrete. The method of the proof is to establish that for MBR
strategies of other sellers, and a consistent buyer strategy, any seller strategy
selects some outcome of the modi�ed VCG mechanism.

Theorem 9. Seller MBR is an ex post Nash equilibrium of auction Addi-
tive&Discrete for any consistent strategy from the buyer, in the preferential-
independence MAP problem.
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The price space in this auction is smaller than in NonLinear&Discrete,
with a polynomial number of prices instead of an exponential number of prices.
The number of rounds to convergence is also asymptotically better than for auc-
tion NonLinear&Discrete, in this case the number of rounds is polynomial
in m, n, Wmax, and 1=�.

For m = jJ j attributes and l = maxj j�j j attribute-levels, and Wmax =
maxi[maxj maxk p1(j; k) � ci(j; k)], auction Additive&Discrete converges
in rounds polynomial in m, n, Wmax, and 1=�.

Theorem 10 (complexity). Auction Additive&Discrete converges in
O
�
lmWmax

�

�
rounds, with minimal bid increment �, for the preferential-independence

MAP problem.

Proof. The proof is similar to that for NonLinear&Discrete. The key ob-
servation is that any unsuccessful agent still bidding in the auction faces a
smaller e�ective price on its current bid in the next round, either through a
lower pt+1(j; k) or a higher penalty �t+1. ut

6 Computational Results

A fundamental aspect of using an iterative scheme is that the informational
complexity associated with eliciting the complete cost and value functions from
the suppliers and buyers is mitigated. A standard modi�ed-VCG (direct rev-
elation mechanism) would require a complete speci�cation of agent cost and
value functions. An additional consideration is that in long-term relationships,
suppliers are circumspect about completely revealing their true cost functions
or participating in designs where this can be easily inferred. The iterative mech-
anism presented in this paper addresses both these concerns: (i) The iterative
mechanism elicits cost information from the suppliers on a pure \need to know"
basis, and (ii) a completely rational buyer who uses the bid information to infer
the cost functions of the suppliers still cannot precisely infer the cost function.
In this section we provide some computational results (based on a simple sim-
ulation) to illustrate these points.

For the purpose of measuring the residual uncertainty about agent pref-
erences, let us assume preferential-independence, with cost function ci(�) =P

j wi;jci;j(�j) to seller i and value function v(�) =
P

j w
B
j vj(�j) for the buyer.

Furthermore, assume that the marginal costs, ci;j(�j), and marginal values,
vj(�j), are known to the auctioneer and the only unknowns are the weights, wi;j

and wB
j .

The simulation is set up as follows. Consider the auctionNonLinear&Discrete,
with a commodity with 3 attributes (j = 1; 2; 3) with levels k1 = 3; k2 = 2, and
k3 = 4 for the attributes. The auction is assumed to have one buyer and N = 5
suppliers. Each agent is randomly assigned a (monotonically increasing) cost
for each attribute level and a random weight wi;j for each attribute. Similarly,
a cost function for the buyer is generated by randomly assigning a value for
each attribute level and a weight for each attribute. All attribute bundles are
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Figure 4: Incremental Information Revelation: Fractional residual uncertainty vs.

Auction round.

initially priced at some high price pj;k = phi. In each round the myopic best
response (MBR)is computed by the agent and reported to the auctioneer. Sim-
ilarly, the buyer indicates the best bid (among those received from suppliers) at
the current price level. The prices are updated according to the rules speci�ed
in the auction.

Notice that for each buyer, MBR suggests that the chosen attribute bundle
dominates all other bundles at the current price. This can be characterized
by a set of linear constraints (in wi;j) that indicate the utility for the MBR
bundle is greater than all other bundles in each round. In each round, myopic
best-response from each supplier reveals additional information about its cost
structure, in terms of a set of linear constraints in weight space, and the volume
of the feasible polytope decreases. We use the volume of the polytope described
by the (linear) constraints on weights wi;j and wB

j as a measure to quantify the
residual preference-uncertainty. The preference-uncertainty volume is computed
with a simple Monte Carlo approach.

Figure 4 shows how this volume decreases (averaged over 5 instances) for the
suppliers and buyers in the auction instance speci�ed above, with simple uni-
formly generated costs, values, and weights. Auction NonLinear&Discrete
converges within around 10 rounds, with a residual uncertainty of around 30%
for the winning supplier, 10% for the buyer, and between 0 and 5% for the other
suppliers. Notice that the residual uncertainties (1-5%) are important since this
still leaves the question of the exact cost structure of the agents unspeci�ed in
future interactions. Also notice that the information reveled by each buyer is
restricted to indicating (in each round) a most preferred bundle, which is linear
in the number of rounds.
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7 Conclusions

Multiattribute auctions are central to procurement activity where the buyers
and suppliers are engaged in long-terms relations. In such settings it is im-
portant that negotiation protocols provide allocative eÆciency to sustain the
relationship rather than pure utility maximization for the buyer. In addition,
due to the asymmetry of the relations (big buyers and small suppliers), and
due to the cost of preference elicitation, it is important that these protocols
solve problems with minimal information revelation. The iterative techniques
described in paper provide mechanisms for multiattribute negotiation that are
allocatively eÆcient while preserving (to the extent possible) the cost and value
information of the participants.

The analysis presented in this paper has interesting connections with other
results in the literature. For example the myopic best response equilibrium
strategy for suppliers against an ex ante consistent buyer strategy is similar
to the result in Che [5]. The need for a consistent strategy arises in our
context simply because of the iterative nature of the design which provides the
buyer an opportunity to change the scoring rule in each round. In a direct
revelation mechanism (such as in [5]) the buyer is forced to provide a single
consistent scoring rule. However, the equilibrium strategy derived here is more
general since it allows for more than attributes and requires less information
revelation from the supplier. Although the analysis in this paper has focused
on allocative eÆciency, it might be equally interesting to construct an optimal
scoring function (that is consistent across rounds). Of course this would not
exploit the information that is revealed in each round as is done in [1]. However,
once the buyer begins to tune the scoring function in each round, myopic best
response is no longer an equilibrium strategy for the supplier and a naive supplier
has to be assumed to keep this behavior. The question that remains open for
future research is whether one can design an optimal scoring strategy that is
consistent across rounds with respect to preferences across bids but at the same
time changes the scoring function from round to round (within this constraint)
based on bid information. This would be the middle ground between a naive
supplier and a strategic supplier who �nds it in her best interest to the a myopic
best responder while still allowing for buyer utility maximization.
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