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Abstract

We present an architecture and prototype implementation of a performance management system for
cluster-based web services. The system supports multiple classes of web services traffic and allocates
server resources dynamically so to maximize the expected value of a given cluster utility function in the
face of fluctuating loads. The cluster utility is a function of the performance delivered to the various
classes, and this leads to differentiated service. In this paper we will use the average response time as
the performance metric. The management system is transparent: it requires no changes in the client
code, the server code, or the network interface between them. The system performs three performance
management tasks: resource allocation, load balancing, and server overload protection. We use two
nested levels of management mechanism. The inner level centers on queuing and scheduling of request
messages. The outer level is a feedback control loop that periodically adjusts the scheduling weights and
server allocations of the inner level. The feedback controller is based on an approximate first-principles
model of the system, with parameters derived from continuous monitoring. We focus on SOAP-based
web services. We report experimental results that show the dynamic behavior of the system.

1 Introduction

Today we are seeing the emergence of a powerful distributed computing paradigm, broadly called web services
[1]. Web services feature ubiquitous protocols, language-independence, and standardized messaging. Due to
these technical advances and growing industrial support, many believe that web services will play a key role
in dynamic e-business [2]. In such an environment, a web service provider may provide multiple web services,
each in multiple grades, and each of those to multiple customers. The provider will thus have multiple classes
of web service traffic, each with its own characteristics and requirements. Performance management becomes
a key problem, particularly when service level agreements (SLA) are in place. Such service level agreements
are included in service contracts between providers and customers and they specify both performance targets,
known as performance objectives, and financial consequences for meeting or failing to meet those targets. A
service level agreement may also depend on the level of load presented by the customer.

In this paper we present an architecture, and describe a prototype implementation, of a performance
management system for web services that supports service level agreements. We have designed and imple-
mented reactive control mechanisms to handle dynamic fluctuations in service demand while keeping service
level agreements in mind. Our mechanisms dynamically allocate resources among the classes of traffic, bal-
ance the load across the servers, and protect the servers against overload - all in a way that maximizes a
given cluster utility function. This produces differentiated service.

We introduce a cluster utility function that is a composition of two kinds of functions, both given by the
service provider. First, for each traffic class, there is a class-specific utility function of performance. Second,
there is a combining function that combines the class utility values into one cluster utility value. This
parameterization by two kinds of utility function gives the service provider flexible control over the trade-
offs made in the course of service differentiation. In general, a service provider is interested in profit (which
includes cost as well as revenue) as well as other considerations (e.g., reputation, customer satisfaction).

We have organized our architecture in two levels: (i) a collection of in-line mechanisms that act on each
connection and each request, and (ii) a feedback controller that tunes the parameters of the in-line mech-
anisms. The in-line mechanisms consist of connection load balancing, request queuing, request scheduling,
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and request load balancing. The feedback controller periodically sets the operating parameters of the in-line
mechanisms so as to maximize the cluster utility function. The feedback controller uses a performance model
of the cluster to solve an optimization problem. The feedback controller continuously adjusts the model pa-
rameters using measurements of actual operations. In this paper we report the results obtained using an
approximate, first-principles model. We focus on SOAP-based web services and use statistical abstracts of
SOAP response times as the characterization of performance. We allow ourselves no functional impact on
the service customers or service implementation: we have a transparent management technique that does
not require changes in the client code, the server code, or the network protocol between them.

The rest of this paper is organized as follows. Section 2 discusses related work. Section 3 presents the
system architecture and prototype implementation. Performance modeling and optimization analysis are
described in Section 4. Section 5 illustrates some experimental results, showing both transient responses and
service differentiation. Section 6 presents conclusions and discusses future work.

2 Related Work

Several research groups have addressed the issue of QoS support for distributed systems [3]. In this section we
summarized the current state of the art. The first class of research study deals with session-based admission
control for overload protection of web servers. Chen et al. [4] proposed a dynamic weighted fair sharing
scheduler to control overloads in web servers. The weights are dynamically adjusted, partially based on
session transition probabilities from one stage to another, in order to avoid processing requests that belong
to sessions likely to be aborted in the future. Similarly, Carlström et al. [5] proposed using generalized
processor sharing for scheduling requests, which are classified into multiple session stages with transition
probabilities, as opposed to regarding entire sessions as belonging to different classes of service, governed by
their respective service level agreements.

Another area of research deals with performance control of web servers using classical feedback control
theory. Abdelzaher et al. [6] used classical feedback control to limit utilization of a bottleneck resource in
the presence of load unpredictability. They relied on scheduling in the service implementation to leverage the
utilization limitation to meet differentiated response-time goals. They used simple priority-based schemes
to control how service is degraded in overload and improved in under-load. In this paper we use a new
technique that gives the service provider a finer grain control on how the control subsystem should tradeoff
resource among different web services requests. Diao et al. [7] used feedback control based on a black-box
model to maintain desired levels of memory and CPU utilization. In this paper we use a first-principles
model and maximize a cluster objective function.

Web server overload control and service differentiation using OS kernel-level mechanisms, such as TCP
SYN policing, has been studied in [8]. A common tendency across these approaches is tackling the problem
at lower protocol layers, such as HTTP or TCP, and the need to modify the web server or the OS kernel in
order to incorporate the control mechanisms. Our solution on the other hand operates at the SOAP protocol
layer, which does not require changes to the server, and allows for finer granularity of content-based request
classification.

Service differentiation in cluster-based network servers has also been studied in [9] and [10]. The approach
taken here is to physically partition the server farm into clusters, each serving one of the traffic classes. This
approach is limited in its ability to accommodate a large number of service classes, relative to the number
of servers. Lack of responsiveness due to the nature of the server transfer operation from one cluster to
another is typical in such systems. On the other hand, our approach uses statistical multiplexing, which
makes fine-grained resource partitioning possible, and unused resource capacities can be instantaneously
shared with other traffic classes.

Chase et al. [11] refine the above approach. They note that there are techniques (e.g., cluster reserves
[12], and resource containers [13]) that can effectively partition server resources and quickly adjust the
proportions. Like our work, Chase et al. also solve a cluster-wide optimization problem. They add terms for
the cost (due, e.g., to power consumption) of utilizing a server, and use a more fragile solution technique.
Also, they use a black-box model rather than first-principles one.

Zhao and Karamcheti [14] propose a distributed set of queuing intermediaries with non-classical feedback
control that maximizes a global objective. Their technique does not decouple the global optimization cycle
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from the scheduling cycle.
In this paper we use the concept of utility function to encapsulate the business importance of meeting

or failing to meet performance targets for each class of service. The notion of using a utility function and
maximizing a sum [15] or a minimum [16] of utility functions for various classes of service has been used to
support service level agreements in communication services. In such analyses, the utility function is defined
in terms of bandwidth allocated (i.e. resources). In our work, we define a class utility function to express
the business value of meeting the service level objective as well as deviating from it. Further, the effect of
the amount of allocated resources on performance level is separated from the business value objectives.

3 Performance Management System Architecture and Implemen-
tation

In this section we present the system architecture and prototype implementation of a management system
for web services. This system allows service providers to offer and manage service level agreements for web
services. The service provider may offer each web service in different grades, with each grade defining a
specific set of performance objective parameters. For example, the StockUtility service could be offered in
either premium or basic grade, with each grade differentiated by performance objective and base price. A
prototypical grade will say that the service customers will pay $10 for each month in which they request less
than 100, 000 transactions and the 95th percentile of the response times is smaller than 5sec, and $5 for each
month of slower service.

Using a configuration tool the service provider will define the number and parameters of each grade.
Using a subscription interface users can register with the system and subscribe to services. At subscription
time each user will select a specific offering and associated grade.

The service provider uses the configuration tool to also create a set of traffic classes and map a <customer,
service, operation, grade> tuple into a specific traffic class (or simply class). The service provider assigns
a specific response time target to each traffic class. Our management system allocates resources to traffic
classes and assumes that each traffic class has a homogeneous service execution time.

We introduce the concept of class to separate operations with widely differing execution time character-
istics. For example the StockUtility service may support the operations getQuote() and buyShares().
The fastest execution time for getQuote() could be 10ms while the buyShares() cannot execute faster that
1sec. In such a case the service provider would map these operations into different classes with different set
of response time goals. We also use the concept of class to isolate specific contracts to handle the requests
from those customers in a specific way.

Figure 1 shows the system architecture. The main components are: a set of gateways, a global resource
manager a management console and a set of server nodes on which we deploy the target web services. We
use gateways to execute the logic that controls the request flow and we use the server nodes to execute the
web services logic. Gateway and server nodes are software components. We usually have only one gateway
per physical machine and in general we have server nodes and gateways on separate machines. The simplest
configuration is one gateway and one server node running on the same physical machine.

In this paper we assume that all server nodes are homogeneous and that every web service is deployed
on each server. We can deal with heterogeneous servers by partitioning them into disjoint pools, where all
the servers in a given pool have the same subset of web services deployed, and where the traffic classes are
also partitioned among the pools.

The servers, gateways, global resource manager, and console share monitoring and control information
via a publish/subscribe network[17]. In coping with higher loads, the system scales by having multiple
gateways. An L4 switch distributes the incoming load across the gateways.

3.1 Gateway

We use gateways to controls the amount of server resources allocated to each traffic class. By dynamically
changing the amount of resources we can control the response time experienced by each traffic class.

We denote with Ng,s the maximum number of concurrent requests that server s executes on the behalf of
gateway g. We also use wg,c to describe the minimum number of class c requests that all servers will execute
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on the behalf of gateway g. We refer to wg,c as server shares. In Section 4 we will describe how we compute
wg,c and Ng,s, while, in this section we describe how gateway g enforces the wg,c and Ng,s constraints. For
each gateway g, we use wg and Ng to denote the following:

ws =
∑

c∈C

wg,c, Ng =
∑

s∈S

Ng,s (1)

where C and S denote the set of all classes and servers respectively. Figure 2 illustrates the gateway compo-
nents. We have used Axis [18] to implement all our gateway components and we have implemented some of
the mechanisms using Axis handlers, which are generic interceptors in the stream of message processing. Axis
handlers can modify the message, and can communicate out-of-band with each other via an Axis message
context associated with each SOAP invocation (request and response) [18].
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Figure 2: Gateway components

When a new request arrives a classification handler determines the traffic class of the request. The map-
ping functions use the request meta-data (user id, subscriber id, service name, etc.). In our implementation
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the classification handler uses the user and SOAP action fields in the HTTP headers as inputs, and reads the
mappings from configuration files. We avoid parsing the incoming SOAP request to minimize the overhead.

After we classify the requests, we invoke the queue handler, which in turn contacts a queue manager.
The queue manager implements a set of logical FIFO queues one for each class. When the queue handler
invokes the queue manager the queue manager suspends the request and adds the request to the logical
queue corresponding to the request’s class.

The queue manager includes a scheduler that runs when a specific set of events occurs and selects the next
request to execute. The queue manager on gateway g tracks the number of outstanding requests dispatched
to each server makes sure that there are at most Ng requests concurrently executing on all the servers. When
the number of concurrently outstanding requests from gateway g is smaller than Ng the scheduler selects a
new requests for execution.

The scheduler uses a round robin scheme. The total length of the round robin cycle is wg and the length
of class c interval is wg,c. We use a dynamic boundary and work conserving discipline that always selects
a non-empty queue if there is at least one. The above discipline guarantees that during periods of resource
contention the server nodes will concurrently execute at least wg,c requests of class c on the behalf of gateway
g.

After the scheduler selects a request the queue manager resumes the execution of the request’s corre-
sponding queue handler. The queue manager collects statistics on arrival rates, execution rates, and queueing
time and periodically broadcasts these data on the control network.

The dispatch handler selects a server and sends the request to the server, using a protocol defined
by configuration parameter. Our implementation supports SOAP over HTTP and SOAP over JMS. The
dispatch handler distributes the requests among the available servers using a simple load balancing discipline
while enforcing the constrains that at most Ng,s requests executes on server s concurrently on the behalf of
gateway g.

When a request completes its execution the response handler reports to the queue manager the completion
of the request’s processing. The queue manager uses this information to both keep an accurate count of the
number of requests currently executing and to measure performance data such as service time.

The gateway functions may be run on dedicated machines, or on each server machine. The second
approach has the advantage that it does not require a sizing function to determine how many gateways are
needed, and the disadvantage that the server machines are subjected to load beyond that explicitly managed
by the gateways.

3.2 Global Resource Manager and Management Console

The global resource manager computes Ng,s, the maximum number of concurrent requests that each server
s executes on the behalf of each gateway g, and it computes wg,c, the minimum number of class c requests
that all servers will execute on the behalf of each gateway g.

The global resource manager runs periodically and computes the resource allocation parameters every
time interval Γi, which we define as the ith control horizon. The global resource manager computes Ng,s

and wg,c that each gateway will use during the control horizon Γi using the resource allocation parameters
computed in the control horizon Γi−1 as well request and server utilization statistics measured in during
Γi−1.

The size of the control horizon affects the ability of the global resource manager to respond to rapid
changes in the traffic load or response time. On the one hand, when Γ is small, the resource allocation
parameters are updated frequently which make the system more adaptive. On the other hand, a larger value
of Γ increases the stability of the system.

Figure 3 shows the global resource manager inputs and outputs. In addition to real-time dynamic
measurements, the global resource manager uses resource configuration information and the cluster utility
function. The cluster utility function consists of as a set of class utility functions and a combining function.
Each class utility function maps the performance for a particular traffic class into a scalar value that en-
capsulates the business importance of meeting, failing to meet or exceeding the class service level objective.
A combining function combines the class utility function into one cluster utility function. In this paper we
have implemented the combining functions as a sum of the utility functions, however, our work could be
extended to study the impact of other combining function on the structure of the solution.
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As shown in Figure 3 the global resource manager may assume the responsibility of computing the
capacity Ns of each server s. Ns represents the maximum number of web services requests that server s can
execute concurrently. The global resource manager should select Ns to be large enough to efficiently utilize
the server’s physical resources, but small enough to prevent overload and performance degradation. The
global resource manager may use server utilization data to determine the value of Ns.

The global resource manager partitions Ns among all gateways and classes. The global resource manager
use wg,c to describe the minimum number of class c requests that all servers will execute on the behalf of
gateway g. The global resource manager uses a queuing model of the system to predict the performance
that each class would experience for each given allocation wg,c. The global resource manager implements
a dynamic programming algorithm to find the wg,c that maximize the cluster utility function. After we
compute wg,c we compute Ng,s by partitioning Ns among all gateways. We describe the details on the model
and the resource allocation algorithm in in Section 4.

After the global resource manager computes a new set of wg,c and Ng,s values, it broadcasts them on
the control network. Upon receiving the new resource allocation parameters each gateway switch to the new
values of wg,c and Ng,s. We discuss the algorithm used to predict the class performance and maximize the
cluster utility function in Section 4.

The management console offers a graphical user interface to the management system. Through this
interface the service provider can view and override all the configuration parameters. We also use the
console to display the measurements and internal statistics published on the control network. Finally we can
use the console to manually override the control values computed by the global resource manager. Figure 4
shows a subset of views available from our management console.

Figure 4: Management console: configuration and control values
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4 Modeling and Optimization

In this section we describe how the global resource manager computes the resource allocation. First we give
an abstract definition of the problem solved. Then we discuss the simplified queuing model used to predict
the performance of each class for a given resource allocation. We also examine the class utility functions
detail.

4.1 The Resource Allocation Problem

The global resource manager computes the Ng,s and wg,c values to maximize the cluster utility function over
the next control period. We decouple the Ng,s and wg,c problems by solving for the wg,c first, and then
deriving the Ng,s from them.

To determine the wg,c, we use dynamic programming to find the wg,c that maximizes the cluster utility
function Ω which we defined as a combination of each class utility function Uc. In our work we have studied
two different kind of combining functions. In particular we find the set of values of wg,c that:

max
wg,c

Ω =





∑

c∈C

∑

g∈G

Uc(wg,c) (a)

min
c∈C


∑

g∈G

Uc(wg,c)


 (b)

(2)

subject to
wg,c ≥ 1,

∑

g∈G

∑

c∈C

wg,c = N (3)

where
N =

∑

s∈S

Ns (4)

and C, G and S denote the set of classes, gateways and servers respectively. The utility function Uc(wg,c)
defines the utility associated with allowing wg,c requests of class c traveling through gateway g to concurrently
execute on any of the servers. When we use the objective function in (2a) we compute the cluster utility
as the sum of each class utility function, thus we maximize the overall system utility. When we use (2b) to
compute the cluster utility, the resource manager will find the allocation vector that maximizes the smallest
utility function, which means it looks for a solution that equalizes the utility of all classes. In Section 4.2 we
discuss the structure of the utility function and in Section 4.3 we show how we compute Uc as a function of
wg,c.

As we mentioned in the previous section, we enforce for each server s, a limit Ns on the maximum
number of requests that may be concurrently active on that server. Once we have computed wg,c. the value
wg derived from (1) represents the portion of server resources that have been allocated to gateway g. To
computes Ng,s for each gateway g we divide each server s available concurrency Ns among the gateways
in proportion to wg. In particular for each server s we select the point [N1,s, N2,s, . . . , NG,s] (G being the
number of gateways) with integer-valued coordinates constrained by

∑

g∈G

Ng,s = Ns (5)

and near the point
[
N̂1,s, N̂2,s, . . . , N̂G,s

]
defined by

N̂g,s =
wg

N
Ns (6)

where N is the total number of resources across all servers as defined in (4).
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Figure 5: Utility function for class c

4.2 The Structure of Class Utility Functions

We use the a utility function Uc to encapsulate the business importance of meeting or failing to meet class c
performance. The utility function maps the performance actually experienced by web services requests into
a real number Uc. Since in (2) we use a combination of utility functions to construct the cluster objective
function, by changing the size and shape of the utility function we can influence the amount of resources
that we will allocate to each class. There is no single way to construct a utility function. In this paper we
study a family of functions and we use experiments to determine the impact of different choices of utility
function. When selecting the utility functions we have used the following guidelines:

• the value of Uc should be larger when the performance experienced by c requests is better than the
target and smaller when the performance is worse;

• the value of Uc should increase as the performance experienced by c increases and decrease otherwise;

• the size and shape of the utility function should be controlled by one or two parameters that can be
adjusted by the platform provider to reflect the importance of one class of traffic over another;

In this paper, we express each class performance objective as an upper bound on the average response
time and therefore Uc will depend on the negotiated upper bound as well as the actual response time. We
denote with tc the average response time experienced by class c requests and with τc the negotiated upper
bound on the average response time. We then use the following family of functions to describe class c utility:

Uc(τc, tc) =
{

φc (τc − tc)
αc if tc ≤ τc

φc (tc − τc)
βc if tc > τc

(7)

The function in (7) and shown in Figure 5 compares average response time tc to target response time τc

for class c. When tc ≤ τc the utility grows as the response time distance from the target to the power of αc.
When tc > τc the utility decays as the response time distance from the target to the power of βc. We also
use φc as a scaling factor.

For the plot in Figure 5 we have used τc = 6, φc = 1, αc = [1, 1.5, 2] and βc = [1, 1.5, 2]. By increasing
αc we control the business importance of exceeding the target for class c, while by increasing βc we can
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Figure 6: Modeling the response time behavior for class c requests handled by gateway g

control how fast the business utility degrades when class c experience a delay bigger than the objective. By
chancing φc, αc and βc we can influence how resource are allocated to each class of traffic and in turn the
class performance. In the next section we describe how we estimate the expected response time tc for class
c given a resource allocation wg,c. where αc is a factor that we use to weight utility functions. In the next
section we describe how we estimate the expected response time tc for class c given a scheduling weight of
wg,c.

4.3 System Modeling

To compute the class c utility Uc given an allocation of wg,c resources, we need to predict tg,c, i.e., the
average response time of class c requests handled by gateway g given a proposed allocation wg,c resources.
To predict tg,c we use the observed arrival rate, response time, and the allocation values, from the previous
control cycle denoted by λ̃g,c, t̃g,c, and w̃g,c.

We use an M/M/1 queue to model the response time behavior of requests of class c traveling through
gateway g, i.e., we assume that λ̃g,c was evenly divided among the server threads that have been concurrently
executing all requests of class c traveling through gateway g during the previous control cycle. Using this
assumption we compute the equivalent service rate of the M/M/1 queue that has been handling the fraction
of requests served by one of the wg,c threads. The equivalent service rate is given by

µg,c =
1

t̃g,c

+
λ̃g,c

w̃g,c
(8)

Figure 6 exemplifies the above modeling technique. We now use µ̃g,c to predict the response time of all
class c requests traveling through gateway g in the next control cycle under an allocation of wg,c threads, as
follows

tg,c (wg,c) =
1

1
t̃g,c

+ λ̃g,c

(
1

w̃g,c
− 1

wg,c

) (9)

In the previous calculation we have assumed that the request load in the new cycle is equal to the previous
one.

Using (7) and (9) we can compute the utility function Uc(τc, tc) as a function of the expected allocation
wg,c. Using dynamic programming we can then compute the set of wg,c that will maximize the cluster utility
function Ω in (2) under the constraints in (3).

The resource allocation methodology described in this section will achieve an optimal resource allocation
only under the assumptions mentioned above. For all other cases our methodology achieves a sub-optimal
solution. Given the nature of our system an optimal allocation can be determined only by simulation and
extensive search. More work is required to determine the difference between our approach and an optimal
allocation of resources. In the next section we report the results of several experiments intended to study
the effectiveness of this approach.
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5 Experimental Results

In this section we describe a set of experiments that we have conducted to study the behavior of our system
under different traffic load conditions.

We used two Intel-based machines for our experiments. We used the first machine to run a Web Services
load generator. For the load generator we used a Java-based application that can simulates large numbers
of Web Services clients each generating requests according to a defined stochastic models. We used the
second Intel machine to run both the gateway and the Web Services server. We used Axis [18] running on
Tomcat [19] to implement the server and gateway containers.

For the experiments described in this paper we used two different classes of clients, referred to as Premium
and Basic. Both classes of clients generate requests using a closed-loop model. In such a model, a number of
clients of each class generate requests independently. Each client generates one request and waits until the
server responds. Then, the client goes to sleep, modeling the think time of an application or user. The sleep
times are i.i.d. random variables with negative exponential distribution with a mean of 1sec. After waking
up, the client generates a new request. In our experiments we varied the number of clients of each class in
the range of 5 to 20 clients as shown in Figure 7.
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Figure 7: Traffic load combinations used in our experiments

On the server we deployed a synthetic Web Service. We chose a synthetic service to better control our
experiments. We implemented the synthetic service using a Java class that alternates between CPU-bound
processing and sleeping. We used the sleeping intervals to emulate periods in which a process waits response
from a back-end server or database. The service times are i.i.d. random variables with negative exponential
distribution and average of 1sec.

5.1 Effect of Degree of Concurrency on Throughput

We used the first set of experiments to determine the optimal degree of concurrency for our set up.
In order to determine the optimal value of Ns for our server, we measured the system throughput for

various settings of Ns. In these experiments, the load consisted of only one traffic class, and we always used a
large enough number of clients to make sure that at any given time Ns requests were executing concurrently.

We started with a value of Ns = 1 for the first experiment. We run our the experiment for several minutes
and we measured the average throughput of the system, i.e., the number of request that complete in a unit
of time. We repeated the same experiment several times using larger values of Ns each time. Figure 8 shows
the results of our experiments. When Ns is small the CPU is under utilized and the throughput increases
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by increasing Ns. When Ns = 10 the CPU reaches 100% utilization and the throughput remains constant
even if we increase Ns further. When we used values of Ns much larger than 10 the throughput decreased
because of context switching overheads.

Based on these results we selected the value of Ns = 10 as the concurrency setting in all other experiments
describes in this section. In general the optimal value of Ns will change dynamically and will depend on the
type of services being invoked, their parameters and the service mix.

For the experiments reported in this paper we did not use an automatic mechanism to compute the
optimal value of Ns. However such a mechanism is a key component for a production system and will be
the subject of future work.

Number of requests executing concurrently

T
hr
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t (
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c)

Figure 8: Throughput vs requested maximum number of concurrent executions

5.2 Service Level Differentiation and System Responsiveness

In this section we describe the results of a set of experiments aimed at studying the dynamic behavior of
our system and its ability to react to changes in the traffic load and mix. In our experiments we configured
our sensors to report traffic load and performance statistics every 5sec. We also configured these sensors to
average traffic and performance statistics over a period of 30sec. We set the length of the global resource
manager control cycle to 5sec, i.e., the global resource manager recomputes a new set of server shares wg,c

every time the sensors publish a new value of traffic load and performance statistics.
We used the utility function in (7) with φc = αc = βc = 1 for both the Premium and Basic class. For

the Premium class we set a target average response time of Premium requests τP = 2sec and we set the
average response time for Basic to τB = 3sec. We used the cluster utility function in (2)a, thus attempting
to equalize the utilities of both classes.

We started from an idle server, and changed the load to the system in four phases, denoted by ΦA,
ΦB , ΦC , and ΦD, respectively. During phase ΦA, we set the number of clients to 5 for each of the classes,
which corresponds to a light load situation. We denote this case as (LP , LB)ΦA

= (5, 5), where LP denotes
the number of premium clients and LB denotes the number of basic clients. The other three phases are as
follows: (LP , LB)ΦB = (20, 20), (LP , LB)ΦC = (5, 20), and (LP , LB)ΦD = (20, 5). We use ΦB to simulate
a heavy load situation and both ΦC and ΦD to simulate moderate load conditions, with a different mix of
Premium and Basic clients. Our experiment study starts with light load, then moves to heavy load, followed
by moderate load with more Basic then more Premium respectively.

During the experiment, the global manager adjusted the values of wg,c for each class to respond to the
changes in the traffic load and mix as shown in Figure 9. Since we use a work conserving scheduling discipline,
during the light load phase ΦA, the unused allocated capacity of one traffic is available to other traffic class.
Therefore, the response time for both classes during phase ΦA is not sensitive to the value of the allocation
vector. During the heavy load phase ΦB , the allocation remained at (wg,P , wg,B) = (7, 3) to ensure good
response for the Premium class. During phase ΦC , the allocation changed to (wg,P , wg,B) = (6, 4), giving
more capacity to the Premium traffic which is about three times as large as the Premium. During phase
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Figure 9: Weights allocated by the GRM

ΦD, the global manager changed the allocation to (wg,P , wg,B) = (8, 2) because of the higher load from the
Premium clients.

Figure 10 show the average response time. In Figure 10 we marked the target values of τP = 2sec and
τB = 3sec for the Premium and Basic classes. Due to the light traffic during phase ΦA, the queueing time
is negligible and the response time is simply due the service time which has an average of 1sec. During
the heavy-loaded phase ΦB , the allocation (wg,P , wg,B) = (7, 3) results in a average response time for the
Premium class that is slightly above the target value, whereas the average response time for the Basic clients
is about twice as large as the Premium one. Since we use the same utility function for both Premium and
Basic traffic and we use the cluster objective function in (2a) the heavy load impacted both traffic classes in
a way that is proportional to their target values.

During phase ΦC , the response time decreased because the load decreased, but we still observe a difference
in the response time for the different class of clients. The switch between phase ΦC and phase ΦD caused
the Premium traffic to initially experience a increase in the response time until the global resource manager
detected the new load conditions and corrected by adjusting the allocation vector (wg,P , wg,B). Similarly,
the Basic clients experience a better response time at the edge of the transition between phases ΦC and ΦD.
The response time for the Basic clients increases after the global resource manager changes the allocation
vector.
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Figure 10: Average response time

Figure 11 shows the average queue length. During phase ΦA there is no queueing. During the other three
phases the number Ns of concurrent Web Services requests executed by the server is almost always equal to
the maximum of 10. Therefore we have requests waiting in the queue manager buffers.

In the heavy load phase ΦB (LP , LB)ΦB = (20, 20) the allocation vector is (wg,P , wg,B) = w(6, 4), and
since the average client think time equals the average request service time, the average number of clients in
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the think state to be (6, 4). Thus, the remaining number of requests (8, 12) must be queued or somewhere in
transition in the network. During phase ΦC the load was reduced to (LP , LB)ΦC

= (5, 20) and the resulting
allocation was (wg,P , wg,B) = (4, 6). The queue length for Premium was negligible, and most of the requests
in the queue manager buffers were from the Basic clients. During phase ΦD the traffic load was switched
to (LP , LB)ΦD = (20, 5) and the resulting allocation was (wg,P , wg,B) = (8, 2), yielding an average queue
length for Premium that is about twice as much as for Basic. The performance during phase ΦD is not
ideal because the Premium traffic has a lower target response time than Basic and we would desire a smaller
queue.

The performance in this phase is due to the small number of maximum concurrent requests allowed to
executed on the server. Since Ns = 10 the global manager can allocate server shares in coarse increments of
10% only. A decrease in the Basic allocation from 2 to 1 would have resulted in extremely poor performance
for the requests associated with the Basic clients.

We could have achieved a better performance if we could have used a fractional allocations. An allocation
vector of (wg,P , wg,B) = (8.3, 1.7) would have would have increased the performance of the Premium requests
without exploding the response time of the Basic clients. Based on this results we are improving our system
to support fractional weights.
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Figure 11: Average queue length

The throughput curves are shown in Figure 12. During phase ΦA the total throughput may be evaluated
as the ratio of the total number of clients, 10, and the total round trip time (think time plus service time),
2sec, yielding 5req/sec, or about 2.5req/sec for each class. During phases ΦB , ΦC , and ΦD the server was
busy most of the time executing the maximum number of concurrent requests Ns = 10 and therefore the
total throughput was limited to 10req/sec (obtained by dividing 10 threads by the service time of 1sec).
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Figure 12: Throughput

Figure 13 illustrates the utility values. For the experiments reported in this section we used the optimiza-
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tion criterion that maximize the minimum of the utility values of Premium and Basic traffic. In other words,
the optimization attempts to yield equal utility values for both traffic classes. A near perfect equalization
is achieved during phases ΦA, ΦB , and ΦC . As for phase ΦD, there is a difference between the two utility
values. This is due to the use of an integer allocation vector, rather than a fractional one.
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Figure 13: Utility functions

5.3 Optimality of Resource Allocation

In this section we compare the behavior of our system to two systems that use a FCFS (First-Come-First-
Served) and SP (Static Priority) scheduling disciplines, respectively. In the FCFS system, requests are treated
similarly, independent of their class. All requests queue up in a single FCFS queue and wait until one the
server becomes available. In this section we still limited the maximum number of requests concurrently
executing on the server to Ns = 10 to maximize the server performance and to study the impact of the
allocation discipline in isolation.

When a request completes a corresponding response is generated and a server thread becomes available.
In the SP system, we implemented two queues, one for each class of requests. When a thread becomes
available, the request in the head of the highest priority queue uses it until the request completes. In both
FCFS and SP systems, the target response time values are not used to decide which request will be served.

We consider the experimental setup described above, where there are two classes of requests: Premium
and Basic. Instead of a single traffic point per phase, we consider a two-dimensional workload traffic space,
given by the number of Premium clients and Basic clients, respectively. We ran experiments using 5, 10,
15, and 20 clients of each class, thus resulting in a 16-point space as depicted in Fig 7. At each point we
measure the resulting cluster utility function, which in our case is the minimum of the utilities of Premium
and Basic classes. We use the same traffic, service time and target time values as in the previous section.

Figure 14 illustrates the utility regions, as a surface plot, obtained in the uncontrolled case of FCFS. We
note that the utility function decreases as the number of clients increases. The contour lines are diagonal in
a way that exhibits the lack of differentiation between Premium and Basic requests. For example, achieving
a non-negative utility function value (i.e. both classes meet or exceed their targets) puts a limit of about 29
as the total number of clients.

The cluster utility with static priority (SP) scheduling is shown in Figure 15. First, we note that the
contour lines are more slanted due to the preferential treatment of Premium requests. For example a zero
utility value is achieved with (LP , LB)Φ = (20, 5) clients or (LP , LB)Φ = (11, 20) clients. Achieving the
target for Basic requests requires less number of Basic clients in the former and less number of Premium
clients in the latter. Second, we note that the utility region (for non-negative utility values) is roughly
smaller than the corresponding region in the FCFS system. The total number of clients on the zero contour
line varies from 25 to about 31 clients. For smaller values of the utility function, the utility regions become
remarkably smaller than the corresponding regions in the FCFS system.

Figure 16 shows the utility regions obtained with our optimized controlled system. The resulting utility
regions are larger than both the FCFS and the SP systems. This means that we can accommodate more
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workload using the same resources while achieving the target response times. The zero contour line passes
by points where the total number of clients is somewhere between about 32 and 35 clients. We achieve this
result because the global resource manager allocates server resources to optimize the cluster utility function.

6 Conclusions and Future Work

We have presented an architecture and a prototype implementation of a performance management system
for cluster-based web services. The management system is transparent and allocates server resources dy-
namically so to maximize the expected value of a given cluster utility function. We use a cluster utility to
encapsulate business value, in the face of service level agreements and fluctuating offered load. The archi-
tecture features gateways that implement local resource allocation mechanisms. A global resource manager
solves an optimization problem and tunes the parameters of the gateway’s mechanisms. In this study we
have used a simple queuing model to predict the response time of request for different resource allocation
values. Feedback controllers based on first-principles model of the system converge quickly and with fewer
oscillations than controllers based on a black-box model.

Our work can be extended in several directions. Our platform could be enhanced with additional manage-
ment functionality such as policing, admission control and fault management. We will need to develop more
sophisticated models of web services and web services traffic loads to study and predict platform performance
under different service and traffic conditions. The effect of control parameters, such as control cycle, on the
performance of the feedback controller needs further study. We could refine our global resource manager by
adding black box and hybrid control techniques. Finally, we will need to study the impact of using other
scheduling algorithms on the end-to-end resource management problem, especially in the presence of multiple
gateways.
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