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ABSTRACT 
Composition as an approach to software construction has been of 
interest since at least the beginning of work on Module 
Interconnection Languages in the late 1970's. Most recently, 
research in aspect-oriented software development (AOSD) has 
exploited composition approaches that provide more flexible 
extension, adaptation and integration of components. A critical 
issue in composition is symmetry versus asymmetry.  Most AOSD 
approaches have used an asymmetric paradigm, in which 
“aspects” are composed (woven) into components that implement 
a “base” model; aspects and components are different, and 
component-component, aspect-aspect, and class-class composition 
are not supported.  A symmetric paradigm, on the other hand, 
makes no distinction between components and aspects, and does 
not mandate a distinguished base model. The choice of symmetric 
versus asymmetric paradigm greatly affects the set of good 
software engineering properties promoted, and the set of software 
engineering activities facilitated.  This paper analyzes the 
ramifications of the use of symmetric and asymmetric paradigms. 

General Terms  
Composition, integration and evolution 

Keywords  
Software composition, separation of concerns, aspect-oriented 
software development, symmetric composition, asymmetric 
composition, modularization, evolution, reuse, software 
integration, component-based software engineering 

1. INTRODUCTION 
The appropriate use of the compositional paradigm has been 
demonstrated to offer a number of potential benefits, including 
improved separation of concerns (modularization), reduced 
impact of change, increased adaptability and evolvability, 
especially in directions that were not fully anticipated, better 
alignment of artifacts, and hence traceability, and improved reuse 
and integration. 
As with any paradigm, different approaches to composition 
enhance or reduce different software engineering benefits, and no 
single approach is good for everything. It is therefore critical for 
software engineers to understand the key differences among 
classes of approaches and the cost-benefit tradeoffs those 
differences entail for their particular tasks, goals and contexts. 
Given the expanding interest in AOSD, it is timely and important 
to examine the tradeoffs involved in the variety of different 
composition approaches in this area. 

As a step in this direction, this paper identifies what may be the 
most critical differentiator between the composition approaches: 
the question of symmetry versus asymmetry. The composition 
approaches used in viewpoints [16], subject-oriented 
programming [8], multi-dimensional separation of concerns 
(MDSOC) [21] and dynamic view connectors [9] employ a 
symmetric paradigm, in which all components are treated as first-
class, co-equal building-blocks of identical structure, and in which 
no component’s object model is more basic than any other’s. Most 
other approaches in the AOSD community, such as AspectJ [11] 
[12], use an asymmetric paradigm, in which “aspects” are 
composed (woven) into “components” that implement a base 
model. Aspects and components are different in structure, and 
component-component composition is not supported; aspect-
aspect composition is not universally supported. Some 
approaches, such as adaptive programming [13], have evolved 
from asymmetric to symmetric, and others, like composition 
filters [1] [3], are in between. We present a critical evaluation of 
symmetric versus asymmetric paradigms when used in some key 
software engineering scenarios, based on how they promote or 
hinder achieving some key software engineering properties in 
software produced by those paradigms. 
It is not the goal of this paper to be comprehensive—doing so 
would require several papers and much additional research and 
evaluation—nor to promote any particular approach to 
composition. Our primary purpose is to raise a critical issue for 
researchers in, and consumers of, compositional software 
engineering, and to analyze its ramifications. Similarly, the 
parameters selected for evaluation are also not intended to be 
comprehensive, but rather, to reflect a set of key issues that are of 
importance to software engineers, and we leave the identification 
and analysis of other issues to future work. 
Section 2 describes symmetric versus asymmetric compositional 
paradigms, identifying three separate kinds of symmetry. Section 
3 discusses two concrete examples, to illustrate some of the 
differences and tradeoffs between symmetrical and asymmetrical 
approaches. Section 4 then analyzes the tradeoffs in the contexts 
of some common AOSD scenarios. Section 5 summarizes the 
conclusions of the analysis and Section 6 discusses related work. 

2. SYMMETRICALLY AND ASYMMETRI-
CALLY ORGANIZED PARADIGMS 

A composition paradigm involves three kinds of entities: 
composable elements, join points and composition relationships. 
The composable elements are the things being composed, such as 
concerns, components or aspects.  Join points to refer to those 



 

points within the composable elements at which composition can 
occur, such as functions in an interface or members of a class 
[11][17]. Composition relationships (e.g., rules [8] or advice 
declarations [11]) specify the details of how composition is to 
occur at join points.  
The three kinds of entities lead naturally to three kinds of 
symmetry, discussed in the rest of this section. 

2.1 Element Symmetry 
Paradigms with element symmetry employ a single kind of 
composable element. For example, subjects [8] and hyperslices 
[21] are composable elements that consist of declaratively 
complete class hierarchies; their definitions stand alone.  
Paradigms with element asymmetry use two (or more) kinds of 
composable elements. As introduced in [12], the term 
“component” denotes elements whose descriptions stand alone, 
while the term “aspect” denotes elements that are described in 
relation to other components or aspects. Such paradigms support 
component-aspect composition, but not component-component 
composition. A subsidiary division is based on whether or not 
they support aspect-aspect composition. However, if aspect-aspect 
composition is fully supported, it is always possible to start with a 
null component and build systems entirely by composition of 
aspects. Since this is equivalent to symmetric composition, we 
assume henceforth that aspect-aspect composition is not permitted 
in paradigms with element asymmetry. 
In this paper, we will use the AOP terminology of “component” 
and “aspect” and use the term “concern” as the inclusive term for 
either. Symmetric composition will be said to consist just of 
components. 

2.2 Join-Point Symmetry 
Join points occur within concerns.1 Individual join points 
themselves may be intrinsically symmetric or asymmetric. A 
symmetric join point is a point in an artifact or execution, such as 
a method definition or call, at which composition can occur. Such 
composition combines the points in some way, as described by the 
composition relationships, such as to call or execute multiple 
methods. Most of the work in this field, and this paper, confine 
themselves to method granularity, taking this loosely to include 
regions that could be extracted to form methods. Joining at 
arbitrary points embedded in a context within other method code 
cannot be supported symmetrically.  
An asymmetric join point occurs when a piece of an artifact, such 
as a method body, contains one or more explicit points at which 
references to (e.g., invocations of) “the other concerns” occur, or 
when the expression of the concern is tangled with others and 
cannot be extracted, and thus, can only have elements composed 
with them in their own context. Examples of the former are Lisp’s 
“call-next -method” [10] and AspectJ’s “proceed” [11]; an 
example of the latter is a Java exception handler.  In 

                                                                 
1  In AspectJ [11], join points are points in the execution of the 

component, and aspects do not have join points as such, but 
rather specify advice code to be executed at join points. This is 
equivalent to saying that the advice code blocks are implicit join 
points, and the rest of the advice declarations specify how they 
are to be composed with join points in the component. We take 
the latter view, because it facilitates uniform discussion of 
symmetric and asymmetric approaches. 

compositional engineering, it provides an alternative to exposing 
structure within methods and allowing join points at arbitrary 
points within code.  

2.3 Relationship Symmetry 
There are two symmetry issues concerning relationships: scope 
and placement. In paradigms with both relationship and element 
asymmetry, relationships are placed only in aspects, and not in 
components. The relationships have a binary scope, referring 
implicitly to the aspect containing them and explicitly to the 
component with which it is being composed. In paradigms with 
relationship symmetry, the relationships may be placed anywhere, 
but they have a scope that ranges across all the concerns being 
composed. This applies whether there is element symmetry or not. 
It is also possible to have element symmetry and yet have 
relationship asymmetry, in which some components contain 
relationships specifying how they are to be composed with other 
components. From the point of view of this analysis, we consider 
the addition of such relationships to the components to render 
them aspects unless they are simply regarded as “suggestions” 
appropriate when used in particular circumstances. 
Relationship asymmetry therefore has the limitation that 
relationships can be only binary, relating an aspect to the 
component into which it is to be composed (or perhaps, as a 
shorthand, to multiple components into which it is to be composed 
uniformly). A relaxation of this definition allows relationships 
also to refer to other aspects, to control the interaction of multiple 
aspects composed with the same component. This “partial” 
relationship symmetry has asymmetric placement, but symmetric 
scope with respect to aspects. 

3. REAL-WORLD EXAMPLES 
Before giving a detailed analysis of the benefits and drawbacks of 
symmetric versus asymmetric organizations, we discuss two 
examples that illustrate some of them. Both examples involve 
separating features, one an extension development scenario and 
the other a parallel/cooperative development scenario.  

3.1 Refactoring to Separate Features 
The experiment on separating features in source code by Murphy, 
et. al. [15] provides an interesting illustration of the respective 
benefits and disadvantages of different approaches. In their first 
example, they discuss a method called RETokenStart.match in the 
gnu.regexp package, in which code for several special kinds of 
matching (multiline, “not beginning of line” and anchored) and 
basic matching are tangled within the method. They discuss 
different ways of separating these special matching concerns from 
one another and from basic matching. One solution they present 
involves refactoring the method to put the different kinds of 
matching into separate methods within the RETokenStart class, 
and then using Hyper/J to compose the matching methods. A 
second solution they present involves refactoring the method to 
put the special kinds of matching in separate aspects, and then 
using AspectJ to weave the aspects into the base method.  
In their analysis, they point out that their Hyper/J solution reduces 
cohesion of the base structure (by introducing additional methods 
that are not even directly called, but are needed for composition) 
and achieves limited separation (because the methods for the 
special matches remain in the RETokenStart class)2, but promotes 
                                                                 
2 This point is subject to debate over whether a different 

separation approach should have been used. 



 

locality (for the same reason). Their AspectJ solution, on the other 
hand, maintains cohesion of base and achieves full separation, at 
the expense of locality (because the methods for the special 
matches are in separate aspects). When asked why a Hyper/J 
design with greater separation, similar to the AspectJ design, was 
not used, Murphy responded that she wanted to maintain the 
locality. Clearly, different developers will have different relative 
priorities for obtaining the cohesion, separation and locality 
properties, and it is not generally possible to obtain all of them 
simultaneously, which strongly suggests that developers must be 
in control over the choice.  

3.2 Cooperative Development of Features 
SAGE is a research prototype developed for performing 
translation of messages between different formats [22]. Without 
going into a description of SAGE itself, we can draw on 
experience with its development as a small real example of the 
use of composition in cooperative development. SAGE’s design is 
expressed as a common information model for the representation 
of declarative information about messages, and several features 
that share this model to provide the message translation system’s 
function: dictionary management, context management, message 
definition parsers, UI’s, and code generation. A symmetric 
methodology for using UML was employed for SAGE’s design, 
in which more than one concern (common model or design 
feature) could describe the same element (entity or association). 
Although various researchers in the group created UML models 
when developing new concerns, all felt free to add to or change 
the models used in other concerns when that was appropriate, and 
there were ongoing discussions about how best to model concepts. 
In effect, the concerns were preserved as logical constructs rather 
than having each concern “belong” to one or another team 
member. The UML models for the concerns were converted to an 
equivalent Java implementation with a model-composition/Java-
generation tool called Tengger [23]. Each concern had a package 
of Java classes where the operations defined in the UML model 
are implemented. The Java classes in the concerns are all 
composed using Hyper/J [18] to produce the final SAGE system. 
We retrospectively analyzed the SAGE design to see to what 
extent it could fit an asymmetric model. The common information 
model is a natural base component, and we expected that each 
feature might be represented as an aspect of it. To explore this, we 
first had to remove the inherently symmetric approach of multiple 
concerns describing the same entity by conceptually declaring 
each entity to “belong” to a single concern, and be imported into 
other concerns as needed. We then examined concern-concern 
interactions, and found five ways in which entities defined in a 
concern are augmented by other concerns that import them. From 
least to greatest “impact” they are: 

1. the feature adds subclasses to imported entities (noted as 
< in Table 1), 

2. the feature adds associations from some of its entities to 
imported entities (R), 

3. the feature adds methods or attributes to imported 
entitites (M), 

4. the feature generalizes (adds superclasses) to imported 
entities (>), which often implies (3), or 

5. the feature adds inheritance relationships between 
imported entities (I). 

The actual interactions in the SAGE design are summarized in 
Table 1. The interactions below the shaded diagonal represent 
cases where features later in the table import elements from 
concerns earlier in the table. If the portion of the table above the 
diagonal were empty, we would have a sequence of concerns, 
each building upon prior ones. This would fit an asymmetric 
organization in which each feature is an aspect, and the aspects 
are applied to the common model. However, even though the 
features have been ordered so as to place as many interactions as 
possible below the diagonal, the upper right portion is not empty. 
This reflects the fact that there are symmetries inherent in SAGE’s 
design. 

Table 1. Concern Interactions in SAGE 
depends 

on: 
dependent: 

Common 
model 

Contexts 
feature 

Dictionary 
feature 

Surfaces 
feature 

UI 
features 

Generation 
feature 

Common 
model 

   R    

Contexts 
feature 

>, M, R  >, M    

Dictionary 
feature 

>, M, R >, M, R      

Surfaces 
feature 

  I, R, <    

UI features >, M, R  <    

Generation 
feature 

>, M   M   

 
The simplest symmetry is denoted by the R in the first row: while 
the dictionary feature is heavily defined in terms of entities that 
belong to the common model, the common model defines an 
association between one of its own entities (DenseRange) and one 
that belongs to the dictionary feature (NamedValueDictionary). 
This symmetry could be removed: merely asserting that 
NamedValueDictionary belongs to the common model instead of 
the dictionary removes the “R” from the matrix. But this argument 
is facile; it hides the fact that in an asymmetric model, the 
component should be an “element whose descriptions stand 
alone,” as discussed in Section 2.1. We would either have a 
component that cannot stand alone, but must be augmented by an 
aspect to be functionally complete, or have to move a good deal of 
the dictionary feature into the common model, defeating the 
separation. 

The other symmetry arises from the fact that, while the dictionary 
feature refers to and generalizes an entity defined in the context 
feature (BusinessContext), the context feature generalizes an 
entity defined in the dictionary feature (MessageSet). Having a 
feature generalize entities that belong to other features is a 
common phenomenon that often arises from one of two causes. 
The first cause is that the feature defines an association from one 
of its entities that may link to any one of several entities. This 
requires forming a type that characterizes the operations actually 
expected to be common to those entities in this union, so that they 
can be called on any entity reached by traversing the association. 
For example, the function and behavior of the context feature had 
no need for BusinessContexts to have names. But the design of 
the dictionary feature called for a dictionary of BusinessContexts, 
requiring them to be a specialization of its entity called 
IdentifiableEntity, which provides names.  The second cause is 



 

that the feature has a view that simply demands a new 
generalization. For example, the Code Generation feature 
considers several unrelated entities in the common model to all be 
CodeGenParts, with the corresponding operations and state 
needed for that behavior. It is harder here to argue that the 
assignment of entities to features is in error. Neither aspect is 
really closer to the base component than the other, and, in fact, the 
order of the two rows/columns would need to be switched to yield 
the actual historical order of their development. A paradigm with 
relationship asymmetry does not cover this case. 
In general, all symmetries can, with effort, be converted into 
asymmetries by imagining or declaring that some elements of an 
aspect belonged in the component. However, the issue is not 
whether the transformation is possible post-facto, but whether it 
clarifies the design, and whether the desired separation can be 
maintained as more and more material is moved into the 
component. 
The “asymmetric” interactions in this example, below the 
diagonal, nonetheless reveal an interesting point about 
relationship symmetry. The interactions in the first column are 
aspect-component interactions. All the others are aspect-aspect 
interactions, which are essential in situations like this where one 
aspect can build on another. The fact that most rows have entries 
in the first column as well another column shows that it is 
necessary for composition relationships to refer to join points in 
the component and in other aspects together (or, perhaps, to join 
points that result after weaving other aspects into a component). 
At least a degree of relationship symmetry is therefore needed 
even in these cases. 

4. EVALUATION 
In this section, we compare symmetric and asymmetric 
composition paradigms against a set of evaluation criteria. These 
criteria fall roughly into 5 categories: Creation, Understanding, 
Separation, Reuse and Scaling. In the following sections, we use 
the first three of these criteria to evaluate the suitability of 
asymmetrically and symmetrically organized paradigms in three 
common AOSD usage scenarios: extension, parallel/cooperative 
development, and integration. We chose these scenarios to be 
illustrative and broadly representative, but they are not intended to 
be (and cannot be) exhaustive.  Analysis of reuse and scaling is 
largely independent of usage scenario, so these are discussed later. 
The results of the analysis are summarized in Table 2. 

4.1 Creation and Extension Scenarios 
4.1.1 Creation (Writing or Extraction) 
Concern creation takes place either directly, ab-initio or by reuse 
and modification, or by extracting a concern from an existing 
body of software. 

4.1.1.1 Creation of Co-Evolving Concerns 
Asymmetric paradigms actively promote the representation and 
encapsulation of crosscutting concerns that are to evolve, and be 
reused as a unit, with the underlying component representation 
(e.g., class hierarchy). The intent here is that the component 
dictates the primary structure, and the aspects fit into it, rather 
than having a structure of their own. This allows convenient 
separation of fragments that make up crosscutting or subsidiary 
concerns without the complications of different concerns dictating 
their own structures. Symmetric paradigms have to address these 
complications by being able to reconcile the different structures of 
concerns being composed.  

In extension scenarios, the simplicity of expression of both 
asymmetric join points and asymmetric composition relationships 
may also be an advantage.  In addition, placing the relationships at 
an aspect’s join point increases the cohesion of the aspect as it is 
written. 
The simplicity enforced by the asymmetric paradigm is thus an 
important advantage in this scenario. It is important to note, 
however, that suitable tooling or syntactic sugar can provide 
asymmetric usage features on a symmetric paradigm; a symmetric 
paradigm thus does not require that all uses of it be symmetric. 
When there is natural asymmetry, as in extension scenarios, it can 
be represented and exploited even in symmetric paradigms. 

4.1.1.2 Concern Creation for Reuse 
With known approaches to software engineering, there is an 
intrinsic trade-off between initial development cost and evolution 
cost. One common example of this trade-off is illustrated by the 
development of closed components vs. the development of OO 
frameworks. A framework developer framework attempts to 
foresee the behaviors that would be modified to extend the 
function of the framework and to encapsulate them appropriately. 
In effect, the developer is identifying anticipated join points or 
“open points.” This anticipation raises the cost of initial 
development, but reduces the cost of development of extended 
components. From a non-reuse standpoint they seem to be 
“unnatural” methods3. 
The need for reuse reduces the effectiveness of using an 
asymmetrically-organized paradigm. Element asymmetry means 
that the elements that are aspects cannot themselves be augmented 
by other aspects. This implies that the designers may need to 
embed functionality into the base component to make it available 
for subsequent reuse. Relationship asymmetry is especially 
inimical to reuse, because relationships in aspects stating how 
those aspects are to be composed preclude their being composed 
differently as new, reuse contexts arise.  

The same phenomenon takes place with concern extraction. 
Extraction to produce a delta from a known base naturally 
produces an aspect. But the aspect no longer forms a reusable 
element until it is actually composed into the base. And even then, 
additional effort is needed to convert the aspect into a useful 
concern that anticipates interesting extensions. 

4.1.1.3 Creation for Comprehension 
A concern is sometimes created for purposes of comprehension or 
documentation, to help developers understand and comprehend 
the concern without having to follow irrelevant material reflecting 
other concerns. For these purposes, the simplicity of expression 
and cohesion advantages shown by asymmetrically-organized 
paradigms for creating one-time use software come to the fore 
again. 

4.1.2 Understanding 
Understanding is the crucial enabler for software maintenance and 
evolution. In working with software-by-composition, we can 
separately treat the understanding of separate concerns from the 
understanding of their joint behavior. Murphy, et. al. [15] use the 
two measures of cohesion and locality to characterize 

                                                                 
3 As described in the “Comparison” subsection of section 4.2 in 

the Murphy paper [15]. 



 

understandability4. Cohesion is the likelihood that two pieces of 
information appearing together are actually relevant to one 
another, while locality refers to the likelihood that two pieces of 
information relevant to one another will actually appear together. 

4.1.2.1 Separate Understanding 
Paradigms with relational asymmetry bundle the join points and 
relationship specifications of an aspect together. This increases 
the locality of the aspect considered separately while reducing its 
cohesion somewhat when taken as a separate element. Using a 
symmetric paradigm’s capability to move the specification of how 
the extension fits into the base elsewhere can raise the cohesion of 
an extension. Doing this requires that the extension not refer 
directly to the base; instead, interfaces required by the extension 
and structural relationships that are important to it must be part of 
the extension. This promotes locality, by increasing the extent to 
which the information needed to understand the extension is 
present within the extension. Locality might not be perfect, 
however, because an understanding of patterns of interaction 
within the base might be necessary to full understanding of the 
extension. This depends on the nature of the extension, including 
the extent to which it itself forms a significant body of logic, 
versus a set of small additions to the base’s functionality. 
If an extension’s join points are not intrinsically asymmetric, 
locality of separate understanding is also reduced by using an 
asymmetrically-organized paradigm. Use of an asymmetric join 
point when not necessary forces the reader to try to understand 
why the execution of “the other” needs to occur where it does, 
when the choice was actually random. 

4.1.2.2 Joint Understanding 
While asymmetry decreases the cohesion of an extension’s design 
when considered separately, it increases the cohesion of the joint 
design of the extension as it relates to the base component because 
the relationship specifications are a more crucial part of the joint 
design.  

If an extension’s join points are intrinsically asymmetric, both 
symmetrically and asymmetrically organized paradigms have the 
same cohesion and locality characteristics for the joint design. 
This is because the invocation of “the other” forces a nested 
composition relationship and the placement is evident in the code 
for the extension. 

4.1.3 Concern Separation [decoupling] 
Separation of concerns is, ultimately, the raison d’être for AOSD. 
In the abstract, relationship or join-point asymmetry implies an 
incomplete separation: the aspect is specified in terms of the base 
and its expression therefore depends on the lower-level decisions 
made for the base. In fact, the extension scenarios share this basic 
asymmetry, as an extension is generally created with respect to a 
base. In practice, even with relationship symmetry, complete 
separation is usually possible only in cases where there is no 
interdependence. 
In addition to its impact on understandability, separation can have 
an impact on concern analyzability, testing, and evolution.  

4.1.3.1 Analyzability 
OO software development trades analyzability for increased 
reusability, and compositional software development does so as 
                                                                 
4 Their third measure, separation, is treated separately because it 

has an impact on many issues as well as on understanding. 

well. For purposes of analyzing a component, exactly the same 
issues apply, but one of the usual points-of-entry used by analysis 
approaches becomes less useful. An extension can alter the 
analysis characteristics of a class in the same ways that a subclass 
can, and can even access and alter variables that are private to the 
class. So just as an analysis might need to be conservative because 
an object may be subclassed, it must also be conservative because 
it may be composed. One point-of-entry often used in program 
analysis is creation of object instances, because at that point, the 
actual class of the object being created is known. But modern 
programming practice suggests the use of a factory pattern for the 
creation of objects, and this results in the loss of those points of 
entry. The same is true of composition. The class being 
instantiated is not limited to the characteristics it has in the base, 
but may have additional characteristics acquired in the 
composition. 
But while analysis of a component is still useful in AOSD, 
analysis of an aspect is generally unworkable. The aspect code is 
fragmentary and partial, and the interconnecting relationships and 
logic are missing. The analyzer does not know which parts of an 
aspect will be pulled together by the base’s inheritance hierarchy 
or which other parts will be executed since the calls to them are 
not direct within the aspect but are side-effects of calls into the 
base. In this sense, a symmetrically organized paradigm is 
technically at an advantage. But this technical advantage may be 
less than it first appears, being actualized only for large 
extensions. For very small extensions, the fact that all of the 
interesting flow connections are missing places analysis of 
symmetrically organized concerns on the same footing as 
asymmetric ones. But when the concern is large and its join points 
few, the analysis of an extension concern in a paradigm with 
relationship symmetry can yield as much useful information as the 
analysis of a base. 
Less conservative estimates of possible interaction are possible if 
the analysis could rule out hidden “cross-talk” between the 
concerns, as is being done in [20]. Developing guidelines and 
exploiting their enforcement in analysis tools is still a relatively 
unexplored area of AOSD. 

4.1.3.2 Testing 
Testing encompasses both the derivation of test cases for a body 
of software, and their execution and evaluation. The derivation of 
test cases usually relies on the external specifications or on the 
code body. Test case generation from external specifications 
should be insensitive to the composition paradigm. Test case 
generation from the code body generally depends on analysis of 
the code, whose characteristics were discussed earlier. Test cases 
generated from pre-composition code reduce the delay in 
constructing a test suite and the burden of doing so, although they 
may be overly redundant because of the weakness of the program 
analysis. Test execution is another matter. While the current state 
of the art is too weak to consider the execution of pre-composition 
tests to be adequate, this does not imply that pre-composition 
testing is valueless. Like unit testing, it can reduce the cost and 
burden of the later integration tests.  The relative merits of 
symmetrically and asymmetrically organized paradigms for 
testing are similar in direction to those for analysis, although 
smaller in magnitude. 

4.1.3.3 Impact of Change 
As the base component of a system evolves, its evolution may 
have an impact on the extensions that have been added to it. The 



 

most common forms of evolution are the creation of new classes 
and subclasses, the refactoring of class hierarchies, the creation of 
new methods or the refactoring of methods. Even though the 
advent of AOSD can be expected to reduce the need for evolution 
of components by allowing new functionality to be built as 
extensions, base changes will still take place. 
These sorts of changes to a base most visibly affect the 
composition relationships. With asymmetric relationships, a 
change to the base must be reflected in all of the aspects that 
modify it, while symmetric relationships lie outside the elements 
themselves, making them potentially more accessible and easier to 
change. More importantly, symmetric relationships, by nature, 
have to deal with connecting join points in different concerns, and 
thus with such issues as reconciling different class hierarchies and 
interfaces. These capabilities facilitate handling an evolving base. 
Asymmetric relationships specify attachment to join points in a 
base component, leaving the base to dictate the structure. They 
therefore usually do not deal with hierarchy and interface 
mismatches, and so are not well equipped to deal with an evolving 
base. In cases where the base and extension have been separately 
acquired, source code may be unavailable, making the upgrade 
unworkable in paradigms with relationship asymmetry. 
Less visibly, but of potentially greater impact, is that the use of 
asymmetric elements encourages exploitation of the base’s 
structure. If for example, an aspect defines a class containing 
several methods that go together into extensions of a base, but 
also defines what is, conceptually, a subclass with specialized 
behavior, it depends on the subclassing relationships in the base to 
carry out its own inheritance. As a result, if the base evolves so 
that the methods are no longer inherited into the expected 
subclasses, inappropriate behavior takes place.  
It is possible to separately evolve an aspect on top of an 
unchanging base. In this situation, there is advantage to packaging 
the composition relationships with an aspect. A change can be 
incorporated simply by installing a new extension. This advantage 
can be realized equally well within a symmetrically organized 
paradigm that allows composition relations for various bases to be 
packaged with the concerns implementing the extensions. 

4.2 Parallel/Cooperative Development  
4.2.1 Creation (Writing or Extraction) 
The use of AOSD to facilitate parallel and/or cooperative 
development tends to move away from circumstances where 
extensions all cluster around a common pre-specified base. As the 
number of mutually composable elements rises, multipart 
composition relationships are needed. Coping with the fact that 
different concerns may be based on slightly different versions of 
each other is facilitated by removing the composition relationships 
from being intimately intertwined with concern artifacts. 
Software written for flexible composition has many of the 
characteristics of software being developed for reuse. Developers 
put some advance effort into thinking about the major functional 
divisions of their algorithms and the points at which other 
components might be expected to be joined.  

4.2.2 Understanding 
4.2.2.1 Separate Understanding 
The same analysis applies here as in Section 4.1.2.1. 

4.2.2.2 Joint Understanding 
In discussing the extension scenarios, we observed that an 
asymmetrically organized paradigm increases the cohesion of the 
joint design. For the parallel/cooperative scenarios, however, the 
joint understanding is not just with the single base because there 
may be a cascade or a set of related code bodies to examine. 
Under that circumstance, it becomes more important to have a 
simple way of identifying and gathering the composed code 
together. So, for this class of scenarios, symmetrically organized 
paradigms provide for better understanding of the joint behavior. 

4.2.3 Separation [decoupling] 
As discussed in Section 4.1.3, extension scenarios have a natural 
asymmetry – the extension vs. the base. In our original 
formulation of subject-oriented software design [8], we looked 
toward a more complete separation to suit cooperative 
development and integration scenarios as well. 

In MDSOC, a symmetric paradigm, each concern provides a 
complete, even if partially implemented, design of the classes and 
the methods involved in its coding and in its interaction with other 
concerns [21]. Each concern is designed without reference to a 
base, and each is completely separated from the others. This 
enables the developers working with each part of an application to 
focus on a hierarchy of abstraction appropriate for it, without the 
clutter of inheritance structures needed for other parts. 
Not all concerns separate so clearly, which is why the space of 
scenarios really is a spectrum. But developers of software for 
composition are mindful of trying to avoid tangling many 
concerns in one class or method and of exposing the proper join 
points for cooperative use. As with framework design, what could 
have been written as in-line code in a method is exposed as a 
separate method called where needed, to expose it as a join point. 
Separation of concerns demands that developers of a concern 
avoid dependence on the structure of other concerns. For example, 
awareness that there are two different calls to a class’s method 
from within another concern is a structural dependence that 
should be avoided. Wrapping another method with an “around” 
also presumes the knowledge that the other method doesn’t need 
to be around this one instead. So in evaluating the symmetric vs. 
asymmetric paradigms, we must recognize that although it is 
possible to use asymmetric constructs in a symmetric 
organization, it is desirable to avoid them and that in this central 
group of scenarios we should evaluate them from the point of 
view of their ability to achieve further separation. 

4.2.3.1 Impact of Change 
The advantages discussed for a symmetric paradigm’s 
management of impact of change become even more compelling 
in these scenarios. Where previously the centralization of 
composition relations helped point to potentially related parts of 
extension aspects, the cooperative scenarios exploit concern-
concern interactions like those in the SAGE example discussed 
above much more heavily and the composition relationships help 
manage the relatively independently evolution of the concerns. 
The case for evolution of extensions loses its separateness and is 
evaluated in the same way. 

4.3 Integration Scenarios 
The use of AOSD to facilitate integration reflects the need to 
integrate separately developed software. It is the far point in the 
spectrum of composition scenarios and cannot be handled at all by 
an asymmetrically organized paradigm because each of the 



 

products is a full component – there are no aspects. Tight 
integration is seldom easy, but loose integration is often possible 
by using some of the method calls in each component to trigger 
code in a glue component that then invokes necessary operations 
in the other. But even this scenario – two components and a glue 
concern, requires a symmetrically organized composition 
paradigm. It is not possible to view either of the original 
components as modifying the other. 

4.4 Scenario Independent Issues 
4.4.1 Reuse 
While the merits of the two paradigms have been discussed with 
respect of the creation of software for reuse, their suitability for 
the actual reuse of software concerns bears additional comment. Is 
a reusable concern to be built as a component, or as an aspect? 
Building it as a component would mean that two such could not 
be combined in an asymmetric paradigm, but building it as an 
aspect would mean building it to apply only to a specific base, or, 
in the case of relationship symmetry, to a broader class of bases, 
but not to other aspects. The fact that neither choice is suitable 
indicates that only a symmetrically organized paradigm is suitable 
as a vehicle for promoting a reusable components industry, and 
relationship symmetry is essential to any kind of reuse. 

4.4.2 Scaling 
This same issue of suitability as a component model for large-
scale use and reuse shows up when looking at the scalability of 
the paradigms. In software construction by composition, it must 
be possible to take several parts and compose them to produce a 
new part. With asymmetric models, one cannot talk about a part in 
general, only about either the single base component or about an 
aspect. If, for simplicity, we abandoned the idea of a base 
component and focused on the composition of aspects to produce 
aspects, we would have a uniform part model. But it would be one 
in which the universe of parts is partitioned according to the base 
component to which they are applied. And if we then resolved that 
problem by edict that there be a common null base the result 
would be a paradigm that was only vacuously asymmetric – it 
would be a symmetric paradigm in the end. 
On the other hand, within the context of the extension scenario, 
paradigms with relationship asymmetry have an advantage: since 
their composition relationships are simpler, not having to be 
concerned about structural mismatches, the composition is simpler 
and scales better. 
Table 2 summarizes the evaluation presented above. Each cell 
indicates whether the evaluation suggested better handling by an 
asymmetrically organized paradigm (A), a symmetrically 
organized one (S), or neither (-). Three evaluations are shown for 
each case: for element symmetry, for join-point symmetry, and for 
relationship symmetry. 

 Table 2. Element/Join-Point/Relationship Advantages 
Summarized 

advantage in Creation/ 
Extension 

Parallel/ 
Cooperative 

Integration 

advantage for    

Creation  

Co-evolving concerns AAA 

For Re-use SS-S 

For Comprehension -AA 

SSS SSS 

Understanding    

Separately   

Cohesion -ssSS  

Locality aaaAAA -SS 

Jointly   AAA 

Cohesion AAA  

Locality --- S-S 

Separation [de-
coupling] 

 SSS 

SSS 

Analyzability S--s--  

Testing S--s-- S-- 

Base Evolution S--SS S-- 

Extension Evolution --- 

Reuse  SSS 

SSS 

 

SSS 

Scaling   SSSAAA 

  SSS 

 

5. CONCLUSIONS AND FUTURE WORK 
The use of any compositional paradigm has a significant impact 
on a developer’s ability to achieve various desirable software 
engineering properties.  It is critical for both developers and 
AOSD formalism developers to understand how key differences 
among AOSD approaches affect particular a approach’s ability to 
promote or hinder the attainment of these properties for particular 
tasks, goals, or contexts. 
The issue of symmetry vs. asymmetry in AOSD approaches may 
be the most critical differentiator among compositional 
approaches.  Analysis of the use of asymmetrically and 
symmetrically organized paradigms for software composition 
across a wide spectrum of usage scenarios indicates that: 

1. Asymmetric paradigms are superior for co-evolving 
crosscutting or subsidiary concerns. 

2. Both paradigms have some advantages in simple 
extension scenarios, but symmetric paradigms are at 
least as good as asymmetric paradigms in those 
scenarios. 

3. The relative advantages of symmetrically organized 
paradigms increase with the independence of the 
development efforts in multi-extension and multi-
component software, until, in the limiting case of 
software integration, only symmetrically organized 
paradigms are suitable.  

4. Only symmetrically organized paradigms are suitable as 
the basis of a reusable component model for software 
construction by composition. 

While symmetry vs. asymmetry is a critical issue, it is not the only 
one (see, for example, [7]).  For the future, other important issues 
must also be identified and analyzed.  Only when these issues are 
understood will developers be able to leverage AOSD to its 
fullest. 

6. RELATED WORK 
Workshops on “Advanced Separation of Concerns” at OOPSLA 
’00 and ECOOP ’01 [4] included discussion groups on the design 
space of aspect-oriented systems. Symmetry, and related issues 



 

such as composability, closure and location of composition 
specifications were discussed. Aksit et. al. discuss six concerns in 
separation of concerns approaches [2]. They include 
composability, and closure, which is the property that composed 
entities must also be composable elements so that they can be 
involved in further compositions. There is to our knowledge, 
however, no other detailed analysis of symmetry issues in the 
context of composition. On the other hand, there are a number of 
approaches to AOSD with different symmetry properties. Our 
work on subject-oriented programming and multi-dimensional 
separation of concerns, both symmetric approaches, was 
mentioned during the course of the paper. We discuss a few others 
briefly here. 
Composition filters [1] is an approach in which sequences of 
filters can be associated with objects. All messages to and from 
such objects pass through the filters in sequence. Each filter has 
the opportunity to act upon or modify each message, throw an 
error condition, or pass it through. Filters can implement new 
methods not directly supported by the objects, and can introduce 
their own state. This approach exhibits element asymmetry, since 
filters are different from objects and can only be attached to 
objects. The only composition relationships are separate 
specifications (or calls to the runtime system) to attach filters to 
objects in the appropriate sequences. Since these relationships can 
refer to the any of the filters and objects being composed in a 
uniform way and are external to all of them, they are symmetric, 
though the definition of filter-filter interaction is limited to 
sequencing. Composition filters therefore allow flexible 
attachment of reusable filters to arbitrary objects, adding or 
modifying behavior, but they cannot directly be used to integrate 
separate components (class hierarchies or domain models).  
The work on adaptive programming [13] shows an interesting 
progression from asymmetric to symmetric. Earlier work allowed 
propagation patterns containing routing specification and handler 
code to be associated with class graphs, thereby injecting routing 
and handling code into the classes. The first version of this 
approach exhibited both element and relationship asymmetry. 
More recent work on adaptive plug-and-play components [14] has 
propagation patterns and a skeletal class graph they refer to 
packaged into components, which can then be composed with one 
another and/or instantiated relative to a full class graph.  
AspectJ [11] makes explicit the distinction between components 
(classes) and aspects, and therefore exhibits element asymmetry. 
To date, aspects cannot be woven with aspects. The element 
asymmetry renders AspectJ suitable for extension scenarios, but 
unsuitable for supporting multiple views or domain models or for 
integration. Earliest versions of AspectJ exhibited relationship 
asymmetry: advice specifications in aspects listed the join points 
to which the advice was to apply. When multiple pieces of advice 
within aspects are woven into the same join point, precedence 
rules determine how they should be ordered. These rules now 
include a “dominates” declaration, in which one aspect can be 
explicitly specified to dominate another. This gives AspectJ a 
limited capability to specify aspect-aspect interactions, but still 
places the specification in one or other of the aspects rather than 
moving in the direction of providing symmetric relationships. The 
use of abstract pointcuts allows separation of pointcut details from 
advice code. The degree of relationship symmetry provided by 
these approaches, when they are used, helps to mitigate some of 
the disadvantages discussed earlier, making it possible for later 
aspects to reuse earlier ones to some extent, and for generic 

aspects to be woven into different components, but is not 
sufficient to provide full control of the weaving of multiple 
aspects into the same components.  
Dynamic view connectors [9] are, essentially, composition 
relationships, possibly containing glue code, which allow 
integration of tools using custom views into an object repository 
system. The composable elements are objects in the repository, 
and the results of composition (or translation) are virtual objects 
that can be used by tools. This approach exhibits both element and 
relationship symmetry, which enable it to support materialization 
and integration of multiple views. 
Mixin layers [19] represent an interesting mix of symmetric and 
asymmetric properties.  The composable elements are mixin 
layers, which are like parameterized templates. They are 
essentially uniform in structure (element symmetry), except that 
one can distinguish layers without parameters as being base 
components. Join points are the parameters, and are asymmetric, 
but the composition relationships are instantiation expressions, 
which are symmetric. The element and relationship symmetry 
allow layers to be composed in various combinations and orders, 
and to be reused widely. 
Viewpoints [16] represent a symmetric compositional approach to 
requirements engineering.  Modules, called viewpoints, 
encapsulate developers' views of both the requirements-building 
process and the pieces of the requirements artifact being 
developed.  Different viewpoints may describe the same 
requirements artifacts in different notations, and they may create 
conflicting definitions for given requirements.  Each viewpoint is 
co-equal (element symmetry), and the specification of 
relationships among viewpoints is also symmetric (relationship 
symmetry).  One characteristic of the Viewpoints approach that 
differentiates it from other compositional approaches is that 
different viewpoints are not physically combined as part of a 
composition process.  Instead, viewpoints are integrated by 
coordination, and synchronization points replace join points. 
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