
RC22686 (W0212-148) December 30, 2002
Computer Science

IBM Research Report

CAT: A Toolkit for Assembling Concerns

William H. Harrison, Harold L. Ossher,
Peri L. Tarr, Vincent Kruskal, Frank Tip

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

CAT: A Toolkit for Assembling Concerns
William Harrison, Harold Ossher, Peri Tarr, Vincent Kruskal and Frank Tip

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598
{harrisn, ossher, tarr, kruskal, tip}@watson.ibm.com

1 Introduction
Aspect-oriented software development (AOSD) includes sepa-
rating concerns, and then composing or weaving them to pro-
duce software that realizes appropriately-combined behavior.
This might involve composition of two or more class hierar-
chies, for example, or weaving of aspect code into base code.
Composition or weaving can be defined, specified and imple-
mented in a wide variety of ways, and can be applied to software
artifacts of various kinds. Yet, despite these differences, there
are important similarities. The thesis of this paper is that an ab-
straction layer and toolkit supporting low-level concern assem-
bly would enable AOSD tool builders to leverage many of these
similarities, reducing development effort and increasing the
scope and interoperation of their tools.

Concern assembly is the low-level, detailed manipulation of
individual classes, members, and even chunks of code within
members, that are needed to accomplish composition or weav-
ing. In addition to the natural language meaning of “assembly,”
the connotations associated with term “assembly language” are
intentional. Humans do not work at this level, but many AOSD
tools need to perform concern assembly in their back ends.
This paper describes a concern assembly toolkit (CAT) that
provides abstractions and support for concern assembly. The
toolkit is intended:

• to provide a common set of abstractions, including di-
rectives for specifying assembly, that suits a variety of
purposes and of AOSD approaches,

• to enable support for applying assembly to different
software representations and artifacts,

• to support a variety of implementation strategies for
AOSD, and

• to be an open framework, capable of extension to ac-
commodate new approaches, artifacts and
implementation strategies.

These goals are now elaborated.
For a variety of purposes and AOSD approaches: Many ap-
proaches describe composition or weaving using high-level
linguistic constructs that involve pattern matching and sets. For
example, Hyper/J [18] uses composition relationships such as
mergeByName, which involves name and type matching, and
AspectJ [12] uses pointcut designators, which are expressed as
patterns. Each such high-level specification boils down to (usu-
ally many) assembly operations. Tools that implement these
approaches must, in effect, expand the high-level specification

into a set of lower-level assembly operations, and then apply
those. So the first goal of our toolkit is to provide a common set
of assembly directives that are suitable for realizing a wide vari-
ety of high-level approaches. They are provided both as Java
interfaces and through an XML syntax. They provide a common
basis for different approaches, which we hope can lead to
interoperation and also to greater understanding of their
similarities and differences. They also provide a common and
suitable representation for tools to analyze, check and display
the results of composition, such as applying program analysis
techniques to check for behavioral interference [19]. Making
these assembly directives explicit is also useful during tool
development and debugging, because it becomes possible to see
just what the tool is doing, at a level that is more convenient
than examination of actual code (especially binary code).
For a variety of artifacts: In the absence of specialized runtime
virtual machines, code composition is achieved by assembling
fragments expressed in some existing language. Whether this is
done as a separate tool, as a preprocessor, or within a compiler,
some form of assembly is taking place. Even in systems that
support runtime manipulation of aspects in standard runtime
systems, some form of assembly is needed to prepare objects for
dynamic aspect manipulation (e.g., addition of aspect pointers or
role tables). Assembly can be applied to many different repre-
sentations of software, such as Java source code, Java class files
and bytecode streams, and to artifacts other than code, such as
UML diagrams. Different representations are appropriate in
different contexts, and, ideally, AOSD tools should handle mul-
tiple representations consistently. Most of a tool’s user-level
functionality does not depend on the representation being used,
but performing the detailed assembly is representation specific.
This second goal of our toolkit is then to provide a common
interface defining the assembly abstractions, which can be im-
plemented by pluggable concern assemblers for a variety of
representations, allowing the tools that build upon it to ignore
representation details. In developing the abstractions, we have
been working both with Java and UML class diagrams. We ex-
pect that the abstractions will also be applicable to other object-
oriented languages, such as C# and Smalltalk.

For a variety of implementations: Even ignoring software repre-
sentation, there are various ways of implementing composition
or weaving to achieve a desired result. For example, tracing
code can be inserted directly into the code being traced, or calls
to it can be inserted, or new “stub” methods can be generated
that substitute for original methods and call the tracing methods
and the original methods. Developers of AOSD tools might want
to experiment with such different approaches, and might even

 2

want to make choices available to their users. Implementing
these on even a single software representation is onerous. The
third goal of our composition toolkit, then, is that such different
approaches be convenient to specify in terms of the assembly
directives.
Via an open framework: We currently have concern assemblers
for Java class files and UML class diagrams represented as XMI
files. We also have a “serializer” assembler that produces the
XML form of the assembly directives, and an XML reader that
consumes it. This is just a start. The toolkit is intended to be an
open framework, permitting new and different concern assem-
blers to be developed and plugged in. These will often be fa-
cades on other, existing toolkits, such as those that support ma-
nipulation of Java class files (e.g., [15][3]). For example, our
assembler for Java class files is built on the JikesBT bytecode
manipulation toolkit [12].
The rest of this paper describes concern assembly with CAT,
using a running example introduced in Section 2 for illustration
throughout. Sections 3, 4 and 5 describe the assembly abstrac-
tions and directives, and Section 6 describes the structure of the
toolkit itself. Section 7 evaluates the toolkit by discussing how it
can be used to implement some representative AOSD ap-
proaches and implementation strategies. The paper concludes
with discussions of related and future work.

2 Introducing an Example
Consider a small example based on a piece of software that aids
in the filing and processing of disability insurance claims,
abridged from [5]. One concern defines the class ClaimDoc,
which is created by/for claimants and goes through several proc-
essing steps. In this illustration, primitive access control must be
added to claim documents. The access control protects the claim
document to ensure that only authorized role-players invoke
certain operations, specifically: Claim Assessors can invoke
approveClaim(), and Claimants can invoke setClaim-
Request, setName, setID, and set the address variable.1
If one of these is invoked by the wrong role-player, an exception
will be thrown. The problem thus has two concerns, which we
can imagine as the Java shown in Figure 1.

The Claim Document Concern:
Class ClaimDoc {
 void approveClaim() {...}
 void setClaimRequest(float amount) {...}
 void setName(String name) {...}
 String name() {...}
 void setID(int id) {...}
 int iD() {...}
 String address;
}

The Protected Claim Document Concern:
Class ProtectedClaimDoc {
 boolean isClaimAssessor(){...}

1 The original example used getter/setter methods for address

also; we changed it to enable us to illustrate intra-method as-
sembly in Section 5.

 boolean isClaimant() {...}
}

Figure 1: Example Concerns to be Assembled
The objective of concern assembly is to compose these two con-
cerns such that the appropriate test is applied before each pro-
tected method. We illustrate this is using the Hyper/J approach,
in which the two classes are composed to form a single com-
posed class, which is used at runtime. A (slightly simplified)
extract of the desired composed class is shown in Figure 2.
Class ClaimDoc {
 void originalApproveClaim() {
 /* copy of input ClaimDoc.approveClaim */ }
 void isClaimAssessor() {
 /* copy of input
 ProtectedClaimDoc. isClaimAssessor */ }
 void approveClaim() {
 if (isClaimAssessor())
 originalApproveClaim();
 else
 throw new ProtectionError();
 }
 …
 String address;
}

Figure 2: Example Assembled Result (Extract)

3 The Assembly Process
With the Concern Assembly Toolkit, a concern assembler proc-
esses software artifacts in input concerns, to produce separate,
composed artifacts in output concerns, as illustrated in Figure 3.
For example, a concern assembler for Java binary would process
input "class" files and produce a new set of output, composed
class files. The composed software is created partly by copying
and transforming input software elements and partly by synthe-
sizing new software elements. Assembly directives control the
operation of the concern assembler, specifying the details of the
composition desired. They can be written in the concern assem-
bly language, a usage of XML. Alternatively, they can be issued
as calls to a Java API implemented by all concern assemblers. In
either case, there is a concern assembly protocol that constrains
the ordering of directives to ensure proper operation of concern
assemblers.
We confine our attention to object-oriented software, though the
approach, and even many of the details, also apply to other
paradigms. To support multiple object-oriented artifact represen-
tations, including different languages (e.g., UML and Java), the
directives are designed to apply to the object-oriented family of
languages as a whole, often by allowing open-ended specifica-
tion of elements like signatures and modifiers as strings. Except
for basic structure, such as comma-separated lists, of the details
of these strings are not laid down by the interface.

Concern assembly thus clearly involves manipulation of object-
oriented software elements, such as classes and members. In
addition, we introduce three other kinds of elements:
• organizational elements, which provide for grouping and

organization of the other elements,
• method combination graphs, which support specification of

control flow among combined methods, and

 3

• methoids, which allow chunks of material within method
bodies to be treated as methods.

The rest of this section describes the object-oriented software
and organizational elements, along with associated directives
and protocol. Method combination graphs are described in Sec-
tion 4 and methoids in Section 5. These descriptions all refer-
ence Figure 4, which contains an extract of the XML assembly
directives needed for the example introduced in Section 2. De-
scriptions are informal and not fully detailed, but should serve to
convey and illustrate the key concepts. Full or formal definition
is beyond the scope of this paper.

3.1 Universes of Type Spaces
Concern assembly takes place in a universe, managed by a sin-
gle concern assembler. A universe contains a collection of
named input type spaces and output type spaces, each containing
types (e.g., classes, interfaces, and primitives). An input type
space is associated with some existing source of definitions for
the material to be composed, such as a Java classpath or a
UML/XMI diagram. An output type space is generally an empty
space into which the assembled result will be put, associated
with a target container, such as a directory.
Assembly directives specify input and output type spaces and
their associated directories or other external structures (e.g.,
Figure 4, lines 4, 14 and 18). These are specified as strings, to
which no specific syntax or meaning are ascribed; each assem-
bler interprets them as appropriate. A directive can also specify
a single place to find types that are common to all the spaces
(e.g., Java library classes, line 2).
Each type space is a closed collection of named types: interpret-
ing a reference not defined within the space is invalid. The ele-
ments in a type space are treated as though stored in a “flat”
name space, using name qualification to denote containment.
Specific concern assemblers are free to store types in flat or
nested fashion.

3.2 Types
There is a directive to name a type in an input type space, indi-
cating that is to be used (lines 5, 14) and a directive to create a
type in an output type space (line 19). The latter is given modifi-
ers, like “public”, “interface”, “abstract”, etc., but is created
without any contained members.
Different object-oriented languages support different modifiers.
Modifiers in directives are therefore treated as an open-ended set
of keywords to be interpreted by specific assemblers.

3.3 Members
Types have members of two kinds: fields and methods. Each
member has a name and a type-characterization, which together
must be unique within the type. Each member also has modifiers
and, perhaps, a body. In Java, field bodies are the initialization
expressions, executed when the field is initialized, and method
bodies are executed when the method is invoked. In UML, the
bodies may specify OCL constraints [20].

There are two kinds of directives for creating members: crea-
tion-from-scratch, and creation-by-copy. With creation-from-
scratch, the directive completely specifies the new member by
providing the name, type-characterization, modifiers, and other

information. In the case of methods that are not abstract, the
body is specified using method combination graphs, described in
Section 4 (lines 48–50). With creation-by-copy, the new mem-
ber specification is augmented with a reference to a similar
member in an input space, from which the body and additional
modifier information are drawn. For example, field copy is
shown in lines 32–34, method copy without renaming in lines
42–45, and with renaming in lines 37–39.
Method modifiers, like type modifiers, are an open-ended set of
keywords. Type characterizations are also open-ended strings, to
accommodate multiple languages, but with some restrictions
(e.g., comma-separated lists for method signatures).

3.4 Mappings
Field and method bodies contain references to other types and
members. When material that contains references is copied from
an input space to an output space, the references must be altered
to refer to appropriate elements in the output space. The transla-
tion from input to output elements is specified in mappings. A
global mapping is associated with each output space, for use
when copying material into types in that space. In some cases,
such as when crosscutting is implemented by copying the same
material (e.g., logging or synchronization code) into multiple
classes, the desired translation may vary depending on the spe-
cific output type into which the material is copied. To accom-
modate this need, a local submapping is also associated with
each output type, and takes precedence over the global mapping.
Directives are employed to add to the mappings the individual
translations of input types and members to their corresponding
output types and members. For example, global type mappings
are shown in lines 23–26, and local member submappings in
lines 54–67.

3.5 Relationships
Relationships, such as extends and implements between types
and throws between methods and types are specified by means
of separate directives, rather than as part of the definitions of the
related entities (lines 70–72).

3.6 Protocol
It is important that the construction of output types be clear,
unambiguous and well-formed. While it is, strictly speaking,
only necessary to ensure that the mapping for a type or member
is specified just prior to the first time it is interpreted and that it
be unchanged after that first reference, we believe a slightly
more restrictive protocol will avoid bugs and confusion. The
directives are therefore constrained to be used in the following
sequence:

1. Type-creation directives (lines 2–21)
2. Mapping-construction directives for type translations

(lines 23–26)

3. Member-construction directives (lines 30–52)
4. Mapping-construction directives for member transla-

tions (lines 54–67)

5. Relationships creation directives (lines 70–72)

 4

6. Copying and translation of member bodies (performed
implicitly by the language processor at the end).

4 Method Combination Graphs
Creation-from-scratch of new methods can either create an ab-
stract method, which has no body, or a method whose body
combines other methods. The latter is specified by means of a
method combination graph, which consists of:

• a set of declarations for method combination graph
variables,

• a set of nodes, each of which has an operation (a sin-
gle method call, a reference to a variable, or an exit),
and

• a set of edges with conditions, controlling the order
and circumstances under which the nodes are inter-
preted.

Figure 5 shows the method combination graph describing the
combination of isClaimAssesor with approveClaim
discussed in Section 2. The possible flows should be clear from
the graph. If approveClaim is executed, its result is stored in
v, whether normal or exception, so that the whole graph can exit
in exactly the same way that approveClaim did.
Nodes are interpreted in any order, subject to constraints im-
posed by the edges. A method call node specifies a call to a
method, complete with target object and arguments. No two
nodes in a single graph may call the same method with the same
parameters, allowing call nodes to be identified by their calls.
When a call node is interpreted, the associated method call is
executed and its result is noted as either a normal value or an
exception value, depending on whether the method returned
normally or threw an exception. The expressions available for
use in calls include "this" and its instance variables and static
fields, "super", the parameters of the method being defined by
the graph and thus provided by its caller, method combination
graph variables, literals and special variables containing reflec-
tive information, such as class name, method name or packaged
arguments. When needed, a special proceed object parameter is
available to implement “around” wrappers that are usable in
many different contexts. It refers to the wrapped method and
packages up arguments for use when called. The method to
which it is passed can call its proceed method to have the
wrapped method executed.
When a variable node is interpreted, its value is noted as a nor-
mal value. When an exit node is interpreted, an exit from the
entire graph takes place; the expression in the exit node specifies
the value to be returned or the exception to be thrown.

Each edge connects a predecessor node with a successor node
and identifies a condition governing the connection. Cycles are
not allowed. The presence of an edge has two effects: it indi-
cates that the successor cannot be interpreted while its predeces-
sor is yet to be interpreted and it indicates that, if the condition is
true after executing the predecessor, then the successor should
eventually be interpreted. The condition tests the value noted
upon interpretation of the predecessor node, and the edge may
also indicate a method combination graph variable in which this

value is to be recorded. The conditions are not arbitrary predi-
cates, but are constrained to be easy to analyze and fast to exe-
cute. They include “*” (true), returned, true for any normal exit,
threw T, true if an exception of type T was thrown, and tests for
the values of Booleans, integers and strings, the signs of inte-
gers, and the nullity of object references. If more complex con-
ditions are required, they can be encoded in methods and evalu-
ated in method call nodes, the results of which can then be used
in edge conditions. It is interesting to note that manifesting types
or other dispatch criteria as integers or strings allows method
combination graphs to be used to accomplish multiple dispatch.
Variables are of two kinds: dual variables or accumulator vari-
ables. A dual variable can hold both an exception value and a
normal value. Exiting with reference to a dual variable will ei-
ther throw the exception or return the value, depending on the
last value assigned to it. Accumulator variables allow a succes-
sion of normal values from various nodes to be accumulated and
passed to a method for reduction to a single value before exiting.
Method combination graphs provide a way of describing the
results of a composition that are themselves suitable as input for
later re-composition. As such they provide for describing the
constraints on the flow among methods without over-
constraining it, as would be done if combination were expressed
directly in Java or in a deterministic graph.
It is not intended that method combination graphs be interpreted
directly during execution of the composed software. Rather, the
concern assembler can generate method bodies with the seman-
tics specified by the graphs, and has the opportunity to optimize
them. A method call node can be annotated to indicate that the
method should be generated in-line. In addition, an in-line anno-
tation can be associated with the graph itself, indicating that the
code generated for the graph, including any in-lined methods it
calls, is to be placed in-line at all invocation sites. Except as
indicated in Section 4, in-lining annotations are assertions of
preference and do not require that the in-lining be performed.

5 Extracted Methods and Methoids
The capabilities described so far permit assembly of object-
oriented software at member granularity. As long as all concerns
of interest are realized as sets of entire methods, with no concern
tangling within methods, this is adequate. Unfortunately, it is not
often enough the case. Especially when dealing with additional
concerns not apparent or of interest to the original developer,
there are situations in which chunks of code within method bod-
ies need to be augmented.2 For example, implementation of a
first-failure data capture concern, to record useful information
about failures as early as possible, might include the need to
augment throw statements with additional function, and perhaps
even instance variable sets. Some of the join points in AspectJ
[1], such as calls, throws, catches, gets and sets, address this
need.

2 Inserting new code at some point within existing code is con-

sidered augmentation of the chunk of code before or after that
point, as appropriate.

 5

Our approach to this issue is to consider such chunks of code to
be potential methods, which we call methoids. Once the desired
methoids have been identified within the code in input type
spaces, they can, in principle, be treated as methods for assem-
bly purposes, being mapped to output methods or methoids as
desired and with composite behavior specified by means of
method combination graphs.
There is a practical restriction, however. Method composition is
symmetrical: a given method can have its behavior augmented
by other methods (so that they are executed whenever it is), or it
can be itself be used to augment the behavior of other methods
(so that it is executed whenever they are). In the case of a
methoid, which originates as in-line code, augmenting its behav-
ior can be accomplished by inserting code around it in place, but
using it to augment the behavior of other methods requires that it
actually be extracted as a real method.3 In most of the commonly
used cases this is easy, but general method extraction is difficult,
and the likelihood that an extracted method will be widely useful
decreases with the complexity of its characterization which can
manifest itself as the size and novelty of its signature or by the
number of free variables read and written within it. We therefore
support both free methoids, which can be extracted, and tied
methoids, which cannot. Free methoids can be composed in any
way, whereas tied methoids are asymmetrical: their behavior can
be augmented by other metho(i)ds, but can not be included in
augmenting behavior elsewhere.
Directives identify and name methoids within input types, speci-
fying whether they are free or tied. Characterizing methoids is a
complex issue. Generally speaking, a regular method is charac-
terized by its name and signature and by an informal description
of its intent. The signature size is generally small, especially in
relation to the length of the body, and developers try to avoid
entangling too many concerns in a single method. We should
expect the same of methoids. They are also characterized by
their names and signatures, but as the developer has not sepa-
rated and named them, the directives must specify them in some
other way. There is a wide spectrum of possibilities here, from
linguistic primitives to program-slicing [21] and other program
refactoring technologies [6], each of which imposes require-
ments on the concern assemblers that must implement them.
Experience with AspectJ[1] and HyperProbe [15] indicate that
the linguistically-defined primitives, like get/set of instance
variables, used of instanceof, throws, method calls, entries and
exits, synchronization block entries and exits and catch blocks,
are necessary as methoids, cover many important cases, and can
be detected without significant analysis. These are therefore
included in the initial definitions of the methoid directives, al-
though the methoid characterizations remain open to accommo-
date future expansion.
For example, lines 6–11 in Figure 4define a free methoid called
setAddress within the ClaimDoc input class. It’s kind is
set, indicating that it encapsulates sets of an instance variable,

3 Alternatively, it could be copied from its context and trans-

formed for reuse in the new context, but that is no easier than
extracting it as a method.

address of type java.lang.String in this case, as speci-
fied by the properties on lines 8–9. Concern assemblers built on
CAT can register handlers for different kinds of methoids, in-
cluding new kinds introduced by them, and each handler can
support whatever properties it desires.
The restrictions inherent in tied methods constrain the assembly
directives that apply to them. As with characterization, the cir-
cumstances under which a methoid can be extracted presents a
spectrum of possibilities, trading increasing flexibility in re-
composition (symmetry) against the effort required from the
concern assemblers. The toolkit therefore gives concern assem-
blers the freedom to constrain which methoids may be declared
as free. In general, it is expected that simple methoids, like
get/set and throws, can be free, whereas those involving arbi-
trary blocks of code, like catch blocks, must be tied. A method
copy directive applied to a tied methoid may only copy it into an
output class into which the input method containing it is also
copied. Only it can be mapped to such a copy, or to any method
combination graph that invokes such a copy. These restrictions
ensure asymmetrical usage of tied methoids, discussed above.

6 The Concern Assembly Toolkit
The concern assembly toolkit is intended to be open, encourag-
ing expansion, addition, and exploitation. As illustrated in Fig-
ure 6, the toolkit consists of interfaces, frameworks, and concern
assemblers. The interfaces are for use by exploiters, usually
higher-level AOSD tools, and are implemented by the concern
assemblers. Concern assemblers often make use of outside tool-
kits for manipulating artifacts. The frameworks are intended to
lessen the work involved in writing new concern assemblers by
providing significant functionality for dealing with the new con-
cepts that are not expected to be supported by such toolkits.

6.1 Interfaces
Exploiters use the composition toolkit through either of two
interfaces: a Java API and an external XML format called the
Concern Assembly Language. Exploiters thus have the flexibil-
ity of invoking it directly or of producing and saving XML to be
used later.
The Java API is a collection of Java interfaces through which
assembly directives can be issued. It can be thought of in four
parts for defining and manipulating the different kinds of ele-
ments introduced in Section 3: object-oriented software ele-
ments, organizational elements (e.g., type spaces), methoids and
method combination graphs. The part supporting object-oriented
software elements provides a uniform, language-neutral inter-
face to constructs found in most OO languages and systems, and
Java in particular. Experience has shown the importance of ar-
ticulating toolkits as a collection of pure interfaces, avoiding
abstract and concrete classes whose presence would reduce
flexibility when providing alternative implementations.
The XML provides both a persistent form in which assembly
directives can be saved and a form suitable for direct manipula-
tion with various XML visualization and editing tools. The tool-
kit provides a parser, the Concern Assembly Language Proces-
sor, which processes directives in XML format and makes calls
on the API to execute them.

 6

6.2 Concern assemblers
Concern assemblers are the “plug-in” components that imple-
ment the toolkit interfaces for various representations of artifacts
to be assembled. We currently have assemblers for Java class
files and UML class diagrams represented as XMI files, and an
XML serialization assembler, which stores the directives it re-
ceives as a concern assembly language file. We plan to add fur-
ther assemblers, including for Java source code and one load-
time assembly of Java bytecodes, and the toolkit supports addi-
tion of assemblers by third parties.
Much of the guts of a concern assembler, especially the support
for manipulating object-oriented software elements, is specific
to the artifact representation. Fortunately, other toolkits are often
available for general-purpose manipulation of such representa-
tions, and concern assemblers can be built as façades on these.
For example, our Java class file assembler is written as a collec-
tion of subclasses of classes provided by JikesBT, a toolkit for
manipulating class files that supports extensions via subclassing
and abstract factories. Our UML assembler is written as a set of
classes that are composed using Hyper/J with an XMI model
manipulator generated from the UML standard specifications
using Tengger, our tool for feature-based design [1]. These as-
semblers also build upon the frameworks described below. In
both cases, the size of the façade is small, validating the useful-
ness of the API and framework definitions in producing new
concern assemblers for various artifacts

6.3 Frameworks
Some functionality within an assembler is much less representa-
tion-specific, such as handling of organizational elements and
construction and processing of methoids and method combina-
tion graphs. The Concern Assembly Framework implements this
functionality as cascaded packages, successively providing
deeper support over a narrower focus. A few of the classes in
these packages are abstract classes that depend on concrete sub-
classes filling in the few representation-specific details.
The Concern Assembly Framework includes the analysis and
target-independent optimization parts of a method combination
graph compiler, but cannot include the representation-specific
generation part. One useful way of aiding the developers of
many assemblers, however, is to produce Java source code cor-
responding to the graphs. We therefore also provide the Method
Graph Java Source Generator Framework, cascaded on the Con-
cern Assembly Framework. Producing Java source can help not
only as a path to generating the combined methods (a first ver-
sion of our Java class file assembler compiles the generated
source and then assembles the result), but can assist in docu-
menting and debugging their behavior.

7 Evaluation
This section partially evaluates CAT by assessing its use to
address some interesting points in the AOSD space. The points
were chosen to be representative, not comprehensive. They in-
clude important features of four common, but rather distinct,
AOSD approaches, Hyper/J [18], AspectJ [20], Composition
Filters [5], and role modeling [2]. The evaluation is based on
the written descriptions of the approaches cited above. Though

they are yet not implemented on CAT, and we would expect to
have some issues to resolve in doing so, we believe that the core
concepts are correct and appropriate, and that relatively small
changes will suffice.
Hyper/J: Hyper/J provides a symmetric, merge-based model of
class hierarchy composition, illustrated in Figure 2. We believe
that it is straightforward to map all of Hyper/J’s composition
capabilities to CAT; Table 1 summarizes the realization of some
of them.

Table 1: Summary of Mapping of Some Hyper/J
Compositions to CAT.

Join Point or
Composition

Hyper/J
Designator

Realization in
CAT

Merge classes, inter-
faces, methods,
fields

Merge,
mergeByName,
equate

Create new output
classes or inter-
faces and new
members in them;
forward references
from input classes
to output class

Override method a
with b

Override Forward references
from a in the input
to b in the output

Bracket (weave
before and/or after a
method) a with b

Bracket Use method com-
bination graph for a
in the output that
invokes a from the
input and b from
the input

Partly constrain
method invocation
order

Constrain order Use appropriate
method combina-
tion graph edges

Put a summary
function, s, onto
method a, which is
composed of b and c

Set summary
function

Use appropriate
method combina-
tion graph and
accumulator vari-
able.

AspectJ: AspectJ provides an asymmetric model in which as-
pect code is invoked at join points characterized in terms of
programming-language execution events. In a CAT realization,
instances of aspects would be inserted at the appropriate loca-
tions within classes, and code that delegates to those instances
would be woven into the appropriate join points within the
classes that the aspects crosscut (see Table 2 for details). As-
pectJ also provides a cflow designator, enabling dynamic aspect
selection based on a characterization of the system state in terms
of its current call flow. Because the instrumentation and charac-
terization of system state required for many selections depends
entirely on the anticipated uses, we do not believe it is appropri-
ate to include it directly in CAT. Instead, we envision the use of
CAT both to insert instrumentation recording interesting state
characterizations and to use it in method combination graphs to
identify “dynamic” join points. Higher-level tools or compo-

 7

nents, possibly part of a CAT-based AspectJ implementation,
would generate the CAT directives and the code (e.g., side stack
implementations) needed.
Table 2 summarizes the realization of some of AspectJ’s capa-
bilities in CAT; it does not examine all, but we believe they can
all be realized in terms of the CAT abstractions.

Table 2: Summary of Mapping of Some AspectJ
Compositions to CAT.

Join Point or
Composition

AspectJ
Designator

Realization in CAT

Introduce Variable or
method decla-
ration

Create new member in
named output class

Weave advice
before and/or
after a join
point, j

before, after Create method combination
graph for j that invokes j
and the advice. If j is an
intra-method join point
(e.g., calls, sets, throws),
define it as a methoid.

Put advice a
around a join
point, j

around,
proceed

Forward references from j
in the input to a in the out-
put , and use the proceed
object (see Section 4). If j is
an intra-method join point
(e.g., calls, sets, throws),
define it as a methoid.

Composition Filters : Composition Filters (CF) is essentially a
delegation-based approach, in which compositions occur by
aggregating composed objects into a composite object, and de-
fining different types of filters that control invocation of, and
return from, the composed objects’ methods. CFs can be used to
express multiple inheritance, dynamic inheritance, delegation,
and crosscutting behaviors. Some commonly used types of fil-
ters and their CAT realizations are described in Table 3.
The CF model is, mostly, straightforward to implement using
CAT, using method combination graphs to compose filter. It
explicitly prohibits composition below the method level, to pre-
vent encapsulation violations on the existing objects, so
methoids are not required. The CF superimposition capability
[3], which permits the imposition of a given filterinterface on
multiple concerns to realize crosscutting, requires no additional
capabilities at the CAT level, but rather the generation of the
appropriate CAT directives for each affected class. The wait
filter poses problems, however, because its implicit looping
behavior is at odds with the acyclic nature of method combina-
tion graphs. We believe that it can be implemented by means of
generated methods to perform waiting and queuing and callable
from graphs.

Table 3: Summary of Mapping of Some Composition Filters
Compositions to CAT.

Join Point or
Composition

Composition
Filters
Designator

Realization in CAT

Combine classes Concern
definition

Create new output
class/interface/methods
with the appropriate
fields for the composed
classes; delegate refer-
ences as prescribed by
filters

Error filter for
one or more
methods a, b,
…, based on a
condition c

Error Create method combina-
tion graphs for a, b, …,
in which a test for c
occurs before the call to
a, b, etc.; if c is not true,
report an error.

System state
dependent filter
for a

Meta Instrument the software
to create and maintain
the required characteri-
zation of the system
state. Use the this in-
formation as prescribed
by the filter in the
method combination
graph.

Dispatch filter Dispatch Delegate to specified
composed object’s
methods

Roles: Many different approaches to the modeling and imple-
mentation of roles exist. One representative model [2] intro-
duces a role table instance variable into each class, to associate
role names with role instances. Methods to add and remove
roles to/from an instance of the class, and to retrieve a given role
object from the instance, are also defined. Through its ability to
introduce members, CAT supports this implementation of roles,
as well as many others. The incorporation of role tables is a
general mechanism for supporting some important forms of
dynamic and instance-based aspect composition; indeed, some
such mechanism is required in the absence of language runtime
support for dynamic composition.

8 Related Work
The development of a low-level concern assembly language was
motivated in part by our desire to provide behavioral guarantees
for composed class hierarchies. Composition and weaving are
powerful techniques that enable one to modify existing systems
by inserting or modifying code fragments in arbitrary user-
specified locations. In modern object-oriented programs that rely
heavily on late binding, the impact of such modifications can be
highly nonlocal (e.g., the insertion of an assignment in one
method may impact the points-to relations and hence method
dispatch behavior in another method). Our low-level language
was carefully designed to enable the construction of program-

 8

analysis-based tools that can report possible behavioral interfer-
ence. Some initial work in this area was recently reported [19].
There are three primary categories of related work: languages
and tools for composition/weaving, toolkits for manipulating
software representations, and program transformation systems.
There are now several composition/weaving approaches, includ-
ing Adaptive Plug-and-Play Components [17], AspectJ [12],
Composition Filters [1], Hyper/J [18], and LAC [10]. These all
provide support for AOSD for direct use by humans, at a con-
siderably higher level than CAT. We see CAT as a suitable
common layer for implementing the back ends of such ap-
proaches, and experimenting with variations, new approaches,
and interoperation of approaches.
For most common software representations, there are toolkits or
libraries for manipulating them. For example, Eclipse provides
interfaces for manipulating Java source code, there are several
toolkits for manipulating Java class files (e.g., BCEL[3] and
JikesBT[12]). These provide support for general-purpose ma-
nipulation of software artifacts, and are therefore an excellent
basis upon which to built concern assemblers. They do not,
however, provide a common abstraction layer that is neutral to
artifact representations, nor do they contain abstractions and
functionality specifically suited to concern assembly, such as
multiple type spaces, method combination graphs and methoids.

There are several tools for transformation of Java classes, usu-
ally at load time, such as Javassist [6], JMangler [5], JOIE [6]
and Binary Component Adaptation (BCA) [12]. These are
higher-level than the toolkits discussed above, because they
provide abstractions that support program transformation, either
as a language (e.g., BCA) or interfaces to be implemented or
used by transformation components written in Java (e.g., JMan-
gler and JOIE). However, these abstractions are designed to
support transformation rather than assembly, and the systems are
all specific to Java bytecodes and so do not provide a language-
neutral abstraction layer. A recent mailing list posting [11]
stated that the next release of AspectJ will contain a library that
supports bytecode weaving, built upon BCEL. At time of writ-
ing, details are not available, so we cannot compare the abstrac-
tions provided, but the fact that it is targeted at Java and built on
BCEL suggests that it will also not provide the language- and
artifact-neutrality of CAT. We expect that all the transformation
tools described above would be excellent bases upon which to
build CAT bytecode concern assemblers, and that the required
façade would be thinner than in the case of the more primitive
toolkits described earlier.

9 Future Work
The Concern Assembly Toolkit is the first step towards our vi-
sion of a Concern Manipulation Environment: a set of common,
reusable components upon which are built a suite of tools that
bring the advantages of aspect-oriented software development to
a variety of software engineering activities, involving a variety
of artifacts at various stages of the software lifecycle. We intend
it to be able to support both our and others’ approaches to
AOSD, and to be a suitable testbed for us and others to experi-

ment with new approaches and to explore the challenging re-
search problems that remain, including behavioral interference.

10 References
[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yo-

nezawa. Abstracting object interactions using composition-
filters. In Object-Based Distributed Processing, LNCS 791,
pages 152{184, 1993

[2] Dirk Bäumer, Dirk Riehle, Wolf Siberski, and Mar-
tina Wulf, "Role Object." In Pattern Languages of
Program Design 4. Edited by Neil Harrison, Brian
Foote, and Hans Rohnert. Addison-Wesley, 2000.

[3] BCEL web site, http://bcel.sourceforge.net/

[4] Lodewijk Bergmans and Mehmet Aksit, "Composing
Crosscutting Concerns Using Composition Filters."
CACM 44(10), October 2001, pages 51–57.

[5] Lodewijk Bergmans and Mehmet Aksit, "Composing
Multiple Concerns Using Composition Filters."
More detailed version of [3] available at
http://trese.cs.utwente.nl/publications/papers/CF_sup
erimposition_bergmans_aksit.pdf.

[6] Shigeru Chiba, “Load-time Structral Reflection in Java”, In
Proceedings of 2000 European Conference on Object Ori-
ented Programming, LNCS 1850, Springer Verlag, 2000

[7] G. Cohen and J. Chase, “Automatic Program Transforma-
tion with JOIE”, USENIX Annual Technical Conference,
June, 1998

[8] Martin Fowler, Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

[9] W. Harrison, C. Barton, M. Raghavachari, “Mapping UML
Designs to Java”, In Proceedings of 2000 Conference on
Object-Oriented Programming Systems, Languages, and
Applications, Minneapolis, 2000

[10] S. Herrmann, M. Mezini, Combining Composition Styles in
the Evolvable Language LAC, Workshop on Advanced
Separation of Concerns at International Conference on
Software Engineering, 2001.

[11] J. Hugunin, "AspectJ-1.1 implementation status report."
Posting to the users@aspectj.org mailing list, September
23, 2002.

[12] JikesBT web site,
http://www.alphaworks.ibm.com/tech/jikesbt

[13] R. Keller, U. Hölzle, “Binary Component Adaptation,” In
Proceedings of 1998 European Conference on Object Ori-
ented Programming, LNCS 1445, Springer Verlag, 1998.

[14] G. Kiczales, E.Hilsdale, J. Hugunin, Mik Kersten, J. Palm,
W. Griswold, “An Overview of AspectJ.” In Proceedings
ECOOP’01, Springer-Verlag, June 2001.

 9

[15] D. Kimelman, V. Kruskal, H. Ossher, T. Roth and P. Tarr,
"HyperProbe: An aspect-oriented instrumentation tool for
troubleshooting large-scale production systems." Demon-
stration at the First International Conference on Aspect-
Oriented Software Development (AOSD 2002), Enschede,
The Netherlands, April 2002.
http://trese.cs.utwente.nl/aosd2002/index.php?content=hyp
erprobe.

[16] G. Kniesel, P. Constanza, M. Austermann, JMangler – A
Framework for Load-Time Transformation of Java Class
Files, November 2001. IEEE Workshop on Source Code
Analysis and Manipulation (SCAM), collocated with Inter-
national Conference on Software Maintenance (ICSM)

[17] M. Mezini, K. Lieberherr, “Adaptive plug-and-play com-
ponents for evolutionary software development”, In Pro-
ceedings of 1998 Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, Vancou-
ver, 1998

[18] H. Ossher and P. Tarr. “Using Multi-Dimensional Separa-
tion of Concerns to (Re)Shape Evolving Software.” CACM
44(10): 43–50, October 2001.

[19] G. Snelting and F. Tip, Semantics-based composition of
class hierarchies, In Proceedings of the 16th European Con-
ference on Object-Oriented Programming (ECOOP 2002),
(Malaga, Spain, June 10-14, 2002), pp. 562-584.

[20] The AspectJ Team, "The AspectJ Programming
Guide." http://aspectj.org/doc/dist/prog-
guide/index.html.

[21] Frank Tip, “A survey of program slicing techniques,”
Journal of Programming Languages 3(3), (1995),
121-189.

[22] J. Warmer, A. Kleppe, The Object Constraint Language:
Precise Modeling With UML , Addison-Wesley, 1998

Exploiters

Java API

Concern Assembly Language Processor

Concern Assembly Language File

Concern Assembler

output
artifacts

directives

input
artifacts

Figure 3. Concern Assembler

 2

1 <types> <!-- List of classes (and interfaces, if any) involved in the assembly -->
2 <common classpath="/jre/lib/rt.jar"/>
3 <inputs>
4 <input name="DOC" classpath="doc"> <!-- Input space listing all input classes used -->
5 <type name="ClaimDoc">
6 <methoid name="setAddress" attributes="package" tied="no">
7 <methoidcharacterization kind="set">
8 <characterizationproperty name="name" value="address"/>
9 <characterizationproperty name="type" value="java.lang.String"/>
10 </methoidcharacterization>
11 </methoid>
12 </type>
13 </input>
14 <input name="PROTECT" classpath="protect"> <type name="ProtectedClaimDoc"/> </input>
15 </inputs>
16
17 <outputs>
18 <output name="OUTPUT" directory="result"> <!-- Output space and classes -->
19 <type name="ClaimDoc" attributes="public"/>
20 </output>
21 </outputs>
22
23 <mapping> <!-- How input classes are mapped to outputs when references are copied -->
24 <type> <from name="DOC:ClaimDoc"/> <to name="OUTPUT:ClaimDoc"/></type>
25 <type> <from name="PROTECT:ProtectedClaimDoc"/> <to name="OUTPUT:ClaimDoc"/></type>
26 </mapping>
27 </types>
28
29 <members> <!-- Details of the members of all assembled classes -->
30 <composition> <!-- How composed members are to be constructed -->
31 <!-- Copy the name field from input to output -->
32 <field within="OUTPUT:ClaimDoc" name="name" type="…String" attributes="private">
33 <from within="DOC:ClaimDoc" name="name" type="java.lang.String"/>
34 </field>
35
36 <!-- Copy the input "approveClaim", renaming it "originalApproveClaim" -->
37 <method within="OUTPUT:ClaimDoc" name="originalApproveClaim">
38 <from within="DOC:ClaimDoc" name="approveClaim" types="()" returns="void"/>
39 </method>
40 <!-- Other copies from the document concern with or without renaming -->
41 <!-- Copy input methods from protection concern, with their original names -->
42 <method within="OUTPUT:ClaimDoc" name="isClaimAssessor">
43 <from within="PROTECT:ProtectedClaimDoc" name="isClaimAssessor" types="()"
44 returns="boolean"/>
45 </method>
46 <!-- Other copies from the protection concern without renaming -->
47 <!-- Create an output method "approveClaim" with body from the graph in Fig. 2 -->
48 <method within="OUTPUT:ClaimDoc" name="approveClaim" types="()" returns="void">
49 <graph> <!-- See Figure 5; XML form too long to show here --> </graph>
50 </method>
51 <!-- Create other output methods whose bodies are specified by graphs -->
52 </composition>
53
54 <mapping> <!-- How input members are mapped to output when references are copied -->
55 <submapping name="OUTPUT:ClaimDoc"> <!-- Member mappings are in context of class -->
56 <method>
57 <from within="DOC:ClaimDoc" name="approveClaim" types="()" returns="void"/>
58 <to within="OUTPUT:ClaimDoc" name="approveClaim" types="()" returns="void"/>
59 </method>
60 <!-- likewise for the other methods -->
61 <!-- map references to the address field if any were excluded from methoid creation -->
62 <field>
63 <from within="DOC:ClaimDoc" name="address" type="java.lang.String"/>
64 <to within="OUTPUT:ClaimDoc" name="address" type="java.lang.String"/>
65 </field>
66 </submapping>
67 </mapping>
68 </members>
69
70 <relationships> <!-- Extends relationships between types (also implements & throws) -->
71 <extends> <type name="OUTPUT:ClaimDoc"/> <type name="java.lang.Object"/></extends>
72 </relationships>

Figure 4: Example Assembly Directives

 3

this.approveClaim () exit v
* : v

returned : false

throw ProtectionError ()

threw : Throwable t
exit t

MethodCombinationGraph void guardedApproveClaim ()

this. isClaimAssessor()
returned : true

Figure 5. Example Method Combination Graph

… … Other Concern Assembler

Java Class File Concern Assembler
UML Concern Assembler

XML Serialization Concern Assembler
Java Source Concern Assembler

X

External
Artifact-

Manipulation
Toolkits

XMI Manipulator

Method Graph Java Source Framework

Concern Assembly Framework

Exploiters

Method Combination Graph ElementsMethoid Elements Organizational ElementsOO Software Elements

Concern Assembly Language Processor

Concern Assembly Language File

Java API

JikesBT

Figure 6. The Concern Assembly Toolkit

