
RC22662 (W0212-027) December 4, 2002
Computer Science

IBM Research Report

Refactoring for Generalization using Type Constraints

Frank Tip
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Adam Kiezun, Dirk Baeumer
2 Object Technology International AG

Oberdorfstrasse 8,CH-8001 Z urich,Switzerland

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Refactoring for Generalization using Type
Constraints

Frank Tip1 and Adam Kieżun2 and Dirk Bäumer2

1 IBM T.J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598, USA

tip@watson.ibm.com
2 Object Technology International AG

Oberdorfstrasse 8, CH-8001 Zürich, Switzerland
{adam kiezun,dirk baeumer}@oti.com

Abstract. Refactoring is the process of applying behavior-preserving
transformations (called “refactorings”) in order to improve a program’s
design. Associated with a refactoring is a set of preconditions that must
be satisfied to guarantee that program behavior is preserved, and a set of
source code modifications. An important category of refactorings is con-
cerned with generalization (e.g., Extract Interface for re-routing the
access to a class via a newly created interface, and Pull Up Members

for moving members into a superclass). For these refactorings, both the
preconditions and the set of allowable source code modifications depends
on interprocedural relationships between types of variables. We present
an approach in which type constraints are used to verify the preconditions
and to determine the allowable source code modifications for a number
of generalization-related refactorings. This work is implemented in the
standard distribution of Eclipse (available from www.eclipse.org).

1 Introduction

Refactoring [5, 13] is the process of modifying a program’s source code without
changing its behavior, with the objective of improving the program’s design. A
refactoring operation is identified by a name, a set of preconditions under which it
is allowed and the actual source-code transformation that is performed. Recently,
code-centric development methodologies such as “Extreme Programming” [2]
have embraced refactoring because it fits well with their goal of continuously
improving source code quality. This has resulted in a renewed interest in tools
that verify the preconditions of refactorings, and that perform the actual source
code updates. Several popular development environments such as Eclipse [4] and
IntelliJ [10] incorporate refactoring capabilities.

An important category of refactorings is concerned with generalization [5,
Chapter 11][12], e.g., Pull Up Members for moving a member into a superclass
so it can be shared by a number of subclasses, and Extract Interface for
redirecting access to a class via a newly created interface. The latter involves
updating declarations of variables, parameters, return types, and fields to use

the newly added interface. Not updating these declarations leads to overspecific
variables, which conflicts with the principles of object-oriented design [11].

This paper proposes the use of an existing framework of type constraints [14]
to address various aspects of refactorings related to generalization. We show
how type constraints can be used to efficiently compute the maximal set of
allowable source-code modifications for Extract Interface, and demonstrate
that this solution preserves type-correctness and program behavior. We also show
how type constraints serve to succinctly state the preconditions for Pull Up

Members, and briefly discuss other refactorings that can be modeled similarly.
Our work is implemented in the standard distribution of Eclipse [4], and is
available from www.eclipse.org.

1.1 Motivating example

Figure 1 shows a Java program P1 that illustrates some of the challenges asso-
ciated with Extract Interface. In Figure 1, class List defines array-based
lists that support operations add() for adding an element, addAll() for adding
the contents of another list, sort() for sorting a list, and iterator() for iterat-
ing through a list without being aware of its implementation. Also shown is a
class Client with a main() method that models a typical usage of List. Now,
let us assume that we want to (further) hide the implementation details of List,
to make it easier to switch to a different (e.g., linked) list implementation. To
do so, we create an interface Bag that declares add(), addAll(), and iterator().
Then, we make Bag a superinterface of List. In Figure 1, these basic steps of
Extract Interface have already been performed.

At this point, Bag is not yet used because P1 contains no references to it. As
the main goal of Extract Interface is to re-route the access to List via the
Bag interface, we want to update the declarations of variables, parameters, fields,
and method return types so that they use, where possible, Bag instead of List.
In program P1, l0, l1, l2, l3, l4, l5, l6, l7, l8 and l9, and the return types
of List.add(), List.addAll(), Bag.add(), Bag.addAll() and Client.createList()

are of type List. Which of these can be given type Bag without affecting program
behavior? Careful examination of the program reveals that:

– Field l2 cannot be declared as type Bag because the fields size and elems

are accessed from l2, but not declared in Bag.
– Variable l3 is assigned to l2, requiring that the declared type of l3 be equal

to or a subtype of the declared type of l2. As the declaration of l2 cannot
be updated, the declaration of l3 cannot be updated either.

– The declared type of l8 must remain List because sort() is called on l8,
and sort() is not declared in Bag.

– l4 is passed as an argument to Client.sortList(), implying an assignment
l8 = l4. Hence, l4’s declared type must be equal to, or a subtype of l8’s
declared type, which cannot be changed. So, l4’s type cannot change either.

– Finally, the return type of Client.createList() cannot be updated because
the return value of this method is assigned to l4, whose declared type must
remain List, as was discussed above.

2

interface Bag {
public java.util.Iterator iterator();

public List add(Object element);

public List addAll(List l0);
}
class List implements Bag {

int size = 0; Object[] elems = new Object[10];
public java.util.Iterator iterator(){ return new Iterator(this); }
public List add(Object e){

if (this.size+1 == this.elems.length){
Object[] newObjects = new Object[2 * this.size];
System.arraycopy(this.elems, 0, newObjects, 0, this.size);
this.elems = newObjects;

}
this.elems[this.size++] = e; return this;

}
public List addAll(List l1) { java.util.Iterator i=l1.iterator();

for(; i.hasNext(); this.add(i.next())); return this;
}
public void sort(){

for (int t = 0; t < this.size; t++){
for (int u = t+1; u < this.size; u++){

Object e1=this.elems[t];Comparable e2=(Comparable)this.elems[u];
if (e2.compareTo(e1)<0){ this.elems[t]=e2; this.elems[u]=e1;}

} } } }
class Iterator implements java.util.Iterator {

private int count = 0; private List l2;
Iterator(List l3){ this.l2 = l3;}
public boolean hasNext(){ return this.count < this.l2.size; }
public Object next(){ return this.l2.elems[this.count++]; }
public void remove(){ throw new UnsupportedOperationException(); }

}
class Client {

public static void main(String[] args){
List l4 = createList();
populate(l4); update(l4); sortList(l4); print(l4);

}
static List createList(){ return new List();}
static void populate(List l5){ l5.add("foo").add("bar");}
static void update(List l6) {

List l7 = new List().add("zap").add("baz"); l6.addAll(l7);
}
static void sortList(List l8) { l8.sort(); }
static void print(List l9) {

for (java.util.Iterator iter = l9.iterator(); iter.hasNext();)
System.out.println("Object: " + iter.next());

} }

Fig. 1. Example program P1 illustrating the Extract Interface refactoring. Decla-
rations shown in boxes can be given type Bag instead of type List.

3

To summarize our findings, only l0, l1, l5, l6, l7, l9 and the return types of
List.add(), List.addAll(), Bag.add(), and Bag.addAll() can be given type Bag

instead of List. In Figure 1, these declarations are shown boxed. Clearly, care
must be taken when updating declarations.

1.2 Organization of this paper

Section 2 presents a model of type constraints for a substantial Java subset, and
its use in modeling Extract Interface. Section 3 studies other refactorings
that can be accommodated using this model. Section 4 presents implementation
issues related to Java features not previously discussed. Sections 5 and 6 discuss
related work and directions for future work, respectively.

1.3 Assumptions

We make the closed-world assumption that a refactoring tool has access to a
program’s full source code, and that only the behavior of this program needs
to be preserved. Furthermore, we will not consider the introduction of type
casts, which can expand the applicability of refactorings (e.g., in the example
of Figure 1, l4, l8, and the return type of Client.createList() can be given
type Bag if a cast to List is inserted in Client.sortList()). We believe that
introducing casts does not improve a program’s design.

2 Formal Model

Palsberg and Schwarzbach [14] introduced a model of type constraints for the
purpose of checking whether a program conforms to a language’s type system. If
a program satisfies all type constraints, no type violations will occur at run-time
(e.g., no method m(· · ·) is invoked on an object whose class does not define or
inherit m(· · ·)). In our setting, we start with a well-typed program, and use type
constraints similar to those in [14] to determine that declarations can be updated,
or that members can be moved without affecting a program’s well-typedness.

2.1 Notation and terminology

We will use the term declaration element to refer to declarations of local vari-
ables, parameters in static, instance, and constructor methods, fields, and method
return types, and to type references in cast expressions. Moreover, All(P, C) de-
notes the set of all declaration elements of type C in program P . For program
P1 of Figure 1, we have, using method names to represent method return types:

All(P1, List) = { l0, l1, l2, l3, l4, l5, l6, l7, l8, l9, Bag.add(), Bag.addAll(),
List.add(), List.addAll(), Client.createList() }

In what follows, v, v′ denote variables, M, M ′ denote methods, F, F ′ denote
fields, C,C ′ denote types1, and E, E′ denote expressions and declaration ele-
ments. The following notation will be used to express type constraints:
1 In this paper, the term type will denote a class or an interface.

4

[E]P the type of expression E in program P
[M]P the declared return type of method M in program P
[F]P the declared type of field F in program P
DeclP (M) the type that contains method M in program P
DeclP (F) the type that contains field F in program P
Param(M, i) the i-th formal parameter of method M
C ′≤C C′ is equal to C, or C ′ is a subtype of C
C ′<C C′ is a proper subtype of C (i.e., C ′≤C and C′ �= C)
super(C) the superclass of class C

We will frequently omit the P -subscript of [E]P , DeclP (M), and DeclP (F) where
P is unambiguous, and simply write [E], Decl(M), and Decl(F), respectively.

A method M is virtual if M is not a constructor, M is not private and M
is not static. Definitions 1 and 2 below define concepts of overriding2 and root
definitions for virtual methods. Definition 3 defines a notion of hiding for fields
that will be needed for the Pull Up Members refactoring in Section 3.

Definition 1 (overriding). A virtual method M in type C overrides a virtual
method M ′ in type B if M and M ′ have identical signatures and C≤B. In this
case, we also say that M ′ is overridden by M .

Definition 2 (RootDefs). Let M be a method. Define:

RootDefs(M) = { M ′|M overrides M ′, and there exists no M ′′ (M ′′ �= M ′)
such that M ′ overrides M ′′ }

Definition 3 (hiding). Field F in type C hides field F ′ in type B if F and F ′

have identical names and C<B. Then, we also say that F ′ is hidden by F .

2.2 Type constraints

A constraint variable α is one of the following: C (a type constant), [E] (repre-
senting the type of an expression or declaration element E), or Decl(M) (repre-
senting the type in which member M is declared). In this paper, a type constraint
has one of the following forms: (i) α1=α2, indicating that α1 and α2 must be
the same type, (ii) α1≤α2, indicating that α1 must be equal to or a subtype of
α2, (iii) α1<α2, indicating that α1≤α2 but not α1=α2, (iv) αL

1 ≤αR
1 or · · · or

αL
1 ≤αR

k , indicating that αL
j ≤αR

j must hold for at least one j, 1 ≤ j ≤ k.
Figure 2 lists the type constraints implied by a number of common Java

features, which were carefully designed to reflect the semantics of Java [8]. Due
to space limitations, we only discuss a few of the more interesting rules in detail.

Rules (1)–(18)3 define relationships between types of different expressions
and declaration elements that must hold in order for the program to be type-
correct. Rule (1) states that the type of the left-hand side of an assignment must
2 Note that, according to Definition 1, a virtual method overrides itself.
3 Rules (17) and (18) in Figure 2 are only shown for completeness, and are not affected

by the refactorings we consider.

5

program construct implied type constraint(s)
assignment E1 = E2 [E2]≤[E1] (1)

method call
E.m(E1, · · · , En)

to a virtual method M

[E.m(E1, · · · , En)] = [M]
[Ei]≤[Param(M, i)]

[E]≤Decl(M1) or · · · or [E]≤Decl(Mk)
where RootDefs(M) = { M1, · · · , Mk }

(2)
(3)

(4)

access E.f to field F
[E.f] = [F]
[E]≤Decl(F)

(5)
(6)

return E
in method M

[E]≤[M] (7)

M ′ overrides M,
M ′ �= M

[Param(M ′, i)] = [Param(M, i)]
[M ′] = [M]

Decl(M ′)<Decl(M)

(8)
(9)

(10)
F ′ hides F Decl(F ′)<Decl(F) (11)

constructor call
new C(E1, · · · , En)
to constructor M

[Ei]≤[Param(M, i)] (12)

direct call
E.m(E1, · · · , En)

to method M

[E.m(E1, · · · , En)] = [M]
[Ei]≤[Param(M, i)]

[E]≤Decl(M)

(13)
(14)
(15)

cast
(C)E

[E]≤[(C)E] or [(C)E]≤[E]
if C is a class and [E] is a class

(16)

for every type C
C≤java.lang.Object

[null]≤C
(17)
(18)

implicit declaration of
this in method M

[this] = Decl(M) (19)

expression
new C(E1, · · · , En)

[new C(E1, · · · , En)] = C (20)

type-name expression C [C] = C (21)
explicit declaration

C v
[v] = C (22)

declaration of method
M with return type C

[M] = C (23)

declaration of field
F with type C

[F] = C (24)

cast (C)E [(C)E] = C (25)

Fig. 2. Type constraints for a set of core Java language features. Rules (1)–(21) define
the types of expressions and impose constraints between the types of expressions and
declaration elements. Rules (22)–(25) define the types of declaration elements.

6

either be the same as, or a supertype of the type of the right-hand side. For a call
E.m(· · ·) to a virtual method M , we have that: (i) the type of the call-expression
is the same as M ’s return type (rule (2)4), (ii) the type of each actual parameter
must be the same as, or a supertype of the corresponding formal parameter
(rule (3)), and (iii) a method with the same signature as M must be declared in
[E] or one of its supertypes (rule (4)). This last constraint involves determining
a set of methods M1, · · · , Mk overridden by M using Definition 2, and requiring
[E] to be a subtype of one or more of Decl(M1), · · · ,Decl(Mk).

Rules (8)–(10) are concerned with overriding. Changing a parameter’s type
need not by itself affect type-correctness, but it may affect virtual dispatch (and
program) behavior. Hence, we require that types of parameters (rule (8)) and
return types (rule (9)) of overriding methods correspond. Rule (10) states that
no single type can contain two methods with the same signature, and will be
needed in Section 3 to check for cases where methods cannot be moved.

For a cast from type C to type D, an ordering relationship between C and
D in the class hierarchy is required (rule (16)). This constraint only applies
if both C and D are classes [8, Section 5.5]. Rules (22)–(25) define the types
of declaration elements by referring to their declared types. We conclude this
discussion with a remark. Some of the constraints of Figure 2 (in particular, (8)–
(11)) go beyond the type-checking that is routinely performed by Java compilers.
These rules are needed to ensure preservation of program behavior.

Definition 4 (TCfixed(P), TCdecl(P), TC(P)). Let P be a program. Then,
TCfixed(P) denotes the set of type constraints inferred for program P according to
rules (1)–(21). Further, TCdecl(P) is the set of constraints inferred for P accord-
ing to rules (22)–(25). Moreover, TC(P) denotes the set TCfixed(P)∪TCdecl(P).

Our use of type constraints deserves a few additional comments. First, a
type constraint [E]≤[E′] ∈ TC(P) states that the type-correctness of program
P requires that [E]P ≤[E′]P (similar statements can be made about the other
forms of type constraints). We say that a program P satisfies a type constraint
[E]≤[E′] if [E]P ≤[E′]P (again, similar cases exist for the other forms of type
constraints), and that P is type-correct if all constraints in TC(P) are satisfied.

2.3 Type constraints for program P1

Figure 3 shows the type constraints in TCfixed(P1) related to types List and
Bag. Here, each expression Decl(M) was reduced to the (constant) class in which
M is declared. We can perform this simplification when considering Extract

Interface because this refactoring does not affect the classes in which members
are declared. Let us consider the derivation of some of these constraints:

(a) For the call to List.add() on receiver expression l5 in method
Client.populate(), we find according to rule (2) that [l5.add("foo")] = [

4 Rules (2), (5), (13), (20), and (21) define the type of certain kinds of expressions.
While these rules are not very interesting by themselves, they are essential for defin-
ing the relationships between the types of expressions and declaration elements.

7

List.add()], and using rule (4) that [l5] ≤ Decl(Bag.add()) = Bag (here,
we used the fact that RootDefs(List.add()) = { Bag.add() }).

(b) For the other call to List.add() in Client.populate() we have:
[l5.add("foo").add("bar")] = [List.add()] and [l5.add("foo")] ≤
Decl(Bag.add()) = Bag. Combining this with (a) yields [List.add()] ≤ Bag.

(c) For each field access this.size in method List.sort(), we find using rules (19)
and (6) that List = Decl(List.sort()) ≤ Decl(List.size) = List. Note that
this trivial constraint does not constrain the type of any variable. Similar
constraints occur for accesses to field elems.

(d) For method Client.main(), we infer using rules (1) and (13) that [
Client.createList()] ≤ [l4]. Applications of rule (14) yield [l4] ≤ [
l5], [l4] ≤ [l6], [l4] ≤ [l8], and [l4] ≤ [l9].

method(s) constraint(s) rule(s)

List.add(),Bag.add() [Bag.add()] = [List.add()] (9)
List.addAll(), [l0] = [l1] (8)
Bag.addAll() [Bag.addAll()] = [List.addAll()] (9)

List.iterator() List ≤ [l3] (19), (12)
List.add() List ≤ [List.add()] (7), (19)

List.addAll() [l1] ≤ Bag (4)
List ≤ [List.addAll()] (19), (7)

Iterator.Iterator() [l3] ≤ [l2] (1)
Iterator.hasNext() [l2] ≤ List (6)
Iterator.next() [l2] ≤ List (6)
Client.main() [Client.createList()] ≤ [l4] (1), (13)

[l4] ≤ [l5]; [l4] ≤ [l6] (14);(14)
[l4] ≤ [l8]; [l4] ≤ [l9] (14);(14)

Client.createList() List ≤ [Client.createList()] (20), (7)
Client.populate() [l5] ≤ Bag (4)

[List.add()] ≤ Bag (2), (4)
Client.update() [List.add()] ≤ [l7] (1)

[List.add()] ≤ Bag (2), (4)
[l6] ≤ Bag; [l7] ≤ [l1] (4);(3)

Client.sortList() [l8] ≤ List (4)
Client.print() [l9] ≤ Bag (4)

Fig. 3. Type constraints TCfixed(P1) for program P1 of Figure 1. Only nontrivial con-
straints related to types List and Bag are shown.

2.4 Determining declarations that can be changed

We can now state the refactoring problem of Section 1 as follows: We want to
identify a maximal set of declaration elements G ⊆ All(P1, List) such that the
following holds in the refactored program P ′

1:

[E] = Bag ∈ TCdecl(P ′
1) if E ∈ G, and

[E] = List ∈ TCdecl(P ′
1) if E ∈ (All(P1, List) \ G)

8

and such that all constraints in TC(P ′
1) are satisfied. A naive approach to solve

this problem would be to check for each possible value of G, if it satisfies the type
constraints in TC(P ′

1), and then select a maximal G. Assuming that All(P1, List)
contains N elements, 2N possible values exist for G (each element can have type
Bag or List). Hence, the cost of this naive approach is a prohibitive O(2N).

Observe, however, that the type constraints in TCfixed(P1) already indicate
which declaration elements can be updated. For example, from Figure 3 it can be
seen that List ≤ [l3] ≤ [l2] ≤ List, which implies that l2 and l3 can only
have type List. Definition 5 below formalizes this notion of “non-updatability”.

Definition 5 (non-updatable declaration elements). Let P be a program,
let C be a class in P , let I be an interface in P such that C is the only class that
implements I and I does not have any supertypes other than Object. Define:

Bad(P, C, I) =
{ E |E ∈ All(P, C), [E]≤C1 or · · · or [E]≤Ck ∈ TCfixed(P),

I �≤C1, · · · , I �≤Ck } ∪
{ E |E ∈ All(P, C), [E]≤[E′] ∈ TCfixed(P), E′ �∈ All(P, C), I �≤[E′] } ∪
{ E |E ∈ All(P, C), [E] = [E′] ∈ TCfixed(P) or [E]≤[E′] ∈ TCfixed(P) or

[E]<[E′] ∈ TCfixed(P), E′ ∈ Bad(P,C, I) }

The first part of Definition 5 is concerned with constraints that are due to a
method call E.m(· · ·), and states that E cannot be given type I if a declaration
of m(· · ·) does not occur in (a supertype of) I. The second part of Definition 5
deals with constraints [E]≤[E′] due to assignments and parameter passing, and
states that E cannot be given type I if the declared type of E′ is not C, and I
is not equal to or a subtype of E′ (the latter condition is needed for situations
where a declaration element of type C is assigned to a declaration element of type
Object). The third part handles the propagation of “badness” due to overriding,
assignments, and parameter passing. For program P1 of Figure 1, we have:

Bad(P1, List, Bag) = { l2, l3, l4, l8, Client.createList() }

Hence, the declarations of l0, l1, l5, l6, l7, and l9 and the return types of
List.add(), List.addAll(), Bag.add(), and Bag.addAll() can be changed to Bag.
Note that we reached the same conclusion via informal reasoning in Section 1.

An observant reader may have noticed that Definition 5 does not contain
a case to deal with type constraints that arise due to casts. This is the case
because rule (16) only applies to a cast expression (T)E if T is a class, and
changing a type cast (C)E into (I)E has the effect of removing a type constraint.
Nevertheless, the type of a cast-expression may be constrained by assignments
to other variables (and parameter-passing), as Figure 4 illustrates.

For the code in the first loop of Figure 4, we infer [(List)iter0.next()] ≤
[list0] (rule (1)) and [list0] ≤ Decl(List.sort()) = List (rule (4)). Hence,
we have that: [(List)iter0.next()] ≤ List. Since the cast expression must
have a type that is equal to, or a subtype of List, we cannot update it to type Bag.
For the second loop, we find that [(List)iter1.next()] ≤ [list1] (rule (1))

9

and [list1] ≤ Decl(Object.toString()) = Object (rule (4)). Hence, it is only
required that [(List)iter1.next()] ≤ Object which always holds (rule (17)).
Hence, the cast in the second loop can be updated to (Bag)iter1.next().

private static void sortAndPrintAllLists(List allLists){
for (Iterator iter0 = allLists.iterator(); iter0.hasNext();) {

List list0 = (List) iter0.next();
list0.sort();

}
for (Iterator iter1 = allLists.iterator(); iter1.hasNext();) {

List list1 = (List) iter1.next();
System.out.println(list1.toString());

}
}

Fig. 4. Example method that makes use of type casts (this method is assumed to occur
in class Client of Figure 1).

2.5 Justification

Theorem 1 states that updating the declaration elements in All(P, C) that do
not occur in Bad(P, C, I) produces a program that is type-correct.

Theorem 1 (type-correctness). Let P be a program that is type-correct, let C
and I be a class and an interface in P , respectively, such that C is the only class
that implements I, and assume that I does not have any supertypes other than
Object. Let P ′ be a program obtained from P by giving type I to all declaration
elements in All(P,C) \ Bad(P, C, I). Then, P ′ is type-correct.

Proof. P and P ′ have identical class hierarchies, and contain the same expres-
sions and statements. Examination of rules (1)—(20) in Figure 2 reveals that
TC(P) ⊇ TC(P ′). (The only case where a constraint t ∈ TC(P) does not oc-
cur in TC(P ′) is when t is due to a cast (C)E, for which [(C)E)]P = C, and
[(C)E)]P ′ = I). We need to show for each constraint t ∈ TC(P) that either t is
satisfied by P ′ or t �∈ TC(P ′). The following cases exist5:

1. t ≡ [E] = C. This constraint is generated due to an application of rule (19),
(20), or (21) to define the type of a this-expression, a new-expression, or a
static type expression, respectively. These constraints merely define the type
of an expression and cannot be violated.

5 We will only examine the cases that involve type constraints in which each “side”
represents the type of a variable, parameter, field, or method return type. Constraints
that involve constant types (such as those involving the declaring classes of members)
can be dealt with similarly, and are in most cases trivial.

10

2. t ≡ [E] = [E′]. If [E]P = [E′]P �= C, we have [E]P ′ = [E]P = [E′]P = [E′]P ′

because the transformation only affects expressions and declaration elements
of type C. Otherwise, [E]P = [E′]P = C, and it follows from Definition 5 that
either: (i) E ∈ Bad(P, C, I) and E′ ∈ Bad(P, C, I), or (ii) E �∈ Bad(P, C, I)
and E′ �∈ Bad(P, C, I). In either case ([E]P ′ = C, [E′]P ′ = C or [E]P ′ = I ,
[E′]P ′ = I), we have that: [E]P ′ = [E′]P ′ .

3. t ≡ [E]≤D or D≤[E]. Then, t occurs due to a cast (D)E in P (rule (16)).
There are two cases:
(a) [(D)E]P �= C or (D)E ∈ Bad(P, C, I). Then, the cast cannot be updated,

and [(D)E]P ′ = [(D)E]P = D. Two sub-cases exist: (i) If E �∈ All(P, C),
then [E]P ′ = [E]P , and t holds because P is type-correct; (ii) [E]P = C.
If E ∈ Bad(P, C, I), we have [E]P ′ = [E]P , and t holds because P is type-
correct. If E �∈ Bad(P, C, I), we have that [E]P ′ = I, and t �∈ TC(P ′)
because rule (16) does not apply.

(b) [(D)E]P = C and (D)E �∈ Bad(P, C, I). The cast occurs as (I)E in P ′,
and t �∈ TC(P ′) because rule (16) does not apply.

4. t ≡ [E]≤[E′]. We distinguish the following cases:
(a) E �∈ All(P,C) and E′ �∈ All(P, C). Then, [E]P = [E]P ′ and [E′]P =

[E′]P ′ . Hence, [E]P ′≤[E′]P ′ .
(b) E �∈ All(P, C) and E′ ∈ All(P, C). Then, [E]P = [E]P ′ . Two sub-cases

exist: (i) if E′ ∈ Bad(P, C, I), then [E′]P ′ = [E′]P and [E]P ′≤[E′]P ′ . (ii)
if E′ �∈ Bad(P, C, I), then C = [E′]P ≤[E′]P ′ = I. Hence, [E]P ′≤[E′]P ′ .

(c) E ∈ All(P, C) and E′ �∈ All(P,C). Then, [E′]P ′ = [E′]P . Two sub-
cases exist: (i) If I �≤[E′]P , then from Definition 5 it follows that E ∈
Bad(P, C, I), so we have that [E]P ′ = [E]P , and therefore [E]P ′≤[E′]P ′ .
(ii) Otherwise, we have that I≤[E′]P , so [E]P ′≤ I ≤[E′]P ′ .

(d) E ∈ All(P, C) and E′ ∈ All(P, C). Two sub-cases exist: (i) If E′ ∈
Bad(P, C, I), Definition 5 implies that E ∈ Bad(P, C, I). Hence, [E]P =
[E]P ′ = [E′]P = [E′]P ′ = C, and [E]P ′≤[E′]P ′ . (ii) If E′ �∈ Bad(P, C, I),
then [E′] = I in P ′. Depending on whether or not E ∈ Bad(P, C, I), we
have [E]P ′ = C or [E]P ′ = I, but in either case [E]P ′≤[E′]P ′ .

5. t ≡ [E]≤C1 or · · · or [E]≤Ck, k ≥ 1. Then, t is due to a virtual call
E.m(· · ·) to a method M (rule (4)). Definition 2 implies [E]P ≤Ch, for some
1 ≤ h ≤ k, where M overrides a method Mh in Ch. Two cases exist:
(a) I≤Cj for some 1 ≤ j ≤ k. (we must use ‘≤’ instead of ‘=’ as Cj may

be Object.) Then, [E]P ≤ Cj . Two sub-cases exist: (i) E ∈ All(P, C)
and E �∈ Bad(P, C, I). Then, [E]P ′ = I≤Cj . (ii) E �∈ All(P,C) or E ∈
Bad(P, C, I). Then, [E]P ′ = C≤I≤Cj .

(b) I �≤Cj for all 1 ≤ j ≤ k. From Definition 5, it follows that E ∈ Bad(P, C, I),
and hence that [E]P ′ = [E]P ≤Ch.

Since all type constraints in TC(P ′) are satisfied, P ′ is type-correct. �
Conjecture 1 (preservation of behavior). Let P be a type-correct program, let C
and I be a class and an interface in P , respectively, such that C is the only class
that implements I and I does not have any supertypes other than Object. Let
P ′ be a program obtained from P by giving type I to all declaration elements in
All(P, C)\Bad(P, C, I). Then, P and P ′ have corresponding program behaviors.

11

We plan to prove Conjecture 1 using the following arguments: (a) For a
given expression E with run-time type T , a virtual call E.m(· · ·) dispatches to
the same method B.m(· · ·) in P and P ′, even if [E]P = C and [E]P ′ = I; (b)
For a given expression E with run-time type T , a cast (D)E succeeds/fails in
exactly the same cases in P and P ′, even if [(D)E]P = C and [(D)E]P ′ = I; (c)
P and P ′ contain exactly the same statements and expressions. Together with
(a) and (b), this implies that the same points-to relationships arise in P and P ′.

Theorem 2 (minimality of Bad(P,C, I)). Let P be a type-correct program,
let C and I be a class and an interface in P , respectively, such that C is the only
class that implements I and I does not have any supertypes other than Object.
Let A be any set of declaration elements such that A ⊂ Bad(P, C, I). Then,
the program P ′ obtained from P by giving type I to all declaration elements in
(All(P, C) \ A) is type-incorrect.

Proof. The proof depends on the following auxiliary definition:

Definition 6 (Layer). Let Layer(E) : Bad(P, C, I) → N be defined as follows:

Layer(E) =

0 if [E]≤C1 or · · · or [E]≤Ck ∈ TCfixed(P),
I �≤C1, · · · , I �≤Ck

0 if [E]≤[E′] ∈ TCfixed(P), E′ �∈ All(P, C), I �≤[E′]
n + 1 if Layer(E) �= 0 and n = min({ m = Layer(E′) |

E′ �= E, [E] = [E′] ∈ TCfixed(P) or
[E]≤[E′] ∈ TCfixed(P) or [E]<[E′] ∈ TCfixed(P) })

Let B = Bad(P,C, I) \ A. Note that B �= ∅ because A ⊂ Bad(P, C, I) ⊆
All(P, C). We begin by selecting a “minimal” element E ∈ B for which there ex-
ists no E′ ∈ B such that Layer(E′) < Layer(E). Note that, in cases where there
is no unique minimal element, one may be chosen arbitrarily. We are assuming
that all elements in B are given type I in P ′, hence [E]P ′ = I . Two cases exist:

1. Layer(E) = 0. Then, from Definition 6, it follows that there are two sub-
cases: (i) [E]≤C1 or · · · or [E]≤Ck ∈ TCfixed(P), I �≤C1, · · · , I �≤Ck, and
(ii) [E]≤[E′] ∈ TCfixed(P), E′ �∈ All(P, C), I �≤[E′]. In each case, P ′ does not
satisfy the constraint because of [E]P ′ = I and is therefore not type-correct.

2. Layer(E) = n + 1, where n ≥ 0. Then, there exists an E′ �= E such that
Layer(E′) = n and a type constraint t ∈ TCfixed(P) exists such that t ≡
[E]=[E′], or t ≡ [E]≤[E′], or t ≡ [E]<[E′]. We observe that E′ /∈ B because
Layer(E′) < Layer(E), and E was selected as one of B’s elements with
minimal Layer-value. From E′ ∈ Bad(P, C, I), it follows that [E′]P ′ = C.
From [E]P ′ = I and [E′]P ′ = C it follows that program P ′ does not satisfy
type constraint t, rendering P ′ type-incorrect. �

3 Other Refactorings Related to Generalization

3.1 Pull Up Members

The purpose of Pull Up Members is to move member(s) from a given class
into its superclass. We will use program P2 of Figure 5 to illustrate the various

12

abstract class List {
int size(){ return this.size; }
void setSize(int i){ this.size = i; }
Object[] elems; int size;

}
class CList extends List {

CList(Object[] objects){ this.elems=objects; this.size=objects.length; }
public String toString() {

return java.util.Arrays.asList(this.elems).toString();
}

}
class FList extends List {

FList(){ this.elems = new Object[10]; this.size = 0; }
void add(Object e) {

if (this.size() + 1 == this.elems.length){
Object[] newObjects = new Object[2 * this.size()];
System.arraycopy(elems, 0, newObjects, 0, this.size());
this.elems = newObjects;

}
this.set(this.size(), e);
this.setSize(this.size() + 1);

}
int size(){ int n = this.size; return n; }
boolean isEmpty(){ return this.size() == 0; }
FList sort(){

for (int t = 0; t < this.size(); t++){
for (int u = t + 1; u < this.size(); u++){

Object e1=this.elems[t]; Comparable e2=(Comparable)this.elems[u];
if (e2.compareTo(e1) < 0){ this.elems[t]=e2; this.elems[u]=e1; }

}
}
return this;

}
Object get(int index){ return this.elems[index]; }
void set(int index, Object o){ this.elems[index] = o; }

}
class Client {

public static void main(String[] args) {
FList l1 = new FList();
l1.add("foo"); l1.add("bar"); l1.sort();
System.out.println(l1.toString());
List l2 = new CList(new Object[]{ "zip", "zap" });
System.out.println(l2.toString());

}
}

Fig. 5. Example program P2.

13

issues associated with Pull Up Members. P2 defines an abstract class List

with two subclasses, CList for representing constant-length lists, and FList for
variable-length lists. Methods are provided for retrieving the size() of a list,
adding elements to FLists, sorting FLists, getting/setting a specific element,
determining whether or not an FList is empty(), and for printing out the contents
of a CList (CList.toString()). Careful examination of program P2 reveals that:

1. Methods get(), set(), and isEmpty() can each be pulled up (by itself) from
FList into List without affecting type-correctness and program behavior.

2. Method size() cannot be pulled up from FList into List because another6

method with the same signature is already defined in List.
3. Method FList.add() can only be pulled up to List if FList.set() is pulled

up as well, because no method set() is declared in class List.
4. Note that the body of FList.sort() contains a statement return this, and

that the return type of sort() is FList. If sort() is pulled up into List,
the type of this becomes List, and the resulting program becomes type-
incorrect because the return expression is no longer (a subtype of) FList.

5. Pulling up method CList.toString() does not result in any compiler errors.
However, program behavior has changed because the call l1.toString() now
dispatches to a different definition of the toString() method.

3.2 Using type constraints for Pull Up Members

We will reuse the type constraints of Figure 2 to detect when pulling up a
(set of) method(s) would affect type-correctness or program behavior. However,
there is a subtle difference in the way we use these constraints. In the case of
Extract Interface, we were solving a constraint system in which the types
of declaration elements were “variables”, and the declaring classes of methods
were “constants”. In the case of Pull Up Members, the opposite is true: The
types of declaration elements are fixed (they are not affected by this particular
refactoring), but the declaring classes of (pulled-up) members may change.

Figure 6 shows the type constraints for P2. Here, the declaring class of a mem-
ber M is shown in unsimplified form, as Decl(M), and the type of a declaration
element E as the constant value [E]P . Observe that:

– Pulling up FList.size() into List implies that Decl(FList.size()) = List.
This would violate constraint Decl(FList.size()) < Decl(List.size()).

– It is obvious from constraint Decl(FList.add()) ≤ Decl(FList.set()) that
FList.add() cannot be pulled up without also pulling up FList.set().

– Pulling up method FList.sort() means that Decl(FList.sort()) = List,
which violates the type constraint Decl(FList.sort()) ≤ FList.

– The remaining problem case—pulling up CList.toString()—does not raise
any type-correctness issues. This illustrates that type constraints by them-
selves are not always sufficient to express the preconditions of refactorings.

6 This example contains two gratuitously different size() methods solely for the pur-
pose of illustrating the issues raised by method overriding.

14

method(s) constraint(s) rule(s)

List.size(),
FList.size()

Decl(FList.size()) < Decl(List.size()) (10)

List.setSize() Decl(List.setSize()) ≤ Decl(List.size) (6),(19)
List.size() Decl(List.size()) ≤ Decl(List.size) (6),(19)
CList.CList() Decl(CList.CList()) ≤Decl(List.elems) (6),(19)

Decl(CList.CList()) ≤Decl(List.size) (6),(19)
CList.toString() Decl(CList.toString()) ≤Decl(List.elems) (6),(19)
FList.FList() Decl(FList.FList()) ≤ Decl(List.size) (6),(19)

Decl(FList.FList()) ≤ Decl(List.elems) (6),(19)
FList.add() Decl(FList.add()) ≤ Decl(List.size()) (4),(19)

Decl(FList.add()) ≤ Decl(List.elems) (6),(19)
Decl(FList.add()) ≤ Decl(List.setSize()) (4),(19)

Decl(FList.add()) ≤ Decl(FList.set()) (4),(19)
FList.size() Decl(FList.size()) ≤ Decl(List.size) (6),(19)

FList.isEmpty() Decl(FList.isEmpty()) ≤ Decl(List.size()) (4),(19)
FList.sort() Decl(FList.sort()) ≤ Decl(List.size()) (4),(19)

Decl(FList.sort()) ≤ Decl(List.elems) (6),(19)
Decl(FList.sort()) ≤ FList (7),(19)

FList.get() Decl(FList.get()) ≤ Decl(List.elems) (6),(19)
FList.set() Decl(FList.set()) ≤ Decl(List.elems) (6),(19)
Client.main() FList ≤ Decl(FList.add()) (4),(22)

FList ≤ Decl(FList.sort()) (4),(22)

Fig. 6. Type constraints TCfixed(P2) for program P2 of Figure 5. Only nontrivial con-
straints related to types List, CList, and FList are shown.

Definition 7 below introduces a predicate CanPullUp(P, M). If this predicate
holds, virtual method M in program P can be pulled up into the superclass of
M ’s declaring class without affecting type-correctness and program behavior.
Referring to the labels (a)–(e) in Definition 7, we have that:

(a) Type constraints of the form Decl(M)≤[E] are due to assignments ‘E =
this’ within M ’s body (as well as parameter-passing and return-expressions
involving this). To ensure that these constraints still hold after pulling up
M , we require that super(DeclP (M))≤ [E]P .

(b) A constraint Decl(M)≤Decl(M ′) is due to (i) a member M ′ that is not a
virtual method is accessed from method M ’s this-pointer, or (ii) a virtual
method M ′′ is called on M ’s this-pointer, and RootDefs(M ′′) = { M ′ }. To
preserve such constraints, we require that super(DeclP (M))≤DeclP (M ′).

(c) A constraint Decl(M)≤Decl(M1) or · · · or Decl(M)≤Decl(Mk) arises due
to a virtual method call to M ′ on the this pointer of method M , where
RootDefs(M ′) = { M1, · · · , Mk }. After pulling up method M , the constraint
still holds if super(DeclP (M))≤DeclP (Mj), for some 1 < j ≤ k.

(d) Constraints of the form Decl(M)<Decl(M ′) occur when a method M over-
rides method M ′. By requiring that super(DeclP (M))<DeclP (M ′), we ensure
that no class contains methods with identical signatures after the pull-up.

15

(e) The final condition in Definition 7 suffices to preserve dispatch behavior of
calls to methods with the same signature as M , and states that, if a method
with the same signature as M is called on a subtype of super(DeclP (M)),
the dispatch should resolve7 to a proper subtype of super(DeclP (M)).

It should be stated that (d) and (e) are sufficient conditions that, in some cases,
may prohibit pulling up methods when it is safe to do so. In case of (e) this is
unavoidable, because a precise condition would requires full knowledge program
execution behavior. Work on an exact version of (d) is still in progress.

Definition 7. Let P be a program, let M be a virtual method in P such that
Decl(M) �= Object, and let Decl(M) be a class. Define:

CanPullUp(P,M) ⇔
∀Decl(M)≤[E] ∈ TC(P) : super(DeclP (M))≤[E]P , and (a)
∀Decl(M)≤Decl(M ′) ∈ TC(P), M �= M ′ :

super(DeclP (M))≤DeclP (M ′), and (b)
∀Decl(M)≤Decl(M1) or · · · or Decl(M)≤Decl(Mk) ∈ TC(P), k > 1 :

super(DeclP (M))≤DeclP (Mj), for some j(1 < j ≤ k), and (c)
∀Decl(M)<Decl(M ′) ∈ TC(P) : super(DeclP (M))<DeclP (M ′), and (d)
∀C≤super(DeclP (M)) : staticLookup(P, C,Sig(M))<super(DeclP (M)) (e)

It is straightforward to extend CanPullUp to nonvirtual methods, and to sets
of methods. In addition, type constraints can be used to determine, for a given
method M that cannot be pulled up in isolation, if there exists a set of methods
containing M that can be pulled up. Space limitations prevent us from providing
additional details.

3.3 Other refactorings

Other refactorings that can be modeled using our approach include:

Generalize Type. This refactoring replaces the type of a declaration element
E with its supertype. The preconditions for this refactoring can be stated as
a predicate on the type constraints that involve E. In some cases, Gener-

alize Type can enable Pull Up Members refactorings that are otherwise
impossible. If, in program P2 of Figure 5, the return type of FList.sort() is
generalized to List, FList.sort() can be pulled up into class List.

Extract Subclass [5, page 330]. This is a refactoring for “splitting” a class, to
address situations where a class has members that are used in some instances
of the class and not in others. This raises issues related to the updating of
declaration elements similar to those discussed for Extract Interface.

Push Down Members [5, page 328]. This is the inverse refactoring of Pull

Up Members, and although it is technically a refactoring for specialization,
the issues that arise are very similar to those for Pull Up Members.

7 Here, staticLookup(P, C, S) is a function that, for a given program P and class C,
selects the definition of a method with signature S in the nearest superclass of C.

16

program construct implied type constraint(s)

new C[E]
[new C[E]] = C[]

[E] = Int

(26)
(27)

expression C[E] [C[E]] = C
[E] = Int

(28)
(29)

for any C≤C ′ C[]≤C ′[] (30)
initialized declaration
C[] c = {E1, . . . , En} [Ei]≤C (31)

initialized creation expression
new C[E]{E1, . . . , En} [Ei]≤C (32)

try {...} catch(E e){...} E≤java.lang.Throwable (33)
try{...}catch(E1 e1){...}

· · ·
catch(En en){...}

∀i, j : 1 ≤ i < j ≤ n
Ej �≤Ei

(34)

M overrides M ′
∀E ∈ Excptns(M) ∩ CheckedExcptns

∃E′ ∈ Excptns(M ′)
E≤E′

(35)

expression
E instanceof C

[E instanceof C] = Bool

[E]≤C or C≤[E]
if C is a class and [E] is a class

(36)

(37)

CheckedExcptns {E : E ≤java.lang.Throwable ∧ E �≤java.lang.Error ∧
E �≤java.lang.RuntimeException}

Excptns(M) set of exceptions included in throws clause of M ’s declaration

Fig. 7. Additional type constraints.

4 Implementation and Pragmatic Issues

We have implemented Extract Interface in Eclipse [4]. Our implementation
closely follows Definition 5 to find declaration elements that can be updated,
and uses the standard model and GUI support for performing refactorings in
Eclipse [1]. Work on the other refactorings of Section 3 is in progress.

Thus far, we have only shown type constraints for a core set of Java fea-
tures. A number of Java’s other features are discussed below. Some of the more
interesting corresponding type constraints are shown in Figure 7.

Arrays. Arrays and array initializers introduce some rather straightforward
constraints, as shown in Figure 7.

Casts and instanceof expressions. Type constraints implied by instanceof
expressions (rule (37)) are analogous to those for casts (rule (16)) [8, Section
15.20.2]. In addition to rule (16), various other constraints on the correctness
of casts exist. For a detailed discussion, we refer the reader to [8, Section 5].

Member types. Member types [8, Section 8.5] have access to fields, methods,
types and variables declared in their enclosing scopes and supertypes. A
member type is type-incorrect if it uses an identifier that is declared in both

17

a supertype and an enclosing scope. Care must be taken when applying
refactorings like Pull Up Members to avoid introducing such ambiguities.

Exceptions. Several additional type constraints related to exceptions are listed
in Figure 7 as rules (33)–(35). Replacing the type referred to in a catch-
clause with its supertype may change program behavior in various ways (e.g.,
more exceptions being caught, or the program becoming type-incorrect). In
our implementation, we exclude java.lang.Throwable and its subclasses
from consideration, similarly to [9].

Overloading. Overloading (i.e., having methods with identical names but
different argument types in a class) raises interesting issues for the refac-
torings under consideration. An invocation of m(C1, · · · , CN) results in se-
lection of a method m(· · ·) with the most specific signature that matches
m(C1, · · · , CN) [8, Section 15.12.2.2]. Changing parameter types, or pulling
up methods may affect this specificity ordering, and change program behav-
ior. Currently, we disallow refactorings when such problems occur.

Visibility/Accessibility issues. Care must be taken to preserve the appropri-
ate visibility relationships. E.g., extracting an interface may require adding
import statements, to ensure the visibility of parameter types. A refactoring
tool must either increase visibility of these members, or disallow refactoring.

5 Related Work

In his pioneering work on refactoring, Opdyke [13] identified and informally spec-
ified invariants that any refactoring must preserve [13, page 27–28]. One of these
invariants, Compatible Signatures in Member Function Redefinition, states that
overriding methods must have corresponding argument types and return types,
and is reflected by our constraints (8) and (9). Opdyke writes the following about
the Type-Safe Assignments invariant: “The type of each expression assigned to a
variable must be an instance of the variable’s defined type, or an instance of one
of its subtypes. This applies both to assignment statements and function calls”.
This is expressed by our constraints (1), (3), (12), and (14). Opdyke states the
preconditions of refactorings as requirements on source-level constructs, using a
number of auxiliary predicates that represent structural properties of programs.
Opdyke does not address the issue of using invariants to compute a set of allow-
able source code modifications, as we do in the case of Extract Interface.

Fowler [5] presents a comprehensive classification of a large number of refac-
torings, which includes step-by-step directions on how to perform each of these
manually. Many of the thorny issues related to generalization-related refactorings
are not addressed. For example, in the case of Extract Interface, Fowler only
instructs one to “Adjust client type declarations to use the interface”, ignoring
the fact that not all declarations can be updated.

The development environment IntelliJ IDEA [10] by JetBrains, Inc. supports
refactorings that deal with generalization such as Extract Interface, and
automatically determines declaration elements that can be updated. We are
unfamiliar with the details of their implementation, but the results obtained
with their tool appear similar to ours.

18

Halloran and Scherlis [9] present an algorithm for detecting overspecific vari-
able declarations. In contrast to our work, every variable declaration is ana-
lyzed in isolation, and relationships between declarations—all-important in our
approach—are not considered. Hence, several run/modify iterations may be re-
quired to discover all possible declaration updates.

Tokuda and Batory [20] discuss the use of refactorings to introduce new
(or evolve existing) design patterns [7] in applications. Several refactorings are
presented to support this evolution of program designs, including one called
Substitute which “generalizes a relationship by replacing a subclass reference
to that of its superclass”. Tokuda and Batory point out that “This refactoring
must be highly constrained because it does not always work”. Our model can be
used to add proper precondition checking for Substitute.

Seguin [16] analyzes, using Pull Up Field as an example, challenges for
refactoring in strongly typed languages such as Java. The issues encountered by
Seguin are similar to those described in this paper. Seguin, however, advocates
the use of type casts to preserve the program’s type-correctness, a solution that
we consider inappropriate in a refactoring tool (see Section 1.3).

Snelting and Tip [17, 18] present an approach for generating refactoring pro-
posals for Java applications (e.g., indications that a class can be split, or that a
member can be moved). This work is based on earlier work by Tip and Sweeney
[19] in which type constraints record relationships between variables and mem-
bers that must be preserved. From these type constraints, a binary relation
between classes and members is constructed that encodes precisely the members
that must be visible in each object. Concept analysis is used to generated a con-
cept lattice from this relation, from which refactoring proposals are generated.

Much previous work on generating and solving type constraints exists (see,
e.g., [15, 6]). Carlos [3] describes an algorithm that analyzes a program’s type
constraints to identify all declaration elements that need to be updated in re-
sponse to a request for updating a given declaration element. This algorithm
is only described informally, and several important language features are not
addressed (e.g., casts). No proof of correctness or optimality of the computed
solution is given.

6 Future Work

Plans for future work include a complexity analysis of our algorithms, and a de-
tailed study of other generalization-related refactorings (see Section 3.3). With
respect to Extract Interface, we plan to extend the declaration-updating
process to include declaration elements whose type is a subtype of the class
from which the interface is extracted. Furthermore, we are interested in pro-
viding more interactive feedback in refactoring tools using type constraints. For
example, one could inform the user of declarations that can be generalized when
a given method is pulled up, or declarations that need to be generalized in order
to enable a Pull Up operation that is otherwise prohibited.

19

Acknowledgments

We are grateful to Jens Palsberg for comments on a draft of this paper.

References

1. Dirk Bäumer, Erich Gamma, and Adam Kieżun. Integrating refactoring support
into a Java development tool. In OOPSLA’01 Companion, October 2001.

2. Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,
2000.

3. Cohan Sujay Carlos. The elimination of overheads due to type annotations and
the identification of candidate refactorings. Master’s thesis, North Carolina State
University, 2002.

4. Eclipse.org. Eclipse. On-line at http://www.eclipse.org.
5. Martin Fowler. Refactoring. Improving the Design of Existing Code. Addison-

Wesley, 1999.
6. Etienne M. Gagnon, Laurie J. Hendren, and Guillaume Marceau. Efficient inference

of static types for Java bytecode. In Proceedings of SAS’00, International Static
Analysis Symposium, pages 199–219. Springer-Verlag (LNCS 1824), 2000.

7. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

8. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Spec-
ification (Second Edition). Addison-Wesley, 2000.

9. T. J. Halloran and William L. Scherlis. Models of Thumb: Assuring best practice
source code in large Java software systems. Technical Report Fluid Project, School
of Computer Science/ISRI, Carnegie Mellon University, September 2002.

10. JetBrains, Inc. Intellij idea. On-line at http://www.intellij.com/jetbrains.
11. Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, Inc., 1997.
12. William F. Opdyke and Ralph E. Johnson. Creating abstract superclasses by

refactoring. In The ACM 1993 Computer Science Conf. (CSC’93), pages 66–73,
February 1993.

13. William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Uni-
versity Of Illinois at Urbana-Champaign, 1992.

14. Jens Palsberg and Michael Schwartzbach. Object-Oriented Type Systems. John
Wiley & Sons, 1993.

15. Jens Palsberg. Efficient inference of object types. Information and Computation,
123(2):198–209, 1995.

16. Christopher Seguin. Refactoring tool challanges in a strongly typed language. In
OOPSLA’00 Companion, pages 101–102, October 2000.

17. Gregor Snelting and Frank Tip. Reengineering class hierarchies using concept
analysis. In Proc. ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pages 99–110, Orlando, FL, November 1998.

18. G. Snelting and F. Tip. Understanding class hierarchies using concept analysis.
ACM Trans. on Programming Languages and Systems, pages 540–582, May 2000.

19. Frank Tip and Peter Sweeney. Class hierarchy specialization. Acta Informatica,
36:927–982, 2000.

20. Lance Tokuda and Don Batory. Evolving object-oriented designs with refactorings.
Kluwer Journal of Automated Software Engineering, pages 89–120, August 2001.

20

