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Abstract: We report an experiment in which each subject repeatedly plays a game with a 
unique Nash equilibrium in mixed strategies against some computer-implemented mixed 
strategy.  The results indicate subjects are successful at detecting and exploiting 
deviations from Nash equilibrium.  However, there is heterogeneity in subject behavior 
and performance.  We present a one variable model of dynamic random belief formation 
which rationalizes observed heterogeneity and other features of the data.
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I. Introduction 
 
    A Nash equilibrium of a normal form game can be identified as the fixed point of the 

players’ best response correspondences.  The notion that each player anticipates his 

opponents’ actions and best responds to this belief has proven to be an effective approach 

for the analysis of strategic decision making.  However, when opponents adopt mixed 

strategies, the assumption that players form accurate beliefs and choose best responses 

should be carefully considered.  This is especially so in constant-sum games which do not 

have a pure strategy Nash equilibrium.1  In such games, when opponents don’t play their 

Nash equilibrium strategies, a player typically has a pure strategy best response that gives 

an expected payoff greater than the Nash equilibrium level.  Whether a person detects 

such payoff increasing opportunities, however, is an open question.  In this study we 

report an experiment in which subjects repeatedly play a zero-sum game against different 

mixed strategies, and examine to what extent subjects detect and exploit such 

opportunities.   

    In our experiment, a subject was assigned either the Row or Column role in an 

asymmetric matching pennies game.  The subject then played 200 repetitions against a 

constant mixed strategy.  The subject was told that he was playing against another 

decision maker, but was not informed that this decision maker was computerized nor the 

nature of the decision maker’s strategy.  We varied the mixed strategy faced by different 

subjects to cover a broad spectrum of possible mixed strategies.  This enables us to 

evaluate how and when subject behavior is described by best response correspondences. 

    There are two main results.  First, subjects are, on average, surprisingly close to best 

responding to unknown mixed strategies, even if the mixed strategy is no more than 

fifteen percent above or below the Nash equilibrium strategy.  However, there is 

heterogeneity across subjects in terms of how close their behavior corresponds to the best 

response prediction.  Second, subjects are quite successful at exploiting mixed strategies 

that deviate from Nash equilibrium and, as a consequence, increase their payoffs above 

Nash equilibrium levels.   

                                                 
1 The minimax and Nash equilibrium solutions coincide in this setting, and we could proceed only referring 
to the minimax solution and strategies.  However, we proceed using the Nash equilibrium framework 
because we wish to focus on the concept of best response. 
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    We characterize the experimental data using a single variable belief model.  The model 

is based on the notion that before each stage game, a subject randomly draws a belief 

from a Beta distribution whose parameters are determined by the past history of play, and 

then best responds to this belief.  This “Random Hierarchal Belief” model enables us to 

capture the qualitative dynamics and heterogeneity reflected in the data. 

     Our study extends and clarifies the results of previous studies of play in 2 2 zero-

sum games with a unique equilibrium in mixed strategies.  Lieberman [1961] and Fox 

[1972] both studied subject play against a mixed strategy that deviated from Nash 

equilibrium.  They discovered that subjects significantly adjust their play and increase 

their earnings.  However, in these studies only a single non-Nash strategy was evaluated, 

and this strategy differed from the Nash strategy by a probability greater than twenty-five 

percent.  In our study, we systematically vary the mixed strategies to obtain a more 

complete characterization of how humans play in these situations and we take advantage 

of more sophisticated software to provide each subject a complete history past play. 

    Our study also answers a question raised in our previous study.  Shachat and Swarthout 

[2002] conducted experiments in which subjects played against various computerized 

adaptive algorithms implementing probabilistic choice rules.  Play was studied in two 

games: one was the asymmetric matching pennies game presented here and the other was 

a non-profitable game.  The results indicated that subjects could not exploit the non-

stationary mixed strategy sequences generated by the adaptive algorithms.  The results 

reported here show that it is the non-stationary aspect of the algorithms that prevents 

subject exploitation and not that the adaptive algorithms generate choice frequencies too 

close the Nash equilibrium prediction. 

    We proceed to describe the experimental design and procedures in the next section.  In 

the third section we present the data analysis in which we address how subjects’ choice 

frequencies adjust from the first half to the second half of the experiment, examine 

whether subjects increase their payoffs above Nash equilibrium levels, and present the 

Random Hierarchical Belief model to explain the dynamics and heterogeneity found in 

the data.  In the final section, we offer some concluding remarks. 
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II. Experimental Design and Protocols 
 
    We employ a zero-sum asymmetric matching pennies game (introduced by Rosenthal, 

Shachat, and Walker [2002]).  In the game each player can move either Left or Right.  

The normal form representation of the game is given in the table below.  The game has a 

unique Nash equilibrium in which each player chooses Left with probability two-thirds.  

When Column doesn’t adopt the equilibrium strategy, Row’s best response is to play Left 

if Column chooses Left with a probability greater than two-thirds, and to play Right 

otherwise. Likewise when Row doesn’t adopt the equilibrium strategy, Column’s best 

response is to play Right if Row plays Left with a probability greater than two-thirds, and 

to play Left otherwise. In equilibrium, Row’s expected payoff is 2/3 and Column’s 

expected payoff is –2/3. 

  
  Column Player 

  Left Right 

Row Player 
Left 1,-1 0,0 

 

Right 0,0 2,-2 

 
    We conducted all experimental sessions in the Economic Science Laboratory at the 

University of Arizona during the fall of 2002.  We report results from seven sessions, 

using a total of 102 undergraduate students.  Each session contained between 8 and 22 

subjects.  Half of the subjects were assigned as Row players, and the other half were 

assigned as Column players.   

    Each subject was seated at a computer workstation such that no subject could observe 

another subject’s screen.  Subjects first read computerized instructions that detailed both 

how to enter decisions and how earnings were determined.  Then, 200 repetitions of the 

game were played.  Column subjects were initially endowed with a balance of 250 

tokens, while Row players began with no tokens: each token was valued at 10¢.  Each 
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subject’s total earnings consisted of a $5 show-up payment plus his token balance after 

the 200th repetition.  No Column subjects went bankrupt. 

    At the beginning of each repetition, a subject saw a graphical representation of the 

game on the screen.  Each Column subject’s game display was transformed so that he 

appeared to be a Row player.  Thus, each subject selected an action by clicking on a row, 

and then confirmed his selection.  After the repetition was complete, each subject saw the 

outcome highlighted on the game display, as well as a text message stating both players’ 

actions and his own earnings for that repetition.  Finally, at all times a subject’s current 

total earnings and a history of past play were displayed.  The history consisted of an 

ordered list with each row displaying the repetition number, the actions selected by both 

players, and the subject’s earnings from the specific repetition. 

    Each subject played against a computerized mixed strategy that was fixed.  The various 

mixed strategies adopted and the number of subjects who played against them are 

presented below.  Each subject was informed that he was going to play against the same 

decision maker for all repetitions: he was not informed that the decision maker was a 

computer or the nature of the decision maker’s strategy.  Although human subjects never 

played against each other, each Row subject was matched with a Column subject: this 

was done to reduce the chance a subject believed he was playing against a computer.  

Specifically, while the computer generated instantaneous action choices, the software did 

not reveal the computer’s action until both paired human subjects had made action 

selections.  This process allowed the pair to progress at a more natural rate determined by 

the response speed of the two subjects. 

 
Percentage Left Number of 

by Mixed Strategy Subject Pairs 
19% 4 
27% 4 
35% 4 
43% 4 
51% 7 
59% 4 
67% 3 
75% 7 
83% 8 
91% 6 
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III. Data Analysis 
 

    We start the data analysis by addressing to what extent subjects best respond to 

different mixed strategies.  We find that a subject’s play is likely to move substantially 

towards his best response when his opponent’s choice frequencies are more than fifteen 

percent above or below the Nash equilibrium frequencies.  Correspondingly, we find that 

subjects achieve a statistically significant increase in payoffs above Nash equilibrium 

levels when facing mixed strategies that deviate from the Nash equilibrium by more than 

fifteen percent.  However, there is heterogeneity across subjects to the degree they best 

respond and maximize potential payoffs.  We present a single parameter random belief 

adjustment model that rationalizes this heterogeneity. 

 

III.1 Best Response and Payoff Gains 

     

   A natural starting point is to inspect how often each subject best responds when his 

opponent’s choice frequencies deviate from the Nash prediction.  We present this view of 

the data for the Row subjects in Figure 1 and for the Column subjects in Figure 2.  In 

each of these figures, the solid line represents the subjects’ best response correspondence.  

Also, each arrow is a summary of play for a single human/computer pair.  The origin of 

the arrow is located at the joint frequency of Left play in the first 100 stage games, and 

the tip of the arrowhead is located at the joint frequency of Left play in the second 100 

stage games.  These arrows show the adjustments subjects make from the first-half to the 

second-half experiment regarding how often subjects best respond. 

    We can make several observations from these figures.  First, the further his opponent 

deviates from Nash equilibrium frequencies of Left play the more likely a subject is to 

best respond.  However, this statement needs two qualifications.  First, the opponents’ 

deviations must be sufficiently far from equilibrium to see all subjects’ move close to the 

best response.  Also, it is clear the subjects’ frequencies of Left play differ in the 

magnitudes of adjustment from the first half to second half of the experiment.  Finally, 

when his opponent’s play is near the Nash equilibrium, the human’s proportions are 

biased towards levels below the Nash equilibrium proportion. 
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    We provide a statistical evaluation of whether a subject’s play is significantly towards 

his best response.  First, we establish a baseline for when play is decidedly not in the 

direction of best responding.  When the subject’s best response is to play Left, we say 

that his play is “best responding” if his probability of Left play exceeds two-thirds.  

Similarly, when the subject’s best response is to play Right, we say that his play is better 

responding if his probability of playing Left is less than one-half.2  Utilizing these 

baselines, we construct two hypothesis tests for play in the last one hundred stage games.  

The first is a binomial test for which the null hypothesis is that the subject’s probability 

of Left play equals two-thirds and the alternative hypothesis is that this probability 

exceeds two thirds.  At the five percent level of significance, we reject the null in favor of 

the alternative whenever a subject plays Left more than seventy-five times.  We depict 

the critical region of this test on Figures 1 and 2 with a dashed line at the subject 

proportion of .75 within the area for which Left is a best response.  The second 

hypothesis test is another binomial test with the null hypothesis that the subject’s 

probability of Left play is fifty percent and the alternative is that the probability is less 

than fifty percent.  At the five percent level of significance, we reject the null hypothesis 

whenever a subject plays Left fewer than forty-one times.  We depict the critical region 

of this test on Figures 1 and 2 with a dashed line at the subject proportion of .41 within 

the area for which Right is a best response. 

    We note that frequencies of Left play fall out of the two critical regions of better 

responding for only 16 of 51 Row subjects and 17 of 51 Column subjects.  For Row 

subjects, Left frequencies are all within the critical region for better responding towards 

Left when the computer’s frequency exceeds 80 percent and also within the critical 

region for better responding towards Right when the computer’s frequency of left is less 

than 50 percent.  Likewise, all Column subjects are in the critical region for better 

responding towards Right when the computer’s Left frequency exceeds 80 percent.  

However, the uniform movement towards Column’s critical region for Left doesn’t occur 

until the opponent’s frequency of Left falls below 35%.  Figure 2 demonstrates marked 

heterogeneity in the Column subjects’ tendencies to move towards the best response 

                                                 
2 We are choosing the benchmark of fifty percent because we have already noted that human played is 
biased below two-thirds when the facing Nash equilibrium proportion.  We feel that in this instance setting 
the Null at two-thirds would bias our conclusions towards subjects better responding. 
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when the opponent’s frequencies of Left play are below the Nash equilibrium levels.  We 

will see that this results in differential earnings for the Column subjects. 

    The next metric we consider is the subjects’ average stage game earnings.  We 

ascertain whether subjects successfully exploit non-Nash equilibrium mixed strategies 

and how close they come to maximizing potential payoffs.  In Figures 3 and 4, for the last 

100 stage games, we plot each subject’s average stage game payoff versus his opponent’s 

frequency of Left.  An open circle indicates a subject’s earnings that we can’t reject are 

the same as the Nash equilibrium payoffs, and the solid triangle indicates a subject’s 

earnings that we conclude exceed the Nash equilibrium level.  These conclusions are 

reached via a hypothesis test performed at a five percent level of significance.  The solid 

lines found on Figures 3 and 4 represent the expected payoff from playing the pure 

strategy best response.  As is commonly known, in these games a player’s payoff 

function is relatively flat around his opponent’s Nash equilibrium strategy.  This is 

evident as we see mostly open circles in the frequency range of fifty to eighty percent.  

However, when a computer decision maker deviates from the Nash proportion by more 

than fifteen percent the subjects successfully increase their payoffs.  This is not true in the 

case where Column subject face mixed strategies less than two-thirds.  Here we observe 

that some subjects fail to exploit mixed strategies as low as thirty percent while other 

subjects’ earnings are close to the maximum expected payoff. 

 

III.2 Random Hierarchal Beliefs Model of Heterogeneity and Adjustment  

 

    In this subsection we present a simple one-variable model of random belief formation.  

We then estimate the single variable for each subject.  Lastly we present a simulation, 

which demonstrates the ability of the model to rationalize the heterogeneity observed 

across subjects. 

      Recall the two players are Row and Column, which we will denote by r and c.  Stage 

games are indexed by n.  Each player i’s set of actions as Ai = {L, R} and the action 

player i selects in stage game n is ain.  Player i’s set of mixed strategies is Σi = [0,1].  A 

mixed strategy, σin∈Σi, is the probability that player i selects L in stage game n. Finally, 

let bin be player i’s belief of what player j’s mixed strategy will be in stage game n.  
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    We now propose a one-variable model to describe the dynamics of how subjects 

played the game.  We assume that before each stage game a player’s belief is determined 

by a draw from a distribution over his set of possible beliefs, and also that a player selects 

the best response to this belief as his action for the stage game.  We call this model the 

Random Hierarchal Belief (RHB) model because subjects’ beliefs are determined by a 

hierarchal probability structure. 

    The belief bin is a random variable which has a Beta distribution function, β( ), with the 

player specific parameters siLn and siRn.  The support of a Beta distribution is the unit 

interval with a mean of  siLn/ (siLn +siRn) and a mode , if both siLn and siRn are greater than 

one, equal to (siLn – 1)/(siLn + siRn –2).  The Beta distribution is simply the Uniform 

distribution when both parameters are one.  The parameters of the Beta distribution have 

an important interpretation in Bayesian statistics.  If one is modeling a binomial process 

and starts with a Beta prior density, the posterior density is also Beta for which the first 

parameter siLn is incremented by the number of successes and the second parameter, siRn, 

is increment by the number of failures.  These parameters are often called the prior 

sample sizes.  

    Our model follows the spirit of this Bayesian interpretation; the parameters siLn and siRn 

are determined by the observed history of play according to the following rules: 

 
siLn = δ∗ siLn-1 + I{ajn-1=L}     and     siRn = δ ∗ siRn-1 + I{ajn-1=R}    for n > 1, and 

siLn = siRn =1    for n = 1. 
 
The unobservable variable δ  is a discount rate for the two parameters and I{ajn-1=aj} is an 

indicator function for the event that player j chose action aj in the stage game n-1. 

Furthermore, by setting the initial values siL1 = siR1 =1, the player’s belief in the first stage 

game is drawn from a uniform distribution. 

    The following example describes the mechanics of the RHB learning model.  Suppose 

a Row player has a δ equal to one-half.  In the first period his belief about Column’s 

mixed strategy is drawn from the uniform distribution on the unit interval.  The 

probability he draws a belief for which L is a best response is 1/3, i.e. 1-β(2/3,1,1) =1/3. 

Therefore the model predicts Pr(ar1=L) = 1/3. Now suppose that his opponent chooses R 

in the first period.  With this outcome srL2 = .5 and srR2 = 1.5, and in the second stage 
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game the probability that Row draws a belief for which L is the best response, is 1 -

β(2/3,.5,1.5) = .09. If Column chose R in the second stage game then srL3 = .25 and srR3 = 

1.75, and the probability Row chooses L in stage game three is 1-β(2/3,.25,1.75) = .03. 

Consider a last iteration in which the Column player selects L in stage game three.  In this 

case srL4 = 1.125 and srR4 = .875, and the Row player selects L in the fourth stage game 

with the probability 1-β(2/3,1.125,1.75) = .41. 

    To better appreciate the flexibility of the RHB model, consider two special cases.  As 

the discount rate δ approaches zero, behavior approaches a simple best response dynamic.  

Also, when the discount rate is one, the mode of the belief distribution follows a fictitious 

play process and the belief is drawn from a Bayesian posterior distribution on the 

opponent’s mixed strategy. 

    Again each of our subjects played against some computer implemented fixed mixed 

strategy.  For each of our subjects, we estimate δ by a maximum likelihood procedure.  

For a Row subject the probability he chose the action L in stage game n is 

 
Pr(arn = L) = 1-β(2/3, srL1(δr), srR1(δr)). 
 
The resulting log-likelihood function for each of our Row subjects is  

{ } ( ) ( )( )( ) { } ( ) ( )( )( )∑
=

== +−=
200

1
3

2
3

2 ,,,,1lnln
n

rrRnrrLnRarrRnrrLnLa ssIssIL
rnrn

δδβδδβ . 

Similarly the log-likelihood function for each of our Column subjects is  

{ } ( ) ( )( ) { } ( ) ( )( )( )( )∑
=

== −+=
200

1
3

2
3

2 ,,1,,lnln
n

ccRnccLnRaccRccLnLa ssIssIL
cncn

δδβδδβ . 

    In Tables 1 and 2 we report for each subject the maximum likelihood estimate of δ and 

the result of a forecasting exercise.  For each subject role we report the results by the 

increasing estimated values of δ in the second column.  The lowest estimate of the 

variable is .457 and the highest is 1.01.3  The third column reports the percentage of Left 

play by the opponent for all 200 stage games.  The fourth through eighth columns report 

the data and results for a within sample forecasting exercise.   

    We asked how well the RHB model predicts play in the last 100 stage games.  For each 

subject, we generate a sequence of choice probabilities of Left using his actual 
                                                 
3 We truncated the estimated value of δ  at 1.01, as the behavior of the likelihood function quickly 
deteriorates as δ exceeds one and estimates are difficult to obtain. 
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opponent’s choices and his estimated value of δ.  We report the average of this sequence 

in the fourth column.  In addition, we calculate the square of the difference between the 

subjects’ predicted choice probability and his actual choice – where a choice of Left is set 

to one and a choice of Right is set to zero – in each of the last 100 stages games and we 

sum these squared differences.  In column six, we report the total sum of squared errors 

of the subject’s estimated choice probabilities.  We also report the subject’s total 

proportion of left play for all 200 stage games in column five, and the total sum of 

squared errors of this proportion for the last 100 stage games in column seven.  We report 

the difference of the two of sum of squared errors statistics in column eight.  The RHB 

generally has a higher sum squared error in two circumstances; either a subject’s 

frequency Left play is on the opposite side of fifty percent from the best response or a 

subject is frequency of best response is nearly one. 

    Finally we provide a simulation to show how the RHB can characterize diverse subject 

behavior.  For each player type, we start by selecting the lowest and highest estimate 

obtained of δ .  Then we simulate the two RHB models playing 200 stage games of the 

game against a mixed strategy.  For both of the values of delta, we record the proportion 

of Left in the last 100 stage games by the RHB model.  We do this exercise one hundred 

times for a particular mixed strategy.  We then calculate the average proportions of Left 

play in the last 100 stage games for the two values of δ across the one hundred exercises.  

We report these averages as the RHB response to the mixed strategy.  We do this 

simulation for the mixed strategies in the interval [.05, .99] using a step size of .01.  The 

simulation generates a pair of response surfaces for the RHB model, one for the low 

estimate of δ and one for the high estimate of δ.  These response surfaces are presented in 

Figures 5 and 6. 

   Figure 5 presents the response surfaces for the Row player and Figure 6 presents the 

response surfaces for the Column player.  The low value of δ (.457 for the Row player 

and .619 for the Column player) produces a response surface that is almost a line segment 

that connects the two ends of the best response correspondence.  On the other hand, the 

high value of δ (1.01 for both player types) produces a surface that indicates more 

frequent best responses.  The two surfaces show how the RHB model characterizes the 

data.  We display the scatter plot of human/computer joint left frequencies on the figure 
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and the scatter plot is quite similar to the response surfaces.  For example, the subjects 

and the RHB model play Left substantially less often than the Nash equilibrium 

frequency of two-thirds when playing against mixed strategies that are close to the Nash 

equilibrium.  We are encouraged by the ability of the RHB model to account for some of 

the heterogeneity exhibited by the subjects. 

 

IV. Concluding Remarks 
 

    In this paper we test whether subjects can detect and exploit non-equilibrium play in a 

zero-sum game with a unique equilibrium in mixed strategies.  In order to provide an 

informative test we conducted an experiment in which subjects repeatedly play against 

computer implemented mixed strategies.  The mixed strategies were varied across 

subjects.  We observe subjects, on average, doing remarkably well at adjusting their 

strategies towards a best response and achieving payoffs above their Nash equilibrium 

levels.  However, there is substantial heterogeneity in subjects’ behavior and 

performance.  We formulated a single variable model of probabilistic belief formation 

that captures this heterogeneity and other features of the data.  

    There are several directions for further research.  First, one can investigate whether 

subjects can detect and best respond when opponents deviate from Nash equilibrium 

strategies in other classes of games.  Second, the adopted methodology of having humans 

play against preprogrammed strategies can be used to address other open questions in 

game theory such as how do alternative behavioral rules influence the convergence to 

equilibrium when there are multiple equilibria.  Finally, the promising empirical 

performance of the simple Random Hierarchal Belief model should be tested on data sets 

from other game experiments and the properties of the dynamics of the model should be 

explored analytically. 

 



 12

Bibliography 
 
Fox J (1972) The Learning of Strategies in a Simple, Two-Person Zero-Sum Game 
without Saddlepoint. Behavioral Science 17: 300-308 
 
Lieberman B (1962) Experimental Studies of Conflict in Some Two-Person and Three-
Person Games. In: Criswell JH, H Solomon, and P Suppes (eds.) Mathematical Methods 
in Small Group Processes. Stanford University Press, Stanford, pp. 203-220 
 
Rosenthal RW, J Shachat, and M Walker (2001) Hide and Seek in Arizona. Technical 
Report, IBM TJ Watson Research Laboratory 
 
Shachat J, and JT Swarthout (2002) Learning about Learning in Games through 
Experimental Control of Strategic Interdependence. Technical Report, IBM TJ Watson 
Research Laboratory 
 



Row 
Subject MLE δ

Col. Left 
Frequency

Avg. RHB 
Frequency 

Left

Proportion 
Left By 
Subject

Sum 
Squared 

Error RHB

Sum 
Squared 

Error Difference
1 0.457 0.735 0.672 0.680 22.762 43.520 -20.758
2 0.459 0.195 0.132 0.205 23.604 32.595 -8.991
3 0.531 0.560 0.454 0.535 35.177 49.755 -14.578
4 0.538 0.275 0.178 0.250 30.403 37.500 -7.097
5 0.604 0.170 0.078 0.110 18.660 19.580 -0.920
6 0.649 0.230 0.102 0.210 36.422 33.180 3.242
7 0.657 0.350 0.210 0.255 34.927 37.995 -3.068
8 0.705 0.450 0.275 0.485 69.218 49.955 19.263
9 0.723 0.210 0.067 0.065 9.081 12.155 -3.074

10 0.753 0.935 0.935 0.890 17.852 19.580 -1.728
11 0.754 0.740 0.656 0.535 41.659 49.755 -8.096
12 0.767 0.480 0.285 0.255 28.456 37.995 -9.539
13 0.792 0.915 0.917 0.850 22.670 25.500 -2.830
14 0.794 0.560 0.388 0.380 40.830 47.120 -6.290
15 0.797 0.485 0.256 0.290 46.104 41.180 4.924
16 0.804 0.840 0.815 0.850 24.414 25.500 -1.086
17 0.805 0.245 0.054 0.070 12.987 13.020 -0.033
18 0.806 0.825 0.812 0.485 75.230 49.955 25.275
19 0.807 0.810 0.774 0.625 44.342 46.875 -2.533
20 0.816 0.745 0.669 0.570 51.106 49.020 2.086
21 0.820 0.595 0.432 0.490 53.230 49.980 3.250
22 0.824 0.605 0.445 0.515 68.138 49.955 18.183
23 0.826 0.320 0.089 0.085 12.431 15.555 -3.124
24 0.832 0.345 0.090 0.125 22.654 21.875 0.779
25 0.835 0.260 0.040 0.040 7.011 7.680 -0.669
26 0.845 0.740 0.660 0.395 57.490 47.795 9.695
27 0.846 0.475 0.240 0.160 29.176 26.880 2.296
28 0.854 0.885 0.901 0.835 27.447 27.555 -0.108
29 0.859 0.865 0.890 0.835 30.497 27.555 2.942
30 0.864 0.795 0.754 0.620 57.314 47.120 10.194
31 0.885 0.755 0.715 0.515 52.167 49.955 2.212
32 0.888 0.915 0.952 0.950 8.712 9.500 -0.788
33 0.889 0.900 0.918 0.945 12.343 10.395 1.948
34 0.891 0.405 0.111 0.090 11.534 16.380 -4.846
35 0.891 0.740 0.677 0.630 33.710 46.620 -12.910
36 0.893 0.925 0.958 0.905 16.885 17.195 -0.310
37 0.913 0.505 0.192 0.195 31.129 31.395 -0.266
38 0.914 0.870 0.920 0.885 18.104 20.355 -2.251
39 0.916 0.600 0.367 0.480 57.041 49.920 7.121
40 0.930 0.775 0.764 0.730 35.082 39.420 -4.338
41 0.931 0.405 0.058 0.070 10.077 13.020 -2.943
42 0.935 0.830 0.881 0.925 8.648 13.875 -5.227
43 0.940 0.380 0.044 0.085 11.480 15.555 -4.075
44 0.945 0.920 0.979 0.975 4.596 4.875 -0.279
45 0.963 0.505 0.124 0.110 19.636 19.580 0.056
46 0.970 0.540 0.101 0.135 21.436 23.355 -1.919
47 0.975 0.680 0.607 0.445 56.132 49.395 6.737
48 0.978 0.695 0.637 0.800 31.863 32.000 -0.137
49 0.982 0.355 0.020 0.040 3.110 7.680 -4.570
50 0.990 0.640 0.250 0.270 42.797 39.420 3.377
51 1.010 0.655 0.562 0.640 46.527 46.080 0.447

Table 1: Maximum Likelihood Estimates of δ for Row Subjects



Column 
Subject MLE δ

Row Left 
Frequency

Avg. RHB 
Frequency 

Left

Proportion 
Left By 
Subject

Sum 
Squared 

Error RHB

Sum 
Squared 

Error Difference
1 0.619 0.200 0.904 0.885 17.252 20.355 -3.103
2 0.629 0.670 0.423 0.545 35.712 49.595 -13.883
3 0.666 0.375 0.776 0.660 45.452 44.880 0.572
4 0.675 0.350 0.799 0.735 34.648 38.955 -4.307
5 0.689 0.515 0.633 0.650 44.354 45.500 -1.146
6 0.703 0.285 0.871 0.820 23.814 29.520 -5.706
7 0.716 0.790 0.271 0.195 24.344 31.395 -7.051
8 0.722 0.185 0.946 0.935 11.444 12.155 -0.711
9 0.741 0.490 0.688 0.605 57.472 47.795 9.677

10 0.748 0.175 0.959 0.920 13.946 14.720 -0.774
11 0.749 0.400 0.809 0.650 49.261 45.500 3.761
12 0.749 0.250 0.918 0.895 13.204 18.795 -5.591
13 0.761 0.725 0.368 0.445 32.713 49.395 -16.682
14 0.764 0.345 0.858 0.780 35.151 34.320 0.831
15 0.782 0.760 0.307 0.325 33.183 43.875 -10.692
16 0.794 0.580 0.599 0.580 50.298 48.720 1.578
17 0.797 0.295 0.917 0.895 17.512 18.795 -1.283
18 0.799 0.510 0.695 0.560 64.783 49.280 15.503
19 0.811 0.820 0.209 0.270 33.273 39.420 -6.147
20 0.817 0.885 0.126 0.275 38.506 39.875 -1.369
21 0.828 0.800 0.222 0.530 69.519 49.820 19.699
22 0.832 0.925 0.068 0.290 46.031 41.180 4.851
23 0.835 0.505 0.726 0.635 46.294 46.355 -0.061
24 0.838 0.760 0.300 0.555 56.473 49.395 7.078
25 0.847 0.510 0.729 0.680 42.803 43.520 -0.717
26 0.849 0.865 0.126 0.165 23.458 27.555 -4.097
27 0.863 0.830 0.177 0.340 45.894 44.880 1.014
28 0.865 0.720 0.352 0.575 59.895 48.875 11.020
29 0.883 0.890 0.078 0.120 19.166 21.120 -1.954
30 0.883 0.215 0.982 0.985 1.165 2.955 -1.790
31 0.891 0.840 0.140 0.150 23.869 25.500 -1.631
32 0.893 0.850 0.117 0.185 26.458 30.155 -3.697
33 0.893 0.310 0.953 0.960 6.736 7.680 -0.944
34 0.902 0.875 0.078 0.110 15.371 19.580 -4.209
35 0.917 0.710 0.363 0.590 54.410 48.380 6.030
36 0.920 0.435 0.920 0.905 16.699 17.195 -0.496
37 0.922 0.705 0.350 0.395 50.160 47.795 2.365
38 0.937 0.530 0.808 0.800 36.797 32.000 4.797
39 0.940 0.745 0.280 0.375 41.222 46.875 -5.653
40 0.942 0.930 0.026 0.030 2.665 5.820 -3.155
41 0.945 0.940 0.994 0.990 0.964 0.990 -0.026
42 0.966 0.830 0.095 0.065 10.020 12.155 -2.135
43 0.967 0.580 0.785 0.820 32.952 29.520 3.432
44 0.970 0.865 0.023 0.040 5.730 7.680 -1.950
45 0.978 0.470 0.962 0.975 5.115 4.875 0.240
46 1.010 0.335 0.997 0.990 1.012 1.980 -0.968
47 1.010 0.665 0.330 0.460 48.883 49.680 -0.797
48 1.010 0.430 0.971 0.990 3.766 1.980 1.786
49 1.010 0.525 0.990 0.995 1.295 0.995 0.300
50 1.010 0.615 0.765 0.980 19.375 3.920 15.455
51 1.010 0.540 0.972 1.000 1.307 0.000 1.307

Table 2: Maximum Likelihood Estimates of δ for Column Subjects
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