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Advanced Waveform Models for the Nano-Meter Regime

ABSTRACT
In the early years of digital system design, it was sufficient to model
the delay of elements, so digital simulation tools used step func-
tions to represent signals. As switching speeds increased, it became
increasingly necessary to take into account the transition time of the
signal. The simplest way of modeling the transition time is to up-
grade the signal model from a step to a ramp, and this has been the
state of digital design since the early eighties [1, 2].

As speeds increase further, however, the limitation of this ap-
proximation have become increasingly apparent. One well known
problem is that of threshold selection, which -when not done properly-
can lead to to negative delays [3, 4]. Also, many of the deep-
submicron phenomena (e.g. inductive interconnect, coupled noise,
and power supply current) are difficult or impossible to model ac-
curately with the ramp model.

In this paper, we develop the mathematical basis for a new ap-
proach to modeling the waveforms associated with digital circuits.
The approach represents a logical extension to current waveform
modeling methods and provides a straightforward method to quan-
tify and increase the accuracy of waveform models.

1. PRIOR WORK
The simplicity of the ramp approximation of signal waveforms

has several advantages: (1) it makes the task of building models
for timing analysis easy, (2) it is conceptually easy to grasp and
to translate from the model parameters to a pictorial representation
or to a Spice input specification, (3) it is information dense in that
two real numbers (delay, slope) and a boolean (rising/falling) com-
pletely encapsulate the behavior of the waveform in question.

Several researchers have recognized the need for more detailed
waveform models, [3, 4, 5, 6]. Most, however, attempt to derive the
models from a first-principles circuit behavior approach by deriving
the waveform model from the analytical solution of the non-linear
ordinary differential equation describing the behavior of a simple
circuit, such as a CMOS inverter [7, 8]. While such approaches
are useful in order to improve our understanding of the behavior of
such circuits, they have the following weaknesses:

• They are usually restricted to simple output stage topologies
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Figure 1: A typical digital waveform.

for which these analytical techniques can be applied.

• They are not related to or integrated into the current timing
model characterization methodology.

• They do not allow for a tradeoff of complexity vs. accuracy,
and do not gracefully degrade to the common ramp model.

2. OUR APPROACH
Consider the waveform in figure 1. Assuming that we are mod-

eling legal waveforms that transition fully between the two voltage
supply rails, we can choose to model the waveform in a piece-wise
linear fashion by the vector of times at which the waveform reaches
specified intermediate voltage levels between the low and high lev-
els. Without loss of generatility, we assume that the low and high
levels are zero and VDD, normalize these intermediate voltage lev-
els by the VDD, and denote the vector of such normalized voltages
by V . We measure the crossing time for each of these voltages and
denote the vector of resulting crossing times by T , and its length
by NT .

During the process of characterizing a cell in order to generate
a timing model, the cell will be simulated under a variety of input,
loading, temperature and power supply voltage conditions. Sup-
pose that we perform M such simulations, and measure the result-
ing crossing times Ti, i = 1..M . If we view these M simulations
collectively, we would assert that the resulting components of T
are correlated. That is, we would expect that -for example- the
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Figure 2: Plot of T50% and T75% vs. T5%.

20% crossing point and the 30% crossing point, viewed as statis-
tical variables, are not independent of each other, but have strong
shared behavior. Figure 2 shows a plot of the 50% and 75% cross-
ing times vs. the 5% crossing time from an experiment compris-
ing 625 simulation of a simple CMOS inverter under various input,
loading and power supply conditions. It is clear from the plot that
the various crossing times are statistically correlated.

Principal component analysis (PCA) [9] is a statistical analysis
technique that allows us to understand the joint behavior of a num-
ber of statistically correlated variables, and to map them into a re-
duced number of independent so-called factors. The PCA analysis
works be performing a singular value decomposition (SVD) on the
correlation matrix of the input variables, in our case, the NT cross-
ing times, and results in (a) a vector of NT singular values, and (b)
an NT by NT rotation matrix which maps the correlated crossing
times to the uncorrelated factors.

We denote si as the ith largest singular value resulting from the
PCA analysis, and note that it can be directly interpreted as the
amount of variability explained by the ith factor. Furthermore, the
quantity dK =

∑K
i=0 si/

∑N
i=0 si can be interpreted as the total

variability explained by the firstK factors altogether. Accordingly,
the quantity of 1 − dK would be the amount of variability left un-
explained by the first K factors.

Figure 3 shows a plot of the singular values si, and the remaining
variability (i.e. 1−di) resulting from the PCA analysis on the cross-
ing times measured from the same 625 CMOS inverter simulations
above. The plot clearly shows that the first 2 factors account for
≈ 99.9% of the total variability in the resulting waveforms. This
explains, to a certain degree, why the 2 parameter ramp model has
been so successful at modeling the behavior of digiral circuits. We
will examine this in more detail in the next sections.

Thus far, we have shown: (a) that digital signal waveforms can
be represented by the crossing times at NT predefined voltage lev-
els, (b) that these crossing times can be viewed as a set of correlated
statistical variables, and (c) that the NT crossing times can each be
modelled as linear functions of a much smaller set of NF indepen-
dent variables. This means that we have defined a way in which
the complete waveform can be expressed as a function of a small
number of inputs: T = FV , where F is an NT ×NF matrix, and
the NV vector V denotes the independent variables. The transform
matrix F can be derived from performing a PCA analysis of the
waveforms that result during the normal process of timing charac-
terization of a cell.
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Figure 3: Plot of si and 1− di vs. crossing time index i.
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Figure 4: Circuit used to simulate a CMOS inverter.

3. EXAMPLES
We now present the results of performing PCA analysis on the

measured crossing times of several circuits under a variety of con-
ditions. The purpose of these analyses is to show that the statis-
tics governing the crossing times hold over a wide range of operat-
ing conditions, device sizes, model parameters and circuit topolo-
gies. This strengthens the case for using PCA as a general purpose
method to model all the waveforms that one might encounter dur-
ing the process of doing digital system analysis.

The next sections explore the validity and generality of the PCA
analysis as it is applied to circuits under various conditions.

3.1 Operating Conditions and Device Sizes
For this first example, we simulated a 1.8V, 0.18µ CMOS in-

verter using the circuit in figure 4. The variables in the simulation
were:

1. The input slope to the driver was varied from 0.1ns to 1ns.

2. The size of the input driver was varied from 0.1X to 1X a
standard size inverter.

3. The size of the output load was varied from 1X to 10X a
standard size inverter.

4. The P/N ratio of the device widths was varied from 1.2 to 2.

A full-factorial experiment design with five levels (values) for
each variable was performed, resulting in a total of 625 circuit sim-
ulations using 0.18um bulk technology. We used a voltage step
size of 0.1V, and measured all 17 crossing times between 0.0 and
VDD (1.8V). Figure 5 shows a plot of the correlations amongst the
observed crossing times, from which we observe (a) that the min-
imum correlation between the observed variables is ≈ 0.86, and
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Figure 5: Correlation matrix amongst the crossing times.

(b) that the correlations is highest for neighbouring crossing times
(along the diagonal) and decreases monotonically with separation
between voltage levels.

Figure 3 presented the singular values obtained from the PCA
analysis on this data. It is also interesting to consider the factors ob-
tained from this analysis. In PCA analysis, each of the uncorrelated
factors is expressed as a weighted sum of the original variables in
question. Hence, we denote the factor Fi by an NT long vector of
the weights on the individual crossing times (ti’s). Figure 6 shows
a plot of the first three factors F0, F1, and F2 in terms of the 17 ti
variables. From the figure we make the following important obser-
vations:

1. The first factor, F0, represents an approximately equal weight-
ing of all the crossing times, t0 through t16, i.e. F0 =
k0

∑17
i=0 ti, with k0 being a circuit-specific constant. This is

straightforwardly interpreted as the average of all the cross-
ing points and in that sense represents the delay of the wave-
form.

2. The second factor, F1, represents an approximately linear
weighting of the crossing times, i.e. F1 = α

∑N
i=0(β − i)ti

where α and β are circuit-specific constants. The expression
for F1 can be simplified to: F1 = k10F0 − k11

∑N
i=0 iti

where k10 and k11 are algebraic functions of α and β. In this
form, F1 can be interpreted as the average of the quantity iti
which is propotional to the average slope of a linear ramp
approximation to the original waveform.

3. The third factor, F2, represents an approximately second or-
der (parabolic) weighting of the crossing times, i.e. F2 =
α
∑N
i=0(β − i)2ti. Like F1, this can be re-written in terms

of the average of the quantity i2ti that appears to be a disper-
sion metric.

It is important to note how the various factors appear to be closely
related to the standard statistical moment formulea (e.g. mean, vari-
ance, kurtosis etc...). One might consider the direct application of
such formulea to the crossing point statistics, but the weightings
generated by the PCA analysis are not -in fact- constant (as we
shall see in subsequent examples).
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Figure 6: First three PCA factors vs. crossing time index.

NM s0 1− d0 s1 1− d1 s2 1− d2

1 16.55 2.65% 0.438 0.068% 0.0104 0.008%
28 16.44 3.27% 0.546 0.056% 0.0079 0.009%

Table 1: Singular values with a single and multiple models.

3.2 Model Parameters
In this second example, we simulated the same structure shown

in figure 4 with the same simulation variables, but we took only 3
levels for each variable creating 81 different simulation conditions.
We performed the simulation for every one of the 81 conditions
for 28 distinct device model parameters obtained directly from a
commerical foundry. These different device models enable us to
consider the impact of the process parameter variability on the PCA
analysis for crossing points. Table 1 compares the resulting factor
rankings obtained for a single device model (NM = 1) and the case
of device model parameter variations (NM = 28).

Figure 7 shows the difference between the first three factors gen-
erated from these simulations (totaling 81 × 28 = 2268 simula-
tions) and the same three factors generated for a single model in
the previous section. It is clear that the difference are small, of the
order of 1%. This means that the mapping from correlated cross-
ing times to uncorrelated factors is substantially independent of the
details of the device model within a typical technology.

3.3 Loading
In this third example, we performed a similar experiment to that

in the previous section, but this time we performed the simulations
for each structure with realistic resistive interconnect models of
lengths 10µm, 100µm and 1000µm. It is well known that resis-
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Figure 7: Difference between single and multiple model factors
vs. crossing time index.
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Figure 9: Factors for NOR2 gate with inputs offset in time vs.
crossing time index.

tive interconnect results in waveforms that are qualitatively differ-
ent from those generated with pure capacitive loading [5, 4]. Figure
8 shows a plot of the first three factors resulting from this experi-
ment. We note that the first two factors are essentialy the same as
for the first experiment, while the third factor, while still second
order in nature, is inverted in sign. This is an important indication
that the simple moment-like formulas presented in Section 3.1 may
not necessarily be as general as one would like, and that weights of
these moments can range widely depending on -in this case- load-
ing conditions. A possible reason of this outcome is the formation
of tail shapes in signal waveforms mainly due to the presence of
significant interconnect resistance.

3.4 Multiple Input Switching
In this fourth example, we simulated a 2-input NOR gate under

similar conditions to those in the previous experiments, but added
the effect of multiple input switching. We applied input waveforms
at both inputs of the NOR gate, but offset them apart in time by 6
values in the range from 0ns to 1ns. The impact of multiple input
switching is an important source of inaccuracy which has been rec-
ognized for some time by the CAD community, but relatively little
has been done to address it, perhaps because it can lead to wave-
forms that are difficult to model with a single ramp. Figure 9 shows
the resulting first three factors for this experiment.

We note that the three factors are essentialy the same as for the
first experiment with single input switching, which is an indication
that the space of factors is large enough to represent waveforms
even with the impact of multiple input switching.

3.5 Circuit Topologies

Ckt s0 1− d0 s1 1− d1 s2 1− d2

INV 16.46 3.14% 0.533 0.011% 0.0128 0.0037%
ALL 16.40 3.51% 0.582 0.08% 0.0119 0.01%

Table 2: Singular values for 1 and 5 circuits.
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Figure 10: Error in estimating the 17 crossing times vs. cross-
ing time index.

In this final example, we performed the simulation experiments
with a number of different circuit structures. These included the
same inverter circuit from section 3.1, along with 2 and 3-input
NAND and NOR gates. We performed two PCA analyses: (a) for
the data obtained from only the inverter, and (b) using the data from
all five cells. We compare the singular values and sums for these
two cases in table 2. It is apparent that when a smaller number
of circuit topologies is included, more of the overall variability is
explained with a fewer number of factors. Given the dominance
of the first factor, these changes might appear small. This can be
deceiving, however, since the previous sections have demonstrated
that the subtleties of waveform shape appear to be contained in the
higher (s2 and above) factors.

4. ERROR ANALYSIS
Thus far, we have presented a new waveform modeling method

and applied it to a variety of circuits to show that it general enough
to model waveforms of a broad class of circuits. We now turn our
attention to a comparison of the accuracy of this proposed method
as compared with current practice.

The factors predicted from a PCA analysis can be thought of as
weighted linear sums of the various components of T . But we also
have the freedom to choose any predefined linear transformation of
T instead, and that predefine linear transformation need not use all
NT values of T , but may be as specific as a single component of
T , or the sum/difference of any two components. The result is a
less-than-optimal choice of factors (where optimality is defined as
maximizing the variability explained). In fact, the ramp approxi-
mation can be thought to first order of as a selection of two factor,
one (the delay) being the midpoint crossing time t50, and the other
(the slope or transition time) being the difference between -say- t70

and t30.
To perform the comparison, we used the same 625 data samples

generated in section 3.1. The analysis was also performed on all the
other data sets with similar results. We performed four analyses:



1. We used linear least squares regression to build a first order
(linear) polynomial model for each of the 17 switching times
as a function of the first (most important) 3 factors gener-
ated from the PCA analysis. These results are represented
by the curve labelled E0 in figure 10. Note that there would
normally not be a need to perform regression in this and the
following case, but that we chose to do so in order to make
the comparison between the four cases as consistent as pos-
sible.

2. We repeated the step above, but using only the first 2 factors
generated from the PCA analysis. These results are labelled
E1 in figure 10.

3. We used linear least squares regression to build a first order
(linear) polynomial model for each of the 17 switching times
as a function of the midpoint crossing time t50, and the tran-
sition time t70 − t30. These results are labelled E2 in figure
10.

4. We assumed a linear ramp defined from the midpoint cross-
ing time t50, and the transition time t70 − t30. These results
are labelled E3 in figure 10.

Figure 10 shows the standard deviation of the error (measured
in ns) in estimating the 17 crossing times using the four methods
above. It is clear from the figure that the error in estimating the
crossing times for the PCA method is significantly better than the
ramp (caseE3). We also note that using more factors (caseE0) im-
proves the overall accuracy, which gives us confidence in extending
the approach.

Interestingly, we note that substituting the midpoint and transi-
tion time for the PCA factors is not significantly worse than using
the first two factors of the PCA analysis. This gives current timing
and modeling methodologies a possible easy method to improve
overall accuracy while remaining compatible with legacy applica-
tions.

5. APPLICATIONS AND FUTURE WORK
As presented, the waveform models described in the paper would

find application in any situation where having a more detailed de-
scription of digital switching waveforms is useful. Some of these
applications are:

• Interfaces between analog and digital parts of a design. A
problem that is growing in importance as mixed-signal SOC
designs become more common.

• Interfaces between digital models and interconnect-dominated
on-chip or off-chip buses. An example of the improvement in
accuracy possible is shown in figure 11 which shows a com-
parison of the waveforms at the far end of a 2000µ line from
Spice, the PCA approximation (dots) and the ramp approxi-
mation.

• Improved prediction of noise pulse generation and coupling.

• Modeling of power supply switching current, where the cur-
rent ramp approximation predicts a simple pulse instead of
the more typical triangle-like waveforms observed in prac-
tice. An example of results generated using this type of ap-
proximation is shown in figure 12.

The computational cost associated with using these waveform
models includes two components. First is the cost of generation,
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Figure 11: Waveforms at the far end of RC line with Spice,
PCA and Ramp waveform approximations.
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Figure 12: Power supply currents from Spice, PCA and Ramp
waveform approximations.

which involves finding crossing times, performing the PCA analy-
sis, and post-processing the results during the normal flow of cell
characterization. In practive we find that all of these steps can be
done in far less time than would be required to perform the circuit
simulations required. Second is the storage cost associated with
representing the waveforms. Assuming that the voltage axis is di-
vided intoNV levels, and that a linear model is built for each of the
crossing times as a function of -say- delay and transition time, then
a mere 2NV real numbers need to be stored with the cell model in
order to allow it to generate full waveforms.

In the future, the PCA modeling methodology proposed in this
work will be applied to a larger and far more important and chal-
lenging task: enhancing the accuracy of current timing simulation
tools. This accuracy is needed to: (a) capture difficult to model
analog phenomena such as noise propagation, (b) model multiple
input switching, (c) model complex loads difficult to represent by
a single effective capacitance, (d) model dependence on environ-
mental (e.g. power supply and temperature) and physical (e.g. ∆L
and Vth) variations.
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