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Abstract

Quantitative performance diagnosis (QPD) provides explanations that quantify the impact of problem

causes. An example of such an explanation is Increased web server traffic accounts for 90% of the increase

in LAN utilization, which in turn accounts for 20% of the increase in web response times. This paper

describes GAP, a general approach to quantitative performance diagnosis. GAP has two parts: (1)

an algorithm for computing quantitative performance diagnoses and (2) a framework for constructing

diagnostic techniques that provides the basis for quantifications produced by the algorithm. The GAP

algorithm makes use of a measurement navigation graph (MNG), a directed acyclic graph whose nodes are

measurement variables and whose arcs have weights that quantify the effect of child variables (e.g., LAN

utilization) on parent variables (e.g., response time). Various properties of the algorithm are established,

especially that its quantification of explanations can be interpreted as fractional contributions to the

performance problem. Arc weights are computed by diagnostic techniques. A framework for developing

diagnostic techniques is described that consists of (a) the choice of statistic (e.g., mean, variance) to

aggregate problem values and (b) the estimator of the statistic. The framework is applied to existing

diagnostic techniques to assess their effectiveness and is used to construct a new diagnostic technique for

a performance problems in a production computing systems. It is also used to show that for uniform

magnitude performance problems (e.g., a step), the standard deviation is preferred to the mean if the

problem data have a coefficient of variation no larger than
√

(1 − f)/f , where f is the fraction of the

data containing the performance problem.
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1 Introduction

The advent of distributed systems has produced numerous productivity and price benefits. However, dis-

tributed systems have also contributed to the soaring cost of operations and management. According to

industry analysts, these costs account for 60% to 80% of the cost of owning network-connected computers

(e.g., [12]).

A critical element of operations and management is addressing performance problems, such as long re-

sponse times in eCommerce systems and low throughputs for nightly database updates. Such considerations

require mechanisms for detecting, diagnosing, and resolving performance problems. Detection involves using

one or more measurement variables to sense when a problem occurs, such as using on-line change-point detec-

tion algorithms to sense changes in web response times. Diagnosis isolates problems to specific components,

such as attributing large web response times to excessive LAN utilizations. Resolution involves selecting and

implementing actions that eliminate the problem, such as increasing LAN capacity or reducing LAN traffic.

This paper addresses quantitative performance diagnosis (QPD). Quantitative performance diag-

nosis consists of a set of explanations and a quantification of their importance. Ideally, this quantification

takes the form of fractional contributions to the performance problem, such as:

The 30% increase in web server traffic accounts for 90% of the increase in LAN utilization, which in

turn accounts for 20% of the increase in web response times.

Two benefits accrue from providing quantitative diagnoses. First, since many factors affect performance,

analysts and administrators can focus on those that contribute most to the performance problem. Second,

quantitative information is often needed to specify the actions for resolving performance problems. Examples

of such actions are: (1) by how much must the LAN capacity be increased and (2) by how much LAN traffic

must be reduced.

Numerous applications have been developed for diagnosing performance problems in computer and com-

munications systems (e.g., see [8] for an overview). The most common approach employs hand-crafted if-then

rules (e.g., [3], [9], [11], [13], [16]) that produce qualitative diagnoses, such as Large response times are due

to excessive LAN utilization. This approach results in “brittle” systems that fare poorly if configurations or
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device characteristics change since this knowledge is typically embedded in the rules. Brittleness is reduced

by externalizing knowledge of the system being diagnosed. In fault diagnosis, this is achieved by taking

as input external models of the system, such as failure modes (e.g., [24]), qualitative models of system be-

havior (e.g., [10], [21]) and fault trees (e.g., [17], [29]). More recently, techniques such has hidden markov

models have been used to address uncertainties in diagnosis [31]. In performance diagnosis, generality is

typically achieved by using a directed graph to express dependencies between measurement variables (e.g.,

[5], [23], [4]). Herein, this is referred to this as a measurement navigation graph (MNG). Unfortu-

nately, a MNG by itself lacks the information necessary for QPD. Thus, some have approached QPD by using

custom-tailored analytic models (e.g., [7], [25]), but this creates the same brittleness as with hand-crafted

rules. Another approach is to externalize quantitative relationships between measurement variables. Several

approaches have been suggested (e.g., [13], [14], [19]), but none have proposed a systematic algorithm. Fur-

ther, the approaches suggested appear to assume that the MNG is a tree, a structure that precludes handling

multi-parent dependencies that arise when there are shared resources.

Another related area is diagnosis of electrical circuits. Examples here include: a combination of model-

based and case-based approaches to diagnosing electrical circuits [28]; statistical approaches to determining

the cause of path delays in electrical circuits [26]; and minimizing the number of measurements made to

diagnose an analog circuit [1]. All of these approaches provide quanitifications. However, the focus is much

different than in this paper. The first two assume that either the results of past diagnoses are available or

repeated measurements can be made in a controlled manner. Neither assumption applies in the situations

considered in this paper. The third focuses on minimizing the number of tests required, not addressing the

post-mortem analysis of a problem that occurred. Such post-mortem analyses are of interest in domains

other than computing systems. Examples include asset management problems in power plants [27], corporate

financial performance [19], and resource utilizations in hospitals [8].

This paper describes GAP, a general approach to quantitative performance diagnosis. The paper

describes the GAP algorithm for quantitative performance diagnosis and applies it to a performance problem

in a production computing system. Various properties of the algorithm are established, especially that its

quantification of explanations can be interpreted as fractional contributions to the performance problem.

GAP operates by using diagnostic techniques that assign weights to arcs in the MNG so as to determine

the best explanations of performance problems. The paper describes a framework for constructing diagnostic
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techniques based on the statistic used to aggregate data and the estimator of this statistic. Among other

things, an analysis is presented of the choice of statistic between using the mean and the standard deviation in

the specification of a diagnostic technique. Specifically, it is shown that for uniform magnitude performance

problems (e.g., a step), the standard deviation is preferred to the mean if the problem data have a coefficient

of variation no larger than
√

(1− f)/f , where f is the fraction of the data containing the performance

problem.

The remainder of this paper is organized as follows. Section 2 discusses the GAP algorithm. Section 3

describes the GAP framework for constructing diagnostic techniques. Section 4 discusses and extends the

results presented. Conclusions are presented in Section 5.

2 Algorithm for Quantitative Performance Diagnosis

This section presents the GAP algorithm for quantitative performance diagnosis. A running example is

introduced to aid in this presentation and facilitate discussion in the remainder of the paper. The GAP

algorithm is described in detail, and it is applied to the running example.

The running example illustrates the nature of performance problems and their diagnosis. Considered is a

production computer installation at a large telecommunications company that uses a mainframe computer to

provide interactive time sharing to several hundred engineers, scientists, and secretaries. Quality of service

is characterized by average response time. Fig. 1 plots this metric versus time in thirty second intervals for a

day during which several performance problems occurred. From 8:00 AM through 10:00 AM, there are large

response times approximately every 10 minutes as a result of a poorly designed, CPU-intensive application.

From approximately 10:45 through 11:30 AM, there is an abrupt increase in response time due to a software

error in the paging subsystem. From 2:30 through 4:00 PM, there is a gradual increase in response time due

to a memory leak.

Fig. 2 displays a queueing diagram for the running example. In this diagram, end-users initiate requests

(e.g., by pressing the Enter key), which result in requests to the CPU subsystem. Following this, there may

be requests for the paging and/or user IO subsystems, which in turn may be followed by other requests for

the CPU subsystem. In the figure, there are annotations that indicate measurement variables for response
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Figure 1: Response Times for Performance Problems in a Production Computer System

times, service times, and request rates at each queue. Response time variables begin with RT , such as

RTTOT (with units of time). Service time variables have the prefix ST (with units of time), and transaction

rate variables start with TR (with units of customers per time). Further, let nCPU , nIO, and nPAGE

denote the number of subsystem visits per user request (a dimensionless quantity). The quantity niRTi (for

i ∈ {CPU, IO, PAGE}) is the sojourn time (with units of time) for subsystem i, which is denoted by using

the prefix SJ (e.g., SJCPU). So,

RTTOT = (nCPU )(RTCPU) + (nIO)(RTIO) + (nPAGE)(RTPAGE) +RTOTHER
= SJCPU + SJIO + SJPAGE +RTOTHER,

(1)

where RTOTHER is included to handle time not otherwise accounted for.

It turns out that service times for user IO and paging are actually response times for another queueing

network, the IO subsystem. This network is depicted in Fig. 3. The forward flow in this figure is from
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Figure 2: Queueing Diagram for System in Running Example

channels (which control interactions between memory and IO devices) to control units (which handle device

selection) to the disks. There is also a backward flow that reverses the foregoing. As in Fig. 2, there are

annotations for variable names that use the RT , ST , and TR prefixes.

The GAP algorithm operates on ameasurement navigation graph (MNG), a directed acyclic graph

in which nodes are measurement variables and arcs reflect functional relationships between parent and child

variables. Fig. 4 displays a MNG for the system in the running example. Such diagrams are constructed

from equations such as Eq. (1) and queueing diagrams such as Fig. 2 and Fig. 3. For example, in Eq. (1),

RTTOT appears on the left-hand side and SJCPU , SJIO, SJPAGE, RTOTHER are on the right-hand

side. So, the MNG has arcs from RTTOT to SJCPU , SJIO, SJPAGE, and RTOTHER. From the

queueing diagram in Fig. 2, time spent in the CPU subsystem is determined by STCPU (service times at

the CPU) and TRCPU (arrival rates at the CPU). Thus, the MNG has arcs from SJCPU to STCPU and
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Figure 3: Queueing Diagram for I/O Subsystem in Running Example

from SJCPU to TRCPU . The remaining nodes and arcs in the MNG are obtained in a similar manner.

Note that Fig. 4 is not a tree since STIO has two parents. This is a consequence of the I/O subsystem

being shared between the paging and user input/output subsystems. As a result, the latter two subsystems

have STIO as their service times STIO, which is a response time in Fig. 3.

The foregoing suggests that it may be common to have MNGs that are not trees as a result of shared

resources in the system being analyzed. For example, consider an eCommerce system. It is common for

multiple clients to share a server process (e.g., for database access). Further, server processes often share

operating system facilities, such as database access and network communication.

Constructing a MNG requires knowledge of the system being diagnosed. In some cases, this knowledge

is already available in configuration files and other sources. Indeed, if these files are properly structured, it
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Figure 4: Measurement Navigation Graph (MNG) for Running Example. The arc weights indicate the

fractional contribution of child variables to problems detected in the parent variable.

may be possible to automate MNG construction [6]. For the most part, however, MNG construction requires

the involvement of an expert analyst. However, once an MNG is constructed, it can be used repeatedly until

the system or the measurement sources change.

To describe the details of the GAP algorithm for QPD, some notation is required. Let xi denote a

measurement variable, where 0 ≤ i ≤ N . x0 is the variable from which diagnosis begins, which is referred

to as the detection variable. A MNG is denoted by G = (V,A). V is a set of measurement variables

that are vertices in G. A is a set of arcs between measurement variables. VL ⊆ V is the set of leaves in G.

The children of xi are specified by chld(xi) = {xj | (xi, xj) ∈ A}. If xi is a parent variable, then there is

a (possibly unknown) function gi such that xi(t) = gi(xi1(t), · · · , xNi
(t)), where xk(t) is the value of xk at

time t. (Note that if there are dynamics in the function, then lags can be incorporated by having additional
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variables.) A path from xi to xj is defined recursively as:

Pi,j = {(xi, xk)}
⋃

Pk,j ,

where: (xi, xk) ∈ A, and Pk,j is a path from xk to xj (or ∅ if k = j). With some abuse of notation, xk ∈ P

indicates that P traverses xk. Pi,j is the set of all paths from xi to xj . The descendents of xi are those

nodes that can be reached from xi. That is,

dcnd(xi) = {xj | Pi,j �= ∅}.

A second kind of input to the GAP algorithm are diagnostic techniques. Diagnostic techniques quan-

tify the contribution of child variables to performance problems manifested in their parents. For example,

consider a diagnostic technique that quantifies the effect on RTTOT due to performance problems manifested

in SJCPU , SJIO, SJPAGE, and/or RTOTHER. Let x0, · · · , x4 correspond to these five variables. Then,

one diagnostic technique is to compute arc weights as xi/x0, 1 ≤ i ≤ 4. Section 4 provides a framework for

constructing diagnostic techniques, and evaluates existing approaches.

Arc weights should indicate the fractional contribution of child variables to performance problems in

the parent. Hence, it is desirable to have normalized arc weights. By normalized is meant that: (a)

0 ≤ wi,j ≤ 1 and (b)
∑

j wi,j = 1. For example, in Fig. 4, all arc weights are normalized.

There are two kinds of outputs from the GAP algorithm. The first are explanations, paths in the

MNG that explain part of the performance problem. For example, in Fig. 4, one explanation is the path

RTTOT → SJCPU → TRCPU . Second, associated with each explanation is a quantification of its

importance, or explanatory power. A larger explanatory power indicates an explanation that accounts

for more of the performance problem in the detection variable (x0).

Explanatory power is computed as the product of the arc weights in the path for the explanation. Let

uP be the explanatory power for path P . Then,

uP =
∏

(xi,xj)∈P
wi,j .

In Fig. 4, the explanatory power of the path RTTOT → SJCPU → TRCPU is .06.
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1. PU = ∅; P = ∅ /* Initializations */

2. Do for xj ∈ chld(x0) in G /* Form initial paths */

(a) P = {(x0, xj)} and compute w0,j

(b) uP = w0,j

(c) If uP ≥ THRpath, then P = P ⋃{P}

3. Do until P = ∅ /* Extend the paths */

(a) Select P ∈ P and remove it.

(b) xi = last node in P

(c) If chld(xi) = ∅, then PU = PU ⋃{(P, uP )}

(d) For xj ∈ chld(xi)

i. P ′ = P
⋃{(xi, xj)} and compute wi,j

ii. uP ′ = (uP )(wi,j)

iii. If uP ′ ≥ THRpath, then P = P ⋃{P ′}

(e) If no path was added to P in Step 3(d), then PU = PU ⋃{(P, uP )}

4. Return PU

Figure 5: Steps in the GAP Algorithm for Quantitative Performance Diagnosis
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Path uP

RTTOT → SJCPU → STCPU → STCPU 1 .22
RTTOT → SJCPU → TRCPU .06
RTTOT → SJIO → STIO → SJCHN .05
RTTOT → SJIO → STIO → SJDISK → SJDISK 1 .05
RTTOT → SJIO → STIO → SJDISK → SJDISK M → STDISK M .07
RTTOT → SJPAGE → STIO → SJCHN .07
RTTOT → SJPAGE → STIO → SJDISK → SJDISK 1 → STDISK 1 .06
RTTOT → SJPAGE → STIO → SJDISK → SJDISK M → STDISK M .09
RTTOT → SJPAGE → TRPAGE → TRPAGE 1 .23
Total explained .91

Figure 6: Example of Output From Diagnosis Algorithm

Fig. 5 displays the steps in GAP algorithm. The algorithm operates by extending paths from the

detection variable. A path is extended until either: (a) its explanatory power is too small or (b) a leaf node

is reached. Step 1 of the algorithm initializes PU . Step 2 constructs an initial set of paths to be processed.

These paths are placed into the set P. Step 3 processes the paths in P. In step 3(a), one path is selected and

removed; this path is denoted by P . If P terminates in a leaf, it is added to PU in Step 3(c). (With some

abuse of notation, this is indicated by P ∈ PU .) Otherwise, all one-node extensions to P are considered. If

none of these extensions has a sufficiently large explanatory power, then P is added to PU . Otherwise, the

new paths are added to P. Step 3 continues until P = ∅. In Step 4, PU is returned.

Now consider the operation of the GAP algorithm on the running example. Let Fig. 4 be the MNG

annotated with the arc weights produced by one or more diagnostic techniques. Further, let x0 = RTTOT

and THRpath = .05. The heavy lines in Fig. 4 indicate the arcs traversed. Note that no arc is traversed from

TRCPU to its children since the resulting path from RTTOT would have an explanatory power less than

.05. Fig. 6 contains the paths and their explanatory powers that are produced by the GAP algorithm (i.e.,

PU in Fig. 5). Note that it may also be desirable to report explanatory power by measurement variable.

This is computed by summing for each measurement variable the explanatory power of all paths reported

by the QPD algorithm that terminate with that variable.

Observe that the results displayed in Fig. 5 make it easy to generate explanations of performance problems

in terms of the detection variable. For example, consider the path RTTOT → SJCPU → STCPU →
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STCPU 1. Given this path and its uP , it is relatively easy for a decision support tool to generate text that

explains how STCPU 1 contributes to increased response times. For example,

User 1 accounts for 22% of the increase in response time. The reason is as follows:

1. User 1 accounts for 90% of the increase in CPU service time.

2. CPU service time accounts for 80% of the increased time in the CPU subsystem.

3. Time in the CPU subsystem accounts for 30% of the increase in response time.

To summarize, the GAP algorithm provides a systematic approach to quantitative performance diagnosis.

In particular, the algorithm applies to very general MNGs (e.g., directed acyclic graphs, not just trees), and

quantifies explanations in a way that can be interpreted as fractional contributions to the problems present.

3 Diagnostic Techniques

Diagnostic techniques quantify the effect on a parent variable of performance problems in its children. This

section describes the GAP framework for constructing diagnostic techniques and analyzes some specific

techniques.

To motivate the following discussion, consider RTTOT = SJCPU + SJIO + SJPAGE +RTOTHER

in the running example. Suppose that initially RTTOT is 1.06 seconds. Subsequently, an administrative

task begins execution and RTTOT grows to 1.52 seconds. Diagnostic techniques provide a way to compute

wi,j , the weight of the arc in the MNG from xi to xj . In the context of this example, the arc weights should

be interpreted as the fraction of the performance problem evidenced in RTTOT that can be attributed to

its children SJCPU , SJIO, SJPAGE, and RTOTHER. That is, w0,1 is the fraction of the problem that

can be attributed to SJCPU , and so on.

Several definitions are introduced to facilitate the following discussion. The term target data refers

to measurements collected when a performance problem may be present. There are M observations of

each variable in the target data, and xi(t) denotes the value of xi at time t. For example, in Fig. 1 the

level shift during 10:45-11:30 is a performance problem and hence a set of target data. There may also be
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reference data that are collected when no performance problem is present. Let xri (t) be the value of the

t-th observation of xi in the reference data, where 1 ≤ t ≤ Mr. In the running example, the reference data

are the intervals between 1:00 and 2:00.

How do performance problems influence a measurement variable? To address this question, note that

target data can be separated into two parts. The first is the base value, what the target value of the

measurement variable would have been if there were no performance problem. The second is the problem

value, the perturbation of the variable in the target data as a result of the performance problem. Let yk(t)

denote the base value of the k-th measurement variable, and let zk(t) be the problem value of xk. Thus, by

definition

xk(t) = yk(t) + zk(t). (2)

In practice, it is rare to have measurements of either yk(t) or zk(t) and thus at least one of these must be

estimated.

Typically, analysis of large data sets is done by first aggregating the data. The choice of the statistic

that aggregates xk(1), · · · , xk(M) is denoted by statxk
. Examples of such statistics are the mean, variance,

standard deviation, and distribution quantiles.

The approach herein taken to quantify the parent-child effects of performance problems is to estimate

statistics of problem values based on observations contained in the target and reference data. Let statzk

denote a statistic of zk. (It is assumed that only finite valued statistics are used.) A diagnostic technique

can be constructed by specifying the following:

1. a statistic (e.g., mean, variance) that aggregates problem values

2. the estimator of this statistic

Actually, for the above two considerations to be sufficient to specify a diagnostic technique, something

else must be known—gi, the functional relationship between the parent xi and its children. While in some

cases this is known (e.g., the relationship between RTTOT and its children as well as between TRIO and

its children), in many cases it is not. The most widely used approach to handling such situations in practice

is to approximate gi by a linear function. Specifically, suppose that xi has children x1, · · · , xn, and so
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xi = gi(x1, · · · , xn). The linearity assumption implies that

gi(x1, · · · , xn) =
n∑

j=1

(a′i,j)xj , (3)

for constants a′i,j . Such a linear approximation can work well even for non-linear relationships. For example,

at low utilizations, sojourn times are a linear function of service times with a′i,j ≈ 1/(1− ρ) (where ρ is the

utilization of the server in the queueing system).

The linearity assumption deserves more discussion since queueing systems are highly non-linear. First,

note that it is not required that linearity always hold. Rather, it is only required that linearity is a reasonable

approximation for the values in the reference and target data. Further, smooth curves (such as response

time curves) can be approximated by linear functions. Even so, it may be that the linearity assumption is

unreasonable. This can be addressed in several ways. If the functional relationship between parent and child

variables (i.e., gi) is known, then a Taylor series approximation can be used as in [19]. If gi’s functional form

is known but it contains unknown constants (e.g., visit rates), it is often possible to estimate these constants

using least-squares regression. This is useful, for example, in transaction processing applications where

routing between data servers is a function of the transaction being executed rather than the data in the form

being processed. In other cases where gi’s functional form is unknown, it may be possible to approximate

gi. For example, capacity planning software often uses M/M/1 equations to approximate response times in

a more complex queueing system (e.g., [2]).

At the heart of constructing diagnostic techniques is the ability to apportion problems evident in the

parent variable to its children, especially for statistical aggregations. It turns out that if Eq. (3) is a reasonable

approximation, then the following holds for many statistics of interest

statzi
=

∑
xj∈chld(xi)

(ai,j)statzj
. (4)

For example, if stat is the mean, then ai,j = a′i,j . If stat is the variance and child variables as well as the

yk(t), zk(t) are mutually independent, then ai,j = a′2i,j . Generalizations to the log-likelihood ratio (e.g., for

hypothesis testing) and to percentiles are possible as well.

As indicated before, statzk
is not observed directly and so it must be estimated. Let ˆstatzk

denote this
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estimator. Thus, arc weights are computed as

δi,j = ψ
(
sign( ˆstatzi

)(ai,j) ˆstatzj

)
(5)

and

wi,j =

{ δi,j∑
xk∈chld(xi)

δi,k
if

∑
k δi,k > 0

0 otherwise
(6)

where

ψ(x) =
{

x if x ≥ 0
0 otherwise

The term δi,j is included so that the effect of a child variable on the parent only includes those parts that

relate to how the performance problem impacts performance.

To illustrate the foregoing, consider the example of RTTOT with the statistic being the mean. Here,

a′i,j = 1 = ai,j . Suppose that zRTTOT = 0.46, ˆstatzSJCP U
= −0.12, ˆstatzSJIO

= 0.50, and ˆstatzSJP AGE
= 0.08.

Then, δRTTOT,SJCPU = 0 (SJCPU changes in a way that does not explain the performance problem),

δRTTOT,SJIO = 0.50/0.58 = 0.86, and δRTTOT,SJPAGE = 0.8/0.58 = 0.14. More generally, If ˆstatzk
= µ̂zk

(the estimate of the mean), then δi,j = ψ(sign(µ̂zi
)a′i,j µ̂zj

). If ˆstatzk
= σ̂2

zk
(the population variance) and

covariances are zero, then δi,j = a′2i,j σ̂2
zj
.

Now consider how to obtain ˆstatzk
. Two situations are of particular interest. In the first, the performance

problem dominates the value of measurement variables so that

statzk
≈ statxk

. (7)

Hence, it is reasonable to use ˆstatzk
= ˆstatxk

, where µ̂k = x̄k and σ̂2
xk

= s2xk
=

∑M
t=1(xk(t)− x̄k)2/(M − 1).

Thus, if the statistic is the mean,

δi,j = ψ
(
sign(x̄i)a′i,j(x̄j)

)
. (8)

If the statistic is the variance and covariances are zero,

δi,j = a′2i,js
2
xj
. (9)

A second situation for computing ˆstatzk
is when there are reference data that are representative of the
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Diagnostic Technique Arc Weight (wRTTOT,j)
Statistic Estimator SJCPU SJIO SJPAGE RTOTHER
µzi

x̄i .14 .23 .10 .53
µzi

x̄i − x̄ri .13 .33 .17 .37
σ2
zi

s2xi
.14 .12 .17 .50

σ2
zi

s2xi
− s2xr

i
.18 .12 .13 .57

Figure 7: Arc Weights for Techniques In Running Example

base values of the measurement variables. That is, statyk
≈ statxr

k
. Here,

ˆstatzk
≈ ˆstatxk

− ˆstatxr
k
. (10)

So, if the statistic is the mean, δi,j = ψ
(
sign(x̄i − x̄ri )ai,j(x̄j − x̄rj)

)
and for the variance (with small covari-

ances), δi,j = ψ
(
sign(s2xi

− s2xr
i
)ai,j(s2xj

− s2xr
j
)
)
.

In sum, diagnostic techniques are determined by (a) the statistic used to aggregate data and (b) the

manner in which problem values are estimated. Different choices for (a) and (b) result in different diagnostic

techniques.

To illustrate the foregoing, consider the decomposition ofRTTOT into SJCPU, SJIO, SJPAGE,RTOTHER

in the running example with problem data are taken from Fig. 1 (10:45-11:30) and reference data from 1:00-

2:00. This problem resulted from a software error related to managing one memory pool in the paging

subsystem. As such, both the paging and CPU subsystems are affected.

To proceed, two statistics are considered, the mean and variance. Problem values are estimated using

both the dominant value approach (i.e., ˆstatzk
= ˆstatxk

) and using reference data. With two possibilities for

each component of the framework, there are four diagnostic techniques. The results are displayed in Fig. 7.

Unfortunately, all of these techniques produce arc weights that are inconsistent with SJCPU and SJPAGE

explaining the performance problem.

Using the GAP framework, a new diagnostic technique can be constructed. The intuition is that the

techniques used above do a poor job of estimating problem values. This shortcoming might be overcome
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if a statistic is used that incorporates the relationship between the parent and child variable, such as the

covariance (cv). The proposed diagnostic technique uses covariance as the statistic and the difference between

target and reference covariances to estimate this statistic for problem values. The resulting arc weights from

RTTOT are: 0.44 for SJCPU , 0.23 for SJIO, 0.33 for SJPAGE, and 0 for RTOTHER. This is a much

better fit to what is expected for this performance problem.

4 Discussion and Extensions

The GAP algorithm described in Section 2 has several desirable properties. First, the algorithm is guaranteed

to terminate if the MNG is acyclic (a property that is easy to verify). Second, if arc weights are normalized,

then all paths have an explanatory power in [0, 1] (which follows from the definition of a normalized path

and the manner in which explanatory power is computed). Last, let P0 be the set of all paths from x0 to the

leaves of the MNG. It turns out sum of the explanatory power of these paths is 1. That is,
∑

P∈P0
uP = 1.

This is straightforward to establish for a tree-structured MNG. For a directed acyclic graph, a bit more care

is required.

Let Pi,l be the set of all paths from xi to xl and let VL be the set of leaves (those measurement variables

that have no child). It suffices to show the following holds for all xi ∈ V :

∑
xl∈VL

∑
P∈Pi,l

uP = 1

The proof uses induction on the maximum distance of the path from xi to a leaf. Let n denote this distance.

1. n = 1. Thus, chld(xi) ⊆ VL. The conclusion follows from the definition of normalized weights.

2. n implies n+ 1. Observe that

Pi,l =
⋃

xj∈chld(xi)

(
Pj,l

⋃
{(xi, xj)}

)

Thus,
∑

xl∈VL

∑
P∈Pi,l

uP =
∑

xj∈chld(xi)
wi,j

∑
xl∈VL

∑
P∈Pj,l

uP
=

∑
xj∈chld(xi)

wi,j

= 1
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(The second step follows from the induction hypothesis; the third step follows from the weights being

normalized.)

Returning to the GAP framework for diagnostic techniques, it is useful to show that the framework

provides a means to characterize existing approaches to QPD, especially what’s-biggest analysis, what’s-

different analysis, and correlation analysis. What’s-biggest analysis (e.g., see [7] for performance tuning [13]

and for automating assistance with linear programming models) computes the contribution of child variables

to performance problems as ai,j x̄j/x̄i. In terms of the QPD framework, statzk
= µzk

and ˆstatzk
= ˆstatxk

.

What’s-different analysis (e.g., see [14] for performance tuning and [19] for corporate financial statements)

quantifies the impact of performance problems by examining how changes in the mean of child variables

affect their parents. Thus, statzk
= µzk

and ˆstatzk
= ˆstatxk

− ˆstatxr
k
.

Correlation analysis (e.g., see [20] in the NaviGraph performance product and [15] for the Performance

Analysis Facility/VM) estimates the strength of parent-child relationships based on the magnitude of the

cross correlation between parent and child. That is, wi,j =| sxi,xj

sxi
sxj

|, where sxi,xj
is the sample covariance

between xi and xj . Unfortunately, this is not a normalized weight since
∑

j ai,jσxj
�= σxi

. However, if

covariances between child variables are small and there is a linear relationship between parent and child

variables, then σ2
xi

≈ ∑
j ai,jσ

2
xj
. Thus, a normalized weight can be constructed using wi,j =

ai,js
2
xj

s2xi

, where

statzk
= σ2

zk
and ˆstatzk

= ˆstatxk
= s2xk

.

Last, it is insightful to develop a simple analytic framework in which diagnostic techniques can be

compared. The focus of these comparisons is the choice of statistic for aggregating problem values. So, to

simplify matters, ˆstatzk
= ˆstatxk

. As a further simplification, the parent variable x0 has two children, x1 and

x2 such that x0 = x1 +x2. x1 is dominated by a performance problem, and x2 has no performance problem.

Thus, it is desired that diagnostic techniques compute arc weights such that w0,1 > w0,2. Put differently,

the effectiveness of a diagnostic technique is ω = w0,1/w0,2. Clearly, a larger value of ω is desired.

This simple framework provides for some interesting insights into the choice of the statistic for aggregating

problem values. Suppose the statistic is the mean. Thus, from Eq. 6, w0,1 = x̄1
x̄1+x̄2

and w0,2 = x̄2
x̄1+x̄2

. Hence,

ωµ = x̄1
x̄2
. If the standard deviation is used (so that the units are the same units as the mean), then ωσ = sx1

sx2
.
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From this, it is easy to quantify the condition under which the diagnostic technique that uses the standard

deviation has a larger effectiveness than the technique using the mean.

ωσ > ωµ iff cvx2 < cvx1 , (11)

where cvx = sx/x̄ is the coefficient of variation for x(t).

Now consider how the choice of statistic is affected in the context of a specific performance problem.

In particular, consider a uniform magnitude problem profile (UMPP) (e.g., the level shift in Fig. 1).

In the situation being analyzed, z1(t) ∈ {0, h1}. Let f be the fraction of the intervals in which z1(t) = h1.

Then,

z̄1 = fh1

s2z1 = h2
1f(1− f)

cvz1 =
√

1−f
f .

(12)

From Eq. (11),

ωσ > ωµ iff cvx2 <
√

(1− f)/f.

Thus, for UMPPs, if the target data only includes times when there is a performance problem (i.e., f ≈ 1),

then diagnostic techniques based on the mean are more effective than those that use the variance. On the

other hand, if only a few intervals contain performance problems (i.e., f is small), diagnostic techniques

based on the variance are more effective.

5 Conclusions

This paper describes GAP, a general approach to quantitative performance diagnosis. GAP has two parts:

(1) an algorithm for computing quantitative performance diagnoses and (2) a framework for constructing

diagnostic techniques that provides the basis for quantifications produced by the algorithm.

The GAP algorithm is based on the concept of a measurement navigation graph (MNG), a directed

acyclic graph whose nodes are measurement variables and whose arcs have weights that quantify the effect

of child variables (e.g., LAN utilization) on parent variables (e.g., response time). The algorithm allows for

non-tree structured graphs, such as those that arise if there are shared resources. Various properties of the
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algorithm are established, especially that its quantification of explanations can be interpreted as fractional

contributions to the performance problem.

Arc weights in the MNG are computed by diagnostic techniques. A framework for developing diagnostic

techniques is described that consists of (a) the choice of statistic (e.g., mean, variance) to aggregate problem

values and (b) the estimator of this statistic. The framework is used to analyze existing diagnostic techniques.

One result is that correlation analysis does not produce normalized weights and so cannot be used to

construct fractional explanations. A modified version of correlation analysis is introduced that addresses

this shortcoming, and it is shown to produce superior results in diagnosing a performance problem in a

production computing system. Also presented is an analysis of the choice of statistic for diagnostic techniques

that provides insight into the trade-off between using the mean and the standard deviation in the specification

of a diagnostic technique. Specifically, it is shown that for uniform magnitude performance problems (e.g.,

a step), the standard deviation is preferred to the mean if the problem data have a coefficient of variation

no larger than
√

(1− f)/f , where f is the fraction of the data containing the performance problem.

The paper raises a number of issues that are being explored. Some issues relate to assumptions made

in the approach to constructing diagnostic techniques, such as: (a) the adequacy of linear models between

parent and child variables, (b) the magnitude of covariances between child variables, and (c) the covariance

structure of base and problem values. These issues will be addressed by obtaining data from operation

systems, both when performance problems are present and when they are not. More broadly, follow-on

work is being pursued related to: (i) additional diagnostic techniques, (ii) the construction and evolution

of MNGs (e.g., when adapting to changes in systems and measurement sources), (iii) diagnosis for systems

when there are multiple detection variables, (iv) diagnosing problems that affect the structure of the MNG,

such as a new software release that changes where queueing takes place, and (v) application to systems where

information is decentralized.
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