
RC22685 (W0212-147) December 30, 2002
Computer Science

IBM Research Report

Asymmetrically vs. Symmetrically Organized Paradigms for
Software Composition

William H. Harrison, Harold L. Ossher, Peri L. Tarr
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Asymmetrically vs. Symmetrically Organized Paradigms
for Software Composition

William Harrison
IBM T. J. Watson Research

P.O. Box 704
Yorktown Heights, NY 10598

1-914-784-7339

harrisn@watson.ibm.com

Harold Ossher
IBM T. J. Watson Research

P.O. Box 704
Yorktown Heights, NY 10598

1-914-784-7975

ossher@watson.ibm.com

Peri Tarr
IBM T. J. Watson Research

P.O. Box 704
Yorktown Heights, NY 10598

1-914-784-7278

tarr@watson.ibm.com

ABSTRACT
Composition as an approach to software construction has been of
interest since at least the beginning of work on Module
Interconnection Languages in the late 1970's. Most recently,
research in aspect-oriented software development (AOSD) has
exploited composition approaches that provide more flexible
extension, adaptation and integration of components. A critical
issue in composition is symmetry versus asymmetry. Most AOSD
approaches have used an asymmetric paradigm, in which
“aspects” are composed (woven) into components that implement
a “base” model; aspects and components are different, and
component-component, aspect-aspect, and class-class composition
are not supported. A symmetric paradigm, on the other hand,
makes no distinction between components and aspects, and does
not mandate a distinguished base model. The choice of symmetric
versus asymmetric paradigm greatly affects the set of good
software engineering properties promoted, and the set of software
engineering activities facilitated. This paper analyzes the
ramifications of the use of symmetric and asymmetric paradigms.

General Terms
Composition, integration and evolution

Keywords
Software composition, separation of concerns, aspect-oriented
software development, symmetric composition, asymmetric
composition, modularization, evolution, reuse, software
integration, component-based software engineering

1. INTRODUCTION
The appropriate use of the compositional paradigm has been
demonstrated to offer a number of potential benefits, including
improved separation of concerns (modularization), reduced
impact of change, increased adaptability and evolvability,
especially in directions that were not fully anticipated, better
alignment of artifacts, and hence traceability, and improved reuse
and integration.
As with any paradigm, different approaches to composition
enhance or reduce different software engineering benefits, and no
single approach is good for everything. It is therefore critical for
software engineers to understand the key differences among
classes of approaches and the cost-benefit tradeoffs those
differences entail for their particular tasks, goals and contexts.
Given the expanding interest in AOSD, it is timely and important
to examine the tradeoffs involved in the variety of different
composition approaches in this area.

As a step in this direction, this paper identifies what may be the
most critical differentiator between the composition approaches:
the question of symmetry versus asymmetry. The composition
approaches used in viewpoints [16], subject-oriented
programming [8], multi-dimensional separation of concerns
(MDSOC) [21] and dynamic view connectors [9] employ a
symmetric paradigm, in which all components are treated as first-
class, co-equal building-blocks of identical structure, and in which
no component’s object model is more basic than any other’s. Most
other approaches in the AOSD community, such as AspectJ [11]
[12], use an asymmetric paradigm, in which “aspects” are
composed (woven) into “components” that implement a base
model. Aspects and components are different in structure, and
component-component composition is not supported; aspect-
aspect composition is not universally supported. Some
approaches, such as adaptive programming [13], have evolved
from asymmetric to symmetric, and others, like composition
filters [1] [3], are in between. We present a critical evaluation of
symmetric versus asymmetric paradigms when used in some key
software engineering scenarios, based on how they promote or
hinder achieving some key software engineering properties in
software produced by those paradigms.
It is not the goal of this paper to be comprehensive—doing so
would require several papers and much additional research and
evaluation—nor to promote any particular approach to
composition. Our primary purpose is to raise a critical issue for
researchers in, and consumers of, compositional software
engineering, and to analyze its ramifications. Similarly, the
parameters selected for evaluation are also not intended to be
comprehensive, but rather, to reflect a set of key issues that are of
importance to software engineers, and we leave the identification
and analysis of other issues to future work.
Section 2 describes symmetric versus asymmetric compositional
paradigms, identifying three separate kinds of symmetry. Section
3 discusses two concrete examples, to illustrate some of the
differences and tradeoffs between symmetrical and asymmetrical
approaches. Section 4 then analyzes the tradeoffs in the contexts
of some common AOSD scenarios. Section 5 summarizes the
conclusions of the analysis and Section 6 discusses related work.

2. SYMMETRICALLY AND ASYMMETRI-
CALLY ORGANIZED PARADIGMS

A composition paradigm involves three kinds of entities:
composable elements, join points and composition relationships.
The composable elements are the things being composed, such as
concerns, components or aspects. Join points to refer to those

points within the composable elements at which composition can
occur, such as functions in an interface or members of a class
[11][17]. Composition relationships (e.g., rules [8] or advice
declarations [11]) specify the details of how composition is to
occur at join points.
The three kinds of entities lead naturally to three kinds of
symmetry, discussed in the rest of this section.

2.1 Element Symmetry
Paradigms with element symmetry employ a single kind of
composable element. For example, subjects [8] and hyperslices
[21] are composable elements that consist of declaratively
complete class hierarchies; their definitions stand alone.
Paradigms with element asymmetry use two (or more) kinds of
composable elements. As introduced in [12], the term
“component” denotes elements whose descriptions stand alone,
while the term “aspect” denotes elements that are described in
relation to other components or aspects. Such paradigms support
component-aspect composition, but not component-component
composition. A subsidiary division is based on whether or not
they support aspect-aspect composition. However, if aspect-aspect
composition is fully supported, it is always possible to start with a
null component and build systems entirely by composition of
aspects. Since this is equivalent to symmetric composition, we
assume henceforth that aspect-aspect composition is not permitted
in paradigms with element asymmetry.
In this paper, we will use the AOP terminology of “component”
and “aspect” and use the term “concern” as the inclusive term for
either. Symmetric composition will be said to consist just of
components.

2.2 Join-Point Symmetry
Join points occur within concerns.1 Individual join points
themselves may be intrinsically symmetric or asymmetric. A
symmetric join point is a point in an artifact or execution, such as
a method definition or call, at which composition can occur. Such
composition combines the points in some way, as described by the
composition relationships, such as to call or execute multiple
methods. Most of the work in this field, and this paper, confine
themselves to method granularity, taking this loosely to include
regions that could be extracted to form methods. Joining at
arbitrary points embedded in a context within other method code
cannot be supported symmetrically.
An asymmetric join point occurs when a piece of an artifact, such
as a method body, contains one or more explicit points at which
references to (e.g., invocations of) “the other concerns” occur, or
when the expression of the concern is tangled with others and
cannot be extracted, and thus, can only have elements composed
with them in their own context. Examples of the former are Lisp’s
“call-next -method” [10] and AspectJ’s “proceed” [11]; an
example of the latter is a Java exception handler. In

1 In AspectJ [11], join points are points in the execution of the

component, and aspects do not have join points as such, but
rather specify advice code to be executed at join points. This is
equivalent to saying that the advice code blocks are implicit join
points, and the rest of the advice declarations specify how they
are to be composed with join points in the component. We take
the latter view, because it facilitates uniform discussion of
symmetric and asymmetric approaches.

compositional engineering, it provides an alternative to exposing
structure within methods and allowing join points at arbitrary
points within code.

2.3 Relationship Symmetry
There are two symmetry issues concerning relationships: scope
and placement. In paradigms with both relationship and element
asymmetry, relationships are placed only in aspects, and not in
components. The relationships have a binary scope, referring
implicitly to the aspect containing them and explicitly to the
component with which it is being composed. In paradigms with
relationship symmetry, the relationships may be placed anywhere,
but they have a scope that ranges across all the concerns being
composed. This applies whether there is element symmetry or not.
It is also possible to have element symmetry and yet have
relationship asymmetry, in which some components contain
relationships specifying how they are to be composed with other
components. From the point of view of this analysis, we consider
the addition of such relationships to the components to render
them aspects unless they are simply regarded as “suggestions”
appropriate when used in particular circumstances.
Relationship asymmetry therefore has the limitation that
relationships can be only binary, relating an aspect to the
component into which it is to be composed (or perhaps, as a
shorthand, to multiple components into which it is to be composed
uniformly). A relaxation of this definition allows relationships
also to refer to other aspects, to control the interaction of multiple
aspects composed with the same component. This “partial”
relationship symmetry has asymmetric placement, but symmetric
scope with respect to aspects.

3. REAL-WORLD EXAMPLES
Before giving a detailed analysis of the benefits and drawbacks of
symmetric versus asymmetric organizations, we discuss two
examples that illustrate some of them. Both examples involve
separating features, one an extension development scenario and
the other a parallel/cooperative development scenario.

3.1 Refactoring to Separate Features
The experiment on separating features in source code by Murphy,
et. al. [15] provides an interesting illustration of the respective
benefits and disadvantages of different approaches. In their first
example, they discuss a method called RETokenStart.match in the
gnu.regexp package, in which code for several special kinds of
matching (multiline, “not beginning of line” and anchored) and
basic matching are tangled within the method. They discuss
different ways of separating these special matching concerns from
one another and from basic matching. One solution they present
involves refactoring the method to put the different kinds of
matching into separate methods within the RETokenStart class,
and then using Hyper/J to compose the matching methods. A
second solution they present involves refactoring the method to
put the special kinds of matching in separate aspects, and then
using AspectJ to weave the aspects into the base method.
In their analysis, they point out that their Hyper/J solution reduces
cohesion of the base structure (by introducing additional methods
that are not even directly called, but are needed for composition)
and achieves limited separation (because the methods for the
special matches remain in the RETokenStart class)2, but promotes

2 This point is subject to debate over whether a different

separation approach should have been used.

locality (for the same reason). Their AspectJ solution, on the other
hand, maintains cohesion of base and achieves full separation, at
the expense of locality (because the methods for the special
matches are in separate aspects). When asked why a Hyper/J
design with greater separation, similar to the AspectJ design, was
not used, Murphy responded that she wanted to maintain the
locality. Clearly, different developers will have different relative
priorities for obtaining the cohesion, separation and locality
properties, and it is not generally possible to obtain all of them
simultaneously, which strongly suggests that developers must be
in control over the choice.

3.2 Cooperative Development of Features
SAGE is a research prototype developed for performing
translation of messages between different formats [22]. Without
going into a description of SAGE itself, we can draw on
experience with its development as a small real example of the
use of composition in cooperative development. SAGE’s design is
expressed as a common information model for the representation
of declarative information about messages, and several features
that share this model to provide the message translation system’s
function: dictionary management, context management, message
definition parsers, UI’s, and code generation. A symmetric
methodology for using UML was employed for SAGE’s design,
in which more than one concern (common model or design
feature) could describe the same element (entity or association).
Although various researchers in the group created UML models
when developing new concerns, all felt free to add to or change
the models used in other concerns when that was appropriate, and
there were ongoing discussions about how best to model concepts.
In effect, the concerns were preserved as logical constructs rather
than having each concern “belong” to one or another team
member. The UML models for the concerns were converted to an
equivalent Java implementation with a model-composition/Java-
generation tool called Tengger [23]. Each concern had a package
of Java classes where the operations defined in the UML model
are implemented. The Java classes in the concerns are all
composed using Hyper/J [18] to produce the final SAGE system.
We retrospectively analyzed the SAGE design to see to what
extent it could fit an asymmetric model. The common information
model is a natural base component, and we expected that each
feature might be represented as an aspect of it. To explore this, we
first had to remove the inherently symmetric approach of multiple
concerns describing the same entity by conceptually declaring
each entity to “belong” to a single concern, and be imported into
other concerns as needed. We then examined concern-concern
interactions, and found five ways in which entities defined in a
concern are augmented by other concerns that import them. From
least to greatest “impact” they are:

1. the feature adds subclasses to imported entities (noted as
< in Table 1),

2. the feature adds associations from some of its entities to
imported entities (R),

3. the feature adds methods or attributes to imported
entitites (M),

4. the feature generalizes (adds superclasses) to imported
entities (>), which often implies (3), or

5. the feature adds inheritance relationships between
imported entities (I).

The actual interactions in the SAGE design are summarized in
Table 1. The interactions below the shaded diagonal represent
cases where features later in the table import elements from
concerns earlier in the table. If the portion of the table above the
diagonal were empty, we would have a sequence of concerns,
each building upon prior ones. This would fit an asymmetric
organization in which each feature is an aspect, and the aspects
are applied to the common model. However, even though the
features have been ordered so as to place as many interactions as
possible below the diagonal, the upper right portion is not empty.
This reflects the fact that there are symmetries inherent in SAGE’s
design.

Table 1. Concern Interactions in SAGE
depends

on:
dependent:

Common
model

Contexts
feature

Dictionary
feature

Surfaces
feature

UI
features

Generation
feature

Common
model

 R

Contexts
feature

>, M, R >, M

Dictionary
feature

>, M, R >, M, R

Surfaces
feature

 I, R, <

UI features >, M, R <

Generation
feature

>, M M

The simplest symmetry is denoted by the R in the first row: while
the dictionary feature is heavily defined in terms of entities that
belong to the common model, the common model defines an
association between one of its own entities (DenseRange) and one
that belongs to the dictionary feature (NamedValueDictionary).
This symmetry could be removed: merely asserting that
NamedValueDictionary belongs to the common model instead of
the dictionary removes the “R” from the matrix. But this argument
is facile; it hides the fact that in an asymmetric model, the
component should be an “element whose descriptions stand
alone,” as discussed in Section 2.1. We would either have a
component that cannot stand alone, but must be augmented by an
aspect to be functionally complete, or have to move a good deal of
the dictionary feature into the common model, defeating the
separation.

The other symmetry arises from the fact that, while the dictionary
feature refers to and generalizes an entity defined in the context
feature (BusinessContext), the context feature generalizes an
entity defined in the dictionary feature (MessageSet). Having a
feature generalize entities that belong to other features is a
common phenomenon that often arises from one of two causes.
The first cause is that the feature defines an association from one
of its entities that may link to any one of several entities. This
requires forming a type that characterizes the operations actually
expected to be common to those entities in this union, so that they
can be called on any entity reached by traversing the association.
For example, the function and behavior of the context feature had
no need for BusinessContexts to have names. But the design of
the dictionary feature called for a dictionary of BusinessContexts,
requiring them to be a specialization of its entity called
IdentifiableEntity, which provides names. The second cause is

that the feature has a view that simply demands a new
generalization. For example, the Code Generation feature
considers several unrelated entities in the common model to all be
CodeGenParts, with the corresponding operations and state
needed for that behavior. It is harder here to argue that the
assignment of entities to features is in error. Neither aspect is
really closer to the base component than the other, and, in fact, the
order of the two rows/columns would need to be switched to yield
the actual historical order of their development. A paradigm with
relationship asymmetry does not cover this case.
In general, all symmetries can, with effort, be converted into
asymmetries by imagining or declaring that some elements of an
aspect belonged in the component. However, the issue is not
whether the transformation is possible post-facto, but whether it
clarifies the design, and whether the desired separation can be
maintained as more and more material is moved into the
component.
The “asymmetric” interactions in this example, below the
diagonal, nonetheless reveal an interesting point about
relationship symmetry. The interactions in the first column are
aspect-component interactions. All the others are aspect-aspect
interactions, which are essential in situations like this where one
aspect can build on another. The fact that most rows have entries
in the first column as well another column shows that it is
necessary for composition relationships to refer to join points in
the component and in other aspects together (or, perhaps, to join
points that result after weaving other aspects into a component).
At least a degree of relationship symmetry is therefore needed
even in these cases.

4. EVALUATION
In this section, we compare symmetric and asymmetric
composition paradigms against a set of evaluation criteria. These
criteria fall roughly into 5 categories: Creation, Understanding,
Separation, Reuse and Scaling. In the following sections, we use
the first three of these criteria to evaluate the suitability of
asymmetrically and symmetrically organized paradigms in three
common AOSD usage scenarios: extension, parallel/cooperative
development, and integration. We chose these scenarios to be
illustrative and broadly representative, but they are not intended to
be (and cannot be) exhaustive. Analysis of reuse and scaling is
largely independent of usage scenario, so these are discussed later.
The results of the analysis are summarized in Table 2.

4.1 Creation and Extension Scenarios
4.1.1 Creation (Writing or Extraction)
Concern creation takes place either directly, ab-initio or by reuse
and modification, or by extracting a concern from an existing
body of software.

4.1.1.1 Creation of Co-Evolving Concerns
Asymmetric paradigms actively promote the representation and
encapsulation of crosscutting concerns that are to evolve, and be
reused as a unit, with the underlying component representation
(e.g., class hierarchy). The intent here is that the component
dictates the primary structure, and the aspects fit into it, rather
than having a structure of their own. This allows convenient
separation of fragments that make up crosscutting or subsidiary
concerns without the complications of different concerns dictating
their own structures. Symmetric paradigms have to address these
complications by being able to reconcile the different structures of
concerns being composed.

In extension scenarios, the simplicity of expression of both
asymmetric join points and asymmetric composition relationships
may also be an advantage. In addition, placing the relationships at
an aspect’s join point increases the cohesion of the aspect as it is
written.
The simplicity enforced by the asymmetric paradigm is thus an
important advantage in this scenario. It is important to note,
however, that suitable tooling or syntactic sugar can provide
asymmetric usage features on a symmetric paradigm; a symmetric
paradigm thus does not require that all uses of it be symmetric.
When there is natural asymmetry, as in extension scenarios, it can
be represented and exploited even in symmetric paradigms.

4.1.1.2 Concern Creation for Reuse
With known approaches to software engineering, there is an
intrinsic trade-off between initial development cost and evolution
cost. One common example of this trade-off is illustrated by the
development of closed components vs. the development of OO
frameworks. A framework developer framework attempts to
foresee the behaviors that would be modified to extend the
function of the framework and to encapsulate them appropriately.
In effect, the developer is identifying anticipated join points or
“open points.” This anticipation raises the cost of initial
development, but reduces the cost of development of extended
components. From a non-reuse standpoint they seem to be
“unnatural” methods3.
The need for reuse reduces the effectiveness of using an
asymmetrically-organized paradigm. Element asymmetry means
that the elements that are aspects cannot themselves be augmented
by other aspects. This implies that the designers may need to
embed functionality into the base component to make it available
for subsequent reuse. Relationship asymmetry is especially
inimical to reuse, because relationships in aspects stating how
those aspects are to be composed preclude their being composed
differently as new, reuse contexts arise.

The same phenomenon takes place with concern extraction.
Extraction to produce a delta from a known base naturally
produces an aspect. But the aspect no longer forms a reusable
element until it is actually composed into the base. And even then,
additional effort is needed to convert the aspect into a useful
concern that anticipates interesting extensions.

4.1.1.3 Creation for Comprehension
A concern is sometimes created for purposes of comprehension or
documentation, to help developers understand and comprehend
the concern without having to follow irrelevant material reflecting
other concerns. For these purposes, the simplicity of expression
and cohesion advantages shown by asymmetrically-organized
paradigms for creating one-time use software come to the fore
again.

4.1.2 Understanding
Understanding is the crucial enabler for software maintenance and
evolution. In working with software-by-composition, we can
separately treat the understanding of separate concerns from the
understanding of their joint behavior. Murphy, et. al. [15] use the
two measures of cohesion and locality to characterize

3 As described in the “Comparison” subsection of section 4.2 in

the Murphy paper [15].

understandability4. Cohesion is the likelihood that two pieces of
information appearing together are actually relevant to one
another, while locality refers to the likelihood that two pieces of
information relevant to one another will actually appear together.

4.1.2.1 Separate Understanding
Paradigms with relational asymmetry bundle the join points and
relationship specifications of an aspect together. This increases
the locality of the aspect considered separately while reducing its
cohesion somewhat when taken as a separate element. Using a
symmetric paradigm’s capability to move the specification of how
the extension fits into the base elsewhere can raise the cohesion of
an extension. Doing this requires that the extension not refer
directly to the base; instead, interfaces required by the extension
and structural relationships that are important to it must be part of
the extension. This promotes locality, by increasing the extent to
which the information needed to understand the extension is
present within the extension. Locality might not be perfect,
however, because an understanding of patterns of interaction
within the base might be necessary to full understanding of the
extension. This depends on the nature of the extension, including
the extent to which it itself forms a significant body of logic,
versus a set of small additions to the base’s functionality.
If an extension’s join points are not intrinsically asymmetric,
locality of separate understanding is also reduced by using an
asymmetrically-organized paradigm. Use of an asymmetric join
point when not necessary forces the reader to try to understand
why the execution of “the other” needs to occur where it does,
when the choice was actually random.

4.1.2.2 Joint Understanding
While asymmetry decreases the cohesion of an extension’s design
when considered separately, it increases the cohesion of the joint
design of the extension as it relates to the base component because
the relationship specifications are a more crucial part of the joint
design.

If an extension’s join points are intrinsically asymmetric, both
symmetrically and asymmetrically organized paradigms have the
same cohesion and locality characteristics for the joint design.
This is because the invocation of “the other” forces a nested
composition relationship and the placement is evident in the code
for the extension.

4.1.3 Concern Separation [decoupling]
Separation of concerns is, ultimately, the raison d’être for AOSD.
In the abstract, relationship or join-point asymmetry implies an
incomplete separation: the aspect is specified in terms of the base
and its expression therefore depends on the lower-level decisions
made for the base. In fact, the extension scenarios share this basic
asymmetry, as an extension is generally created with respect to a
base. In practice, even with relationship symmetry, complete
separation is usually possible only in cases where there is no
interdependence.
In addition to its impact on understandability, separation can have
an impact on concern analyzability, testing, and evolution.

4.1.3.1 Analyzability
OO software development trades analyzability for increased
reusability, and compositional software development does so as

4 Their third measure, separation, is treated separately because it

has an impact on many issues as well as on understanding.

well. For purposes of analyzing a component, exactly the same
issues apply, but one of the usual points-of-entry used by analysis
approaches becomes less useful. An extension can alter the
analysis characteristics of a class in the same ways that a subclass
can, and can even access and alter variables that are private to the
class. So just as an analysis might need to be conservative because
an object may be subclassed, it must also be conservative because
it may be composed. One point-of-entry often used in program
analysis is creation of object instances, because at that point, the
actual class of the object being created is known. But modern
programming practice suggests the use of a factory pattern for the
creation of objects, and this results in the loss of those points of
entry. The same is true of composition. The class being
instantiated is not limited to the characteristics it has in the base,
but may have additional characteristics acquired in the
composition.
But while analysis of a component is still useful in AOSD,
analysis of an aspect is generally unworkable. The aspect code is
fragmentary and partial, and the interconnecting relationships and
logic are missing. The analyzer does not know which parts of an
aspect will be pulled together by the base’s inheritance hierarchy
or which other parts will be executed since the calls to them are
not direct within the aspect but are side-effects of calls into the
base. In this sense, a symmetrically organized paradigm is
technically at an advantage. But this technical advantage may be
less than it first appears, being actualized only for large
extensions. For very small extensions, the fact that all of the
interesting flow connections are missing places analysis of
symmetrically organized concerns on the same footing as
asymmetric ones. But when the concern is large and its join points
few, the analysis of an extension concern in a paradigm with
relationship symmetry can yield as much useful information as the
analysis of a base.
Less conservative estimates of possible interaction are possible if
the analysis could rule out hidden “cross-talk” between the
concerns, as is being done in [20]. Developing guidelines and
exploiting their enforcement in analysis tools is still a relatively
unexplored area of AOSD.

4.1.3.2 Testing
Testing encompasses both the derivation of test cases for a body
of software, and their execution and evaluation. The derivation of
test cases usually relies on the external specifications or on the
code body. Test case generation from external specifications
should be insensitive to the composition paradigm. Test case
generation from the code body generally depends on analysis of
the code, whose characteristics were discussed earlier. Test cases
generated from pre-composition code reduce the delay in
constructing a test suite and the burden of doing so, although they
may be overly redundant because of the weakness of the program
analysis. Test execution is another matter. While the current state
of the art is too weak to consider the execution of pre-composition
tests to be adequate, this does not imply that pre-composition
testing is valueless. Like unit testing, it can reduce the cost and
burden of the later integration tests. The relative merits of
symmetrically and asymmetrically organized paradigms for
testing are similar in direction to those for analysis, although
smaller in magnitude.

4.1.3.3 Impact of Change
As the base component of a system evolves, its evolution may
have an impact on the extensions that have been added to it. The

most common forms of evolution are the creation of new classes
and subclasses, the refactoring of class hierarchies, the creation of
new methods or the refactoring of methods. Even though the
advent of AOSD can be expected to reduce the need for evolution
of components by allowing new functionality to be built as
extensions, base changes will still take place.
These sorts of changes to a base most visibly affect the
composition relationships. With asymmetric relationships, a
change to the base must be reflected in all of the aspects that
modify it, while symmetric relationships lie outside the elements
themselves, making them potentially more accessible and easier to
change. More importantly, symmetric relationships, by nature,
have to deal with connecting join points in different concerns, and
thus with such issues as reconciling different class hierarchies and
interfaces. These capabilities facilitate handling an evolving base.
Asymmetric relationships specify attachment to join points in a
base component, leaving the base to dictate the structure. They
therefore usually do not deal with hierarchy and interface
mismatches, and so are not well equipped to deal with an evolving
base. In cases where the base and extension have been separately
acquired, source code may be unavailable, making the upgrade
unworkable in paradigms with relationship asymmetry.
Less visibly, but of potentially greater impact, is that the use of
asymmetric elements encourages exploitation of the base’s
structure. If for example, an aspect defines a class containing
several methods that go together into extensions of a base, but
also defines what is, conceptually, a subclass with specialized
behavior, it depends on the subclassing relationships in the base to
carry out its own inheritance. As a result, if the base evolves so
that the methods are no longer inherited into the expected
subclasses, inappropriate behavior takes place.
It is possible to separately evolve an aspect on top of an
unchanging base. In this situation, there is advantage to packaging
the composition relationships with an aspect. A change can be
incorporated simply by installing a new extension. This advantage
can be realized equally well within a symmetrically organized
paradigm that allows composition relations for various bases to be
packaged with the concerns implementing the extensions.

4.2 Parallel/Cooperative Development
4.2.1 Creation (Writing or Extraction)
The use of AOSD to facilitate parallel and/or cooperative
development tends to move away from circumstances where
extensions all cluster around a common pre-specified base. As the
number of mutually composable elements rises, multipart
composition relationships are needed. Coping with the fact that
different concerns may be based on slightly different versions of
each other is facilitated by removing the composition relationships
from being intimately intertwined with concern artifacts.
Software written for flexible composition has many of the
characteristics of software being developed for reuse. Developers
put some advance effort into thinking about the major functional
divisions of their algorithms and the points at which other
components might be expected to be joined.

4.2.2 Understanding
4.2.2.1 Separate Understanding
The same analysis applies here as in Section 4.1.2.1.

4.2.2.2 Joint Understanding
In discussing the extension scenarios, we observed that an
asymmetrically organized paradigm increases the cohesion of the
joint design. For the parallel/cooperative scenarios, however, the
joint understanding is not just with the single base because there
may be a cascade or a set of related code bodies to examine.
Under that circumstance, it becomes more important to have a
simple way of identifying and gathering the composed code
together. So, for this class of scenarios, symmetrically organized
paradigms provide for better understanding of the joint behavior.

4.2.3 Separation [decoupling]
As discussed in Section 4.1.3, extension scenarios have a natural
asymmetry – the extension vs. the base. In our original
formulation of subject-oriented software design [8], we looked
toward a more complete separation to suit cooperative
development and integration scenarios as well.

In MDSOC, a symmetric paradigm, each concern provides a
complete, even if partially implemented, design of the classes and
the methods involved in its coding and in its interaction with other
concerns [21]. Each concern is designed without reference to a
base, and each is completely separated from the others. This
enables the developers working with each part of an application to
focus on a hierarchy of abstraction appropriate for it, without the
clutter of inheritance structures needed for other parts.
Not all concerns separate so clearly, which is why the space of
scenarios really is a spectrum. But developers of software for
composition are mindful of trying to avoid tangling many
concerns in one class or method and of exposing the proper join
points for cooperative use. As with framework design, what could
have been written as in-line code in a method is exposed as a
separate method called where needed, to expose it as a join point.
Separation of concerns demands that developers of a concern
avoid dependence on the structure of other concerns. For example,
awareness that there are two different calls to a class’s method
from within another concern is a structural dependence that
should be avoided. Wrapping another method with an “around”
also presumes the knowledge that the other method doesn’t need
to be around this one instead. So in evaluating the symmetric vs.
asymmetric paradigms, we must recognize that although it is
possible to use asymmetric constructs in a symmetric
organization, it is desirable to avoid them and that in this central
group of scenarios we should evaluate them from the point of
view of their ability to achieve further separation.

4.2.3.1 Impact of Change
The advantages discussed for a symmetric paradigm’s
management of impact of change become even more compelling
in these scenarios. Where previously the centralization of
composition relations helped point to potentially related parts of
extension aspects, the cooperative scenarios exploit concern-
concern interactions like those in the SAGE example discussed
above much more heavily and the composition relationships help
manage the relatively independently evolution of the concerns.
The case for evolution of extensions loses its separateness and is
evaluated in the same way.

4.3 Integration Scenarios
The use of AOSD to facilitate integration reflects the need to
integrate separately developed software. It is the far point in the
spectrum of composition scenarios and cannot be handled at all by
an asymmetrically organized paradigm because each of the

products is a full component – there are no aspects. Tight
integration is seldom easy, but loose integration is often possible
by using some of the method calls in each component to trigger
code in a glue component that then invokes necessary operations
in the other. But even this scenario – two components and a glue
concern, requires a symmetrically organized composition
paradigm. It is not possible to view either of the original
components as modifying the other.

4.4 Scenario Independent Issues
4.4.1 Reuse
While the merits of the two paradigms have been discussed with
respect of the creation of software for reuse, their suitability for
the actual reuse of software concerns bears additional comment. Is
a reusable concern to be built as a component, or as an aspect?
Building it as a component would mean that two such could not
be combined in an asymmetric paradigm, but building it as an
aspect would mean building it to apply only to a specific base, or,
in the case of relationship symmetry, to a broader class of bases,
but not to other aspects. The fact that neither choice is suitable
indicates that only a symmetrically organized paradigm is suitable
as a vehicle for promoting a reusable components industry, and
relationship symmetry is essential to any kind of reuse.

4.4.2 Scaling
This same issue of suitability as a component model for large-
scale use and reuse shows up when looking at the scalability of
the paradigms. In software construction by composition, it must
be possible to take several parts and compose them to produce a
new part. With asymmetric models, one cannot talk about a part in
general, only about either the single base component or about an
aspect. If, for simplicity, we abandoned the idea of a base
component and focused on the composition of aspects to produce
aspects, we would have a uniform part model. But it would be one
in which the universe of parts is partitioned according to the base
component to which they are applied. And if we then resolved that
problem by edict that there be a common null base the result
would be a paradigm that was only vacuously asymmetric – it
would be a symmetric paradigm in the end.
On the other hand, within the context of the extension scenario,
paradigms with relationship asymmetry have an advantage: since
their composition relationships are simpler, not having to be
concerned about structural mismatches, the composition is simpler
and scales better.
Table 2 summarizes the evaluation presented above. Each cell
indicates whether the evaluation suggested better handling by an
asymmetrically organized paradigm (A), a symmetrically
organized one (S), or neither (-). Three evaluations are shown for
each case: for element symmetry, for join-point symmetry, and for
relationship symmetry.

 Table 2. Element/Join-Point/Relationship Advantages
Summarized

advantage in Creation/
Extension

Parallel/
Cooperative

Integration

advantage for

Creation

Co-evolving concerns AAA

For Re-use SS-S

For Comprehension -AA

SSS SSS

Understanding

Separately

Cohesion -ssSS

Locality aaaAAA -SS

Jointly AAA

Cohesion AAA

Locality --- S-S

Separation [de-
coupling]

 SSS

SSS

Analyzability S--s--

Testing S--s-- S--

Base Evolution S--SS S--

Extension Evolution ---

Reuse SSS

SSS

SSS

Scaling SSSAAA

 SSS

5. CONCLUSIONS AND FUTURE WORK
The use of any compositional paradigm has a significant impact
on a developer’s ability to achieve various desirable software
engineering properties. It is critical for both developers and
AOSD formalism developers to understand how key differences
among AOSD approaches affect particular a approach’s ability to
promote or hinder the attainment of these properties for particular
tasks, goals, or contexts.
The issue of symmetry vs. asymmetry in AOSD approaches may
be the most critical differentiator among compositional
approaches. Analysis of the use of asymmetrically and
symmetrically organized paradigms for software composition
across a wide spectrum of usage scenarios indicates that:

1. Asymmetric paradigms are superior for co-evolving
crosscutting or subsidiary concerns.

2. Both paradigms have some advantages in simple
extension scenarios, but symmetric paradigms are at
least as good as asymmetric paradigms in those
scenarios.

3. The relative advantages of symmetrically organized
paradigms increase with the independence of the
development efforts in multi-extension and multi-
component software, until, in the limiting case of
software integration, only symmetrically organized
paradigms are suitable.

4. Only symmetrically organized paradigms are suitable as
the basis of a reusable component model for software
construction by composition.

While symmetry vs. asymmetry is a critical issue, it is not the only
one (see, for example, [7]). For the future, other important issues
must also be identified and analyzed. Only when these issues are
understood will developers be able to leverage AOSD to its
fullest.

6. RELATED WORK
Workshops on “Advanced Separation of Concerns” at OOPSLA
’00 and ECOOP ’01 [4] included discussion groups on the design
space of aspect-oriented systems. Symmetry, and related issues

such as composability, closure and location of composition
specifications were discussed. Aksit et. al. discuss six concerns in
separation of concerns approaches [2]. They include
composability, and closure, which is the property that composed
entities must also be composable elements so that they can be
involved in further compositions. There is to our knowledge,
however, no other detailed analysis of symmetry issues in the
context of composition. On the other hand, there are a number of
approaches to AOSD with different symmetry properties. Our
work on subject-oriented programming and multi-dimensional
separation of concerns, both symmetric approaches, was
mentioned during the course of the paper. We discuss a few others
briefly here.
Composition filters [1] is an approach in which sequences of
filters can be associated with objects. All messages to and from
such objects pass through the filters in sequence. Each filter has
the opportunity to act upon or modify each message, throw an
error condition, or pass it through. Filters can implement new
methods not directly supported by the objects, and can introduce
their own state. This approach exhibits element asymmetry, since
filters are different from objects and can only be attached to
objects. The only composition relationships are separate
specifications (or calls to the runtime system) to attach filters to
objects in the appropriate sequences. Since these relationships can
refer to the any of the filters and objects being composed in a
uniform way and are external to all of them, they are symmetric,
though the definition of filter-filter interaction is limited to
sequencing. Composition filters therefore allow flexible
attachment of reusable filters to arbitrary objects, adding or
modifying behavior, but they cannot directly be used to integrate
separate components (class hierarchies or domain models).
The work on adaptive programming [13] shows an interesting
progression from asymmetric to symmetric. Earlier work allowed
propagation patterns containing routing specification and handler
code to be associated with class graphs, thereby injecting routing
and handling code into the classes. The first version of this
approach exhibited both element and relationship asymmetry.
More recent work on adaptive plug-and-play components [14] has
propagation patterns and a skeletal class graph they refer to
packaged into components, which can then be composed with one
another and/or instantiated relative to a full class graph.
AspectJ [11] makes explicit the distinction between components
(classes) and aspects, and therefore exhibits element asymmetry.
To date, aspects cannot be woven with aspects. The element
asymmetry renders AspectJ suitable for extension scenarios, but
unsuitable for supporting multiple views or domain models or for
integration. Earliest versions of AspectJ exhibited relationship
asymmetry: advice specifications in aspects listed the join points
to which the advice was to apply. When multiple pieces of advice
within aspects are woven into the same join point, precedence
rules determine how they should be ordered. These rules now
include a “dominates” declaration, in which one aspect can be
explicitly specified to dominate another. This gives AspectJ a
limited capability to specify aspect-aspect interactions, but still
places the specification in one or other of the aspects rather than
moving in the direction of providing symmetric relationships. The
use of abstract pointcuts allows separation of pointcut details from
advice code. The degree of relationship symmetry provided by
these approaches, when they are used, helps to mitigate some of
the disadvantages discussed earlier, making it possible for later
aspects to reuse earlier ones to some extent, and for generic

aspects to be woven into different components, but is not
sufficient to provide full control of the weaving of multiple
aspects into the same components.
Dynamic view connectors [9] are, essentially, composition
relationships, possibly containing glue code, which allow
integration of tools using custom views into an object repository
system. The composable elements are objects in the repository,
and the results of composition (or translation) are virtual objects
that can be used by tools. This approach exhibits both element and
relationship symmetry, which enable it to support materialization
and integration of multiple views.
Mixin layers [19] represent an interesting mix of symmetric and
asymmetric properties. The composable elements are mixin
layers, which are like parameterized templates. They are
essentially uniform in structure (element symmetry), except that
one can distinguish layers without parameters as being base
components. Join points are the parameters, and are asymmetric,
but the composition relationships are instantiation expressions,
which are symmetric. The element and relationship symmetry
allow layers to be composed in various combinations and orders,
and to be reused widely.
Viewpoints [16] represent a symmetric compositional approach to
requirements engineering. Modules, called viewpoints,
encapsulate developers' views of both the requirements-building
process and the pieces of the requirements artifact being
developed. Different viewpoints may describe the same
requirements artifacts in different notations, and they may create
conflicting definitions for given requirements. Each viewpoint is
co-equal (element symmetry), and the specification of
relationships among viewpoints is also symmetric (relationship
symmetry). One characteristic of the Viewpoints approach that
differentiates it from other compositional approaches is that
different viewpoints are not physically combined as part of a
composition process. Instead, viewpoints are integrated by
coordination, and synchronization points replace join points.

7. REFERENCES
[1] M.Aksit, L.Bergmans, S.Vural. “An object-oriented

language-database integration model: The composition
filters approach.” In Proceedings ECOOP'92

[2] M. Aksit, B. Tekinerdogan and L. Bergmans, “The Six
Concerns for Separation of Concerns.” Position paper at the
ECOOP ’01 workshop on Advanced Separation of Concerns,
http://trese.cs.utwente.nl/workshops/ecoop01asoc/.

[3] Lodewijk Bergmans and Mehmet Aksit, "Composing
Crosscutting Concerns Using Composition Filters."
CACM 44(10), October 2001, pages 51–57.

[4] J. Brichau, M. Glandrup, S. Clarke and L. Bergmans,
“Advanced Separation of Concerns.” Workshop report in
ECOOP ’01 Workshop Reader, Springer Verlag, 2001.

[5] F. DeRemer and H.H. Kron. "Programming-in-the-
Large versus Programming-in-the-Small", IEEE
Transactions on Software Engineering, SE-2(2):80-86,
June 1976.

[6] D. Garlan and M. Shaw, An Introduction to Software
Architecture, Advances in Software Engineering and

Knowledge Engineering, Volume 1, World Scientific
Publishing Co., 1993.

[7] W. Harrison, H. Ossher, Member-Group Relationships
Among Objects, Workshop on Foundations of Aspect-
Oriented Languages at International Conference on
Aspect-Oriented Software Development, 2002.

[8] W. Harrison and H. Ossher. “Subject-oriented
programming (a critique of pure objects)." In
Proceedings of the Conference on Object-Oriented
Programming: Systems, Languages, and Applications
(OOPSLA), September 1993.

[9] S. Herrmann and M. Mezini, PIROL: A case study of
multidimensional separation of concerns in software
engineering environments. In Proceedings of the
Conference on Object-Oriented Programming:
Systems, Languages, and Applications (OOPSLA),
October, 2000, 188–207.

[10] S. Keene, Object-Oriented Programming in Common
Lisp, Addison-Wesley, 1989.

[11] G. Kiczales, E.Hilsdale, J. Hugunin, Mik Kersten, J.
Palm, W. Griswold, “An Overview of AspectJ.” In
Proceedings ECOOP’01, Springer-Verlag, June 2001.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. Loingtier, J. Irwin, “Aspect-Oriented
Programming.” In Proceedings ECOOP’97, Springer-
Verlag, June 1997.

[13] K. Lieberherr. “Adaptive Object-Oriented Software:
The Demeter Method with Propagation Patterns.”
PWS Publishing Company, 1996.

[14] M. Mezini and K. Lieberherr, “Adaptive Plug-and-Play
Components for Evolutionary Software Development.”
In Proceedings of the Conference on Object-Oriented

Programming: Systems, Languages, and Applications
(OOPSLA), October 1998.

[15] G. Murphy, A. Lai, R. Walker and M. Robillard,
“Separating Features in Source Code: An Exploratory
Study.” In Proceedings ICSE ’01, May, 2001.

[16] B. Nuseibeh, J. Kramer and A. Finkelstein, “A Framework
for Expressing the Relationships Between Multiple Views in
Requirements Specifications.” IEEE Transactions on
Software Engineering 20(10), October 1994, 760—773.

[17] H. Ossher and P. Tarr, “Operation-level composition:
A case in (join) point.” In ECOOP ’98 Workshop
Reader, 406–409, July 1998. Springer Verlag. LNCS
1543.

[18] H. Ossher and P. Tarr, “Using Multidimensional Separa-
tion of Concerns to (Re)shape Evolving Software.”
Communications of the ACM, October 2001.

[19] Y. Smaragdakis and D. Batory, “Implementing
Layered Designs with Mixin Layers.” In Proceedings
of the 12th European Conference on Object-Oriented
Programming, (ECOOP '98), July 1998.

[20] G. Snelting and F. Tip, Semantics-based composition
of class hierarchies, In Proceedings of the 16th
European Conference on Object-Oriented
Programming (ECOOP 2002), (Malaga, Spain, June
10-14, 2002), pp. 562-584.

[21] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr.,
“N degrees of separation: Multi-dimensional separation
of concerns.” In Proceedings of the 21st International
Conference on Software Engineering (ICSE '99), 107–
119, IEEE, May 1999.

[22] ? , http://www.research.ibm.com/messagecentral/

[23] ? , http://www.research.ibm.com/Tengger/

