
RC22716 (W0302-018) February 5, 2003
Computer Science

IBM Research Report

Virtual Documents in Information
Search and Retrieval Systems

Yurdaer N. Doganata, Youssef Drissi, Tong-Haing Fin, Lev Kozakov
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Virtual Documents in Information Search and Retrieval
System

Yurdaer Doganata

yurdaer@us.ibm.com
Youssef Drissi

youssefd@us.ibm.com
Tong-Haing Fin

thfin@us.ibm.com
Lev Kozakov

kozakov@us.ibm.com

IBM T.J.Watson Research Center

ABSTRACT
Traditional information search and retrieval systems crawl
collections of URLs pointing to the physical locations of
documents or web pages, index their content, and return a set of
URLs in response to user queries. The users, however, require
more flexible, customizable, reliable and effective information
search and retrieval systems. This paper presents an alternative
approach by adopting the concepts of ‘virtual documents’ and
‘virtual URLs’ that utilize searchable component libraries created
by extracting information from documents. This approach enables
the design of information search and retrieval systems with
enhanced and flexible crawling, indexing, retrieving and
rendering features.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing – Indexing methods.
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – Information filtering, Retrieval models.

General Terms
Management. Design.

Keywords
Crawling, Virtual Documents, Customization.

1. INTRODUCTION
Information search and retrieval (IS&R) systems deal mostly with
document sets. These document sets could range from relatively
small collections of files stored on a desktop computer to billions
of documents distributed over the Internet. Some large-scale Web
search engines [1] were built to search and retrieve hundreds of
millions of web pages, while other systems focused on selecting
smaller sets of documents relevant to predefined topics [2]. As the
scale of information retrieval systems and applications increased,
the user expectations are also shifted from just retrieving
electronic copies of documents from large repository of structured
content to retrieving unstructured context focused information
with customizable rendering capabilities. Companies are
pressured by increased customer expectations in the areas of

information retrieval while motivated to provide support over the
Web with reduced cost.

The design of contemporary information retrieval systems is
driven by new user requirements aimed at increasing goal
attainment and hence user satisfaction. These requirements can be
grouped as follows:

• The user experience should not be limited to or solely
determined by the content authoring process. The
system should allow rendering the content differently
based on different context as well as based on custom
layout. This is particularly important when the same
search service is used by multiple organizations globally
where each organization comes forward with their own
set of usability requirements.

• The content to be indexed should not be limited only to
the terms used by the content authors. A pre-indexing
process should enhance the content with possible text
analysis applications by including the variants of
important terms, synonyms, meta tags, topic and task
classifications, etc. The pre-indexing processing will
provide information about the content more than the
content author could provide. This is realized by
comparing and contrasting the document, both
linguistically and statistically, to the other documents in
the corpus.

• The availability of the content should not depend on the
availability of the Web servers placed in front of the
content. Today, almost all documents are served
through a Web server. The content becomes
unreachable when the server is down or cannot be
reached.

In this paper, we present alternative models of fundamental
operations in IS&R systems, designed to satisfy the requirements
above. The rest of the paper is organized as follows. Next section
defines the concepts of virtual document and URLs and describes
how these concepts are used to create and index multiple views of

the same documents in different contexts and make them
searchable. Section 3 introduces a new crawling model called
virtual crawling that allows indexing beyond the authored content.
Section 4 is dedicated to the concept of virtual rendering where
the document views are built dynamically based on predefined
custom layouts.

2. VIRTUAL DOCUMENTS AND VIRTUAL
URLS
2.1 Shortcomings of traditional approach
Content explored by most IS&R systems usually comprises static
HTML pages and other static documents that can be accessed
through the Internet or corporate Intranets. In order to serve its
customers, the IS&R system creates full textual index [1] of all
the documents, using static document URLs as the unique
identifiers.

However, this traditional approach has a number of shortcomings,
especially when it is applied to enterprise document collections.
The size of such a collection may be relatively small, if compared
to the whole Web, but a company may introduce special
requirements that are not addressed by this approach. In
particular, the company may impose certain standards on
document layouts, or establish complicated hierarchical
classification of document types. Such standards may evolve with
time, so multiple enterprise departments will constantly need to
update their documents. Another problem is that some
departments may want to customize the view of documents they
present, or to present different views of the same document in
different contexts. All this issues can hardly be addressed by the
traditional IS&R system.

2.2 Searchable component library
In this paper we employ the concept of 'virtual documents' and
'virtual URLs' to make IS&R systems really flexible in crawling,
indexing, retrieving and rendering the content. The concept of
virtual documents, used in this paper, in fact, is a limited version
of the original definition given by [16] and others [17, 18]. The
original definition assumes that the content elements of a virtual
document might be built on-the-fly from several data sources, e.g.
as a result of SQL query submitted to several databases. Our
version of the concept assumes that the content elements of
virtual documents along with the associated metadata are already
created and stored in the repository, so when the virtual document
is retrieved, the content elements may be put together to build
appropriate document view on-demand.

This concept is realized using the Searchable document
component library that stores documents as sets of content
elements or components along with the metadata. To create the
component library the documents are extracted from their original
repositories, and passed through a document migration pipe to the
new centralized repository. This migration pipe comprises the
following modules:

• Document decomposer that breaks the document
content into content elements.

• Document processor that extracts metadata and stores
content elements along with the metadata in the

component library. The Document processor may use
advanced text analysis tools to enrich the document
content with automatically generated summary, or
synonyms of the most salient terms that appear in the
document. Eventually, the Document processor
encapsulates all the document content elements in one
XML document, using predefined XML schema.

• Component library repository that stores XML
documents along with the associated metadata, and
provides access to the content elements and the
metadata. Each content element is tied to its original
document, so that all the elements of a particular
document can be retrieved using the given unique
document ID.

After the content components are stored in the repository, the
content is passed to the search engine crawler for indexing. To
perform the indexing document content elements are put together
by another module of the component library - Document view
builder. This module is able to build a document content view
from the content elements and associated metadata, and provide
the document content with the unique URL, based on the
document ID. The Document view builder also performs the main
role in constructing the document view and/or layout when
retrieving the documents from the component library.

A set of the document content elements together with the
associated metadata, stored in the Searchable component library,
along with the set of predefined document views, supported by the
Document view builder, represents an instance of the virtual
document. Each virtual document is provided with unique ID,
generated when the document is stored in the library. The
document ID is used to index and retrieve the document content
elements, and build the document view. This ID along with the
address of the component library access point and customization
parameters represents the virtual URL of the document. In the
next section we will show that virtual URL enables flexible URL-
based or parameter-based filtering of search results.

3. VIRTUAL CRAWLING
3.1 Traditional Crawling Methods
The process of collecting documents, usually distributed over a
large computer network or stored on a stand-alone system, is often
called crawling. Preparing the content for crawling can include
specific document preprocessing to be completed before the
indexing phase. For example, in local (intranet) search systems
that require the indexing of different document types, there might
be a need for a preprocessing that converts the documents to a
unified format compatible with the search engine interface. If the
same content is to be crawled by different search engines that
require specific formats, the content might need to be replicated
several times to have, for each search engine, a corresponding
replicated content formatted according to the crawler’s rules. This
type of replications can also be relevant if the documents need to
be presented in different contexts or with different views. More
details about some of these crawling types and their shortcomings
are presented in the next few sections.

3.1.1 Crawling the Web
In the context of the World Wide Web, crawlers are programs that
automatically traverse the Web graph, retrieving pages and
building a local repository of the portion of the Web that they
visit. Depending on the application at hand, the pages in the
repository are either used to build search indexes, or are subjected
to various forms of analysis (e.g. text mining) [5].

Most of Web crawlers retrieve content only from the publicly
indexable Web, i.e., the set of Web pages reachable purely by
following hypertext links, ignoring search forms and pages that
require authorization or prior registration [5]. Moreover, in spite
of impressive resources including high-end multiprocessors and
well crafted crawling software, the largest crawls cover only 30-
40% of the Web [3,4].

3.1.2 Crawling Databases
In this scenario, the content to be searched and indexed is not
organized as regular files, but rather as data records stored in a
relational database. Each record or piece of information is indexed
individually. At the run time, a search query is submitted against
the index, and a list of matching records is returned without
compiling them into “real” document. In a sense, this process
disregards the relations between the different pieces of data. The
Figure 1, below, illustrates this scenario.

Search
Engine 1

Crawler 1

Data stored in databases
to be crawled, searched,
and presented as records
or "small" documents.

Figure 1. Crawling databases.

3.1.3 Crawlers with Proprietary Interfaces
In this scenario multiple search engines need to index the same
content. But the corresponding crawlers have a proprietary
interface and require a specific format for the input documents.
Therefore, a preprocessing step takes place to replicate the content
and convert it to the format supported by the crawler's interface.
The Figure 2, below, illustrates this scenario.

Content to be crawled
and searched

......

Search
Engine 1

Search
Engine N

Search
Engine 1
Crawler 1

Crawler N

......

Contents converted
to formats compatible
with specific search
engines and crawlers.

Figure 2. Crawlers with Proprietary Interfaces.

3.1.4 Crawling Multiple Views
In this scenario, every document could have multiple variants or
views depending on the context. Such context could be defined by
the user personalization preferences. Moreover, the search
systems and services, in this case, require the indexing of all the
document views and structures. One way to achieve this goal is to
replicate the documents for each required view. Each replication
would contain the documents converted to a specific view or
transformed to a specific structure compatible with a given
schema. The Figure 3, below, illustrates this scenario.

Content to be crawled,
searched, and presented
in different views

Search
Engine 1

Crawler 1

Different views
of the same content
(same format)

Figure 3. Crawling the same content with multiple
views.

3.1.5 Focused Crawling
Generic crawlers and search engines might do poorly when it
comes to fulfilling the need for highly specialized information
where the user can explore his interest in depth [4,12]. The goal
of a Focused Crawler [2] is to selectively seek out pages that are
relevant to a pre-defined set of topics. The importance of this type
of crawling comes partially from the scaling challenges posed by
rapid growth of the World-Wide Web. Focused crawlers, in
general, have a good recall and precision because they restrict
themselves to a limited domain [13].

3.2 A Virtual Crawling System
The current crawling methods present interesting problems worth
to study and solve. For instance, in the case of a content crawled
by different search engines with proprietary interfaces, there is a
need to replicate the content with a specific format for each search
engine. This operation not only multiplies the storage volume
needed by the number of search engines, but also introduces a
static process to be executed every time a search engine is added.
This results in a poor flexibility and automation level for the
crawling process. The same problem is faced when multiple views
of the same content need to be indexed. Here again, the number of
views multiplies the storage volume, and the process remains
difficult to adapt to the addition of a new content view. When
crawling databases, the search engine indexes unprocessed
records of data. The presentation of the data, hence, the user
experience, is limited by the database layout. In this case, this
limitation applies in addition to the ones encountered in the
crawling modes mentioned above.

The “Virtual Crawling” is a crawling process where the
documents are not stored as physical files, but as granular
elements of the actual content. These elements are stored in a
database as reusable pieces of data. A document view builder
module then builds a document on demand, with the desired
elements. The document view builder takes also as input a schema
that describes in detail the element types to be collected and
assembled, as well as the structure of the final document view.
This way, it will be possible to create any document view, based
on user's choice or preferences. A document viewer module
renders dynamically the desired view of the content. This module,
hence, is used to present the same content in different contexts.
The generated documents do not have to be stored physically any
more, they become "virtual documents". In a sense, there are no
real physical document files in this crawling process. These
virtual documents are built on demand with the desired view in a
certain context, and with no need for multiple replications of
physical document files. This design further allows for more
flexibility in GUI without the necessity of adding a new view of
the existing content. That means that not only the maintenance
cost, but also the storage cost is reduced.

3.2.1 System Architecture
The Virtual Crawling architecture is illustrated in Fig.4 below.
The component Extractor module extracts the documents from the
original data source and carves the document components and
sections, then stores them into a database. The Document View
Builder is responsible for collecting context information, about
the crawler's interface and the corresponding document schema,
from the configuration module. After collecting all the necessary
input, the Document View Builder creates the document streams
in the memory and feeds them to the crawler. The configuration
module maintains all the data about the context of the crawling
process, such as the crawler interface, formats supported, schema,
structure, and view in which the document have to be created. The
Format Identification module communicates with the crawler to
detect automatically the crawler requirements regarding its
interface and supported document formats, as well as the formats
of seed URIs to be crawled, when applicable.

Component
Extractor

Original
Content

Database of components

Document
Builder

Configuration Format
Identifier

Crawler

Virtual Documents

Figure 4. A Virtual Crawling System.

3.2.2 Component Extractor
The Component Extractor module (see Figure 5) is responsible for
carving the documents into components that comply with a given
specification compiled into an XML Schema. The documents are
accessed one by one by the extractor through an access method
specified by the configuration module. The documents are then
passed to the document carver component that takes also as input
an XML schema that specifies, in detail, how to cut the
documents up, as well as the formats, sizes, and other attributes of
the resulting sections and components. The final components are
then stored in a database with the meta-data that preserves the
relations between these components themselves and also their
association with the original document.

Original
Content

Database of components

Extractor Document
Carver

XML
Schema

Figure 5. Components Extraction.

3.2.3 Interface Identification
The Interface identifier module (see Figure 6) is responsible for
detecting the crawler's type and meta-information and sending the
results to the configuration module for further processing. To
achieve this goal, it establishes a communication with the crawler.
Both the module and the crawler should to comply with a certain
protocol standard. Otherwise, the crawler information needs to be
fed manually to the configuration module. Through an established
connection, the module requests the specification of the method

call(s) and procedures to be followed in order to crawl a set of
documents to be indexed by the search engine. The crawler
responds to that request by sending an XML file, which contains
all necessary details describing the crawler's interface and the
details of the supported formats.

Configuration Interface
Identifier Crawler

tune

request interface
specification

interface spec
(XML schema)

Figure 6. Interface Identification Module.

3.2.4 Document View Builder
The Document View Builder module (see Figure 4) is responsible
for creating customized documents based on context and user
preferences. This information comes from the configuration
module that stores the data about the crawler’s interface and the
documents schema. After collecting all the necessary input, the
Document View Builder creates the document streams in the
memory and feeds them directly to the crawler. Maintaining this
flow avoids the creation of physical files on the "hard drive".
Once the document structure is complete and complies with the
XML document schema, the document viewer builds the final
version of the document that should be presented on the graphical
user interface. This final view is dictated by the personalization
and context information given by the configuration module.

3.2.5 Advantages of Virtual Crawling
Virtual Crawling solves many problems and limitations found in
traditional crawling methods. Here are some of the advantages
provided by the Virtual Crawling process:

� Virtual Crawling avoids increasing the storage requirements
for replication purposes.

� Virtual Crawling enables using crawlers with different
requirements on the same content.

� Virtual Crawling enables building, crawling, and indexing
multiple views without duplicating or replicating the original
content.

� Virtual crawling may facilitate the process of focused
crawling by enabling generation of multiple context focused
URLs for the same content to focus on different aspects or
domains that the document might be related to.

4. VIRTUAL RENDERING
4.1 Retrieving and Rendering Documents on
the Web
Most of the IS&R systems on the Web as well as corporate
systems use simplistic models of document retrieval and
rendering. The most popular search gateway - Google.com - just
puts original document URLs in the search results, and allows
opening of the original documents directly in the user's browser.

Other major search portals, like AltaVista.com or
AllTheWeb.com, use simple click-through model that facilitates
logging of user clicks, but does not intervene with the direct
displaying of the document content. Large corporate search
portals, like Hewlett Packard (http://search.hp.com/), also use the
click-through model, and display original documents. Others, like
IBM.com, just use direct links to the original documents.

While Web search portals allow users to view 'pure' original
documents in their browsers, enterprise search portals often use
specific page layouts to display their documents. In many cases
such a layout comprises the enterprise 'masthead' section,
document specific left navigation bar, and the enterprise footer.
The document content itself is displayed in the so-called 'work
area' of the page. Usually, this layout is a part of the document
HTML source (for HTML documents), so the same pieces of
HTML code are replicated many times. When the enterprise
standard layout changes, all the documents need to be updated to
adopt the new layout.

4.2 Retrieving and Rendering Virtual
Documents
In the previous sections of this paper we mentioned the major
shortcomings of the traditional approach to the document
retrieving and rendering. The general problem of the traditional
model, as applied to the document retrieving and rendering, is that
the document content and layout, hence the user experience, is
defined by content providers, and cannot be easily customized to
fit the user's context.

The concept of virtual documents and virtual URLs, as it was
defined in the section 2 of this paper, helps to separate user
experience from the content authoring. This concept assumes that
the documents are not associated with static URLs any more, so
the same content may have several different context focused
URLs - one for each predefined view. For instance, if the
document is supposed to be used by both general customers and
entitled customers, it may have different views for different
categories of customers, so there may be two different URLs
associated with the same content.

The Searchable component library that facilitates the
implementation of this concept, as described in the section 2 of
this paper, provides special module - Document view builder - to
retrieve the content and build appropriate document view on
demand. One possible way of implementing the Document view
builder is based on creating a set of predefined XSL tables that are
applied to the XML document content, retrieved from the
Searchable component library, every time a certain document
view needs to be built.

4.3 Remote Site Customization
In this subsection we briefly discuss one of the practical benefits
of using the concept of virtual documents and virtual URLs. We
consider the corporate technical support system used by customers
of different departments of a large company. Each department
may want to present the search results and technical documents to
their customers in a different way, adding their own ads,
promotions, etc. To meet this requirement the technical support
system needs to support remote site customization (RSC). The
idea of RSC is rather simple: each remote site, which wants to

present the shared system content in a special format or layout, is
allowed to store and register its own forms. When the system gets
a request from this remote site, it will use appropriate form to
build the customized view of the content.

The Searchable component library, realizing the concept of virtual
documents and virtual URLs, provides a simple and effective
solution for the RSC problem. Since all the documents are stored
in the component library in XML form, the customization can be
easily performed by using XSL tables. The system has an
extendable collection of XSL tables for all supported document
views or layouts. Each remote site is allowed to register its own
set of XSL tables for each document view or use default XSL
tables. Thus, when the request comes from registered remote site,
the system will use appropriate XSL table to build the required
view of selected document.

5. RELATED WORK
Web crawlers, also known as robots, spiders, worms, walkers, and
wanderers, are almost as old as the web itself. The first crawler,
Matthew Gray’s Wanderer, was written in the spring of 1993,
roughly coinciding with the first release of NCSA Mosaic. Several
papers about web crawling were presented at the first two World
Wide Web conferences [10,11,12].

Generic architectures of a focused crawler [2,6] can use a
classifier and a distiller as the major components. The user
interest is specified by a set of example pages. The text classifiers
measure the relevance of the visited web pages, and the hyperlinks
are initially weighted by the relevance of their destination page.
The distiller supports different strategies of ordering the links at
the crawl frontier.

Google’s search engine uses a distributed system and multiple
machines for crawling [13]. The crawler consists of different
functional components running in different processes. A URL
server process reads URLs out of a file and forwards them to
multiple crawler processes. Each crawler process runs on a
different machine, is single-threaded, and uses asynchronous I/O
to fetch data from up to 300 web servers in parallel.

The Internet Archive also uses multiple machines to crawl the
web [15]. Each crawler process is assigned up to 64 sites to crawl,
and no site is assigned to more than one crawler. Each single-
threaded crawler process reads a list of seed URLs for its assigned
sites from disk into per-site queues, and then uses asynchronous
I/O to fetch pages from these queues in parallel. Once a page is
downloaded, the crawler extracts the links contained in it. If a link
refers to the site of the page it was contained in, it is added to the
appropriate site queue; otherwise it is logged to disk. Periodically,
a batch process merges these logged “cross-site” URLs into the
site-specific seed sets, filtering out duplicates in the process.
Mercator [8] is a scalable, extensible web crawler written entirely
in Java. It’s designed to scale up to the entire web. It achieves
scalability by implementing data structures that uses a bounded
amount of memory, regardless of the size of the crawl. It’s
designed in a modular way, with the expectation that new
functionality will be added by third parties.

In the area of extensible web crawlers, Miller and Bharat’s
SPHINX system [14] provides some of the same customizability
features as Mercator [8]. In particular, it provides a mechanism

for limiting which pages are crawled, and it allows customized
document processing code to be written.

Virtual documents are not as popular as crawlers or search
engines, so the number of publications in this area is significantly
more limited. Interesting document interpreter system is presented
by Paradis and others [19]. This system allows gathering
information from multiple sources, and combining it dynamically
to produce a virtual document. Wilkinson [18] presents limited
bibliography on virtual documents and their usage in IS&R
systems. Watters [17] discusses major research directions in this
area.

6. CONCLUSION
We have employed the concept of virtual documents and virtual
URLs to create alternative models for crawling, retrieving and
rendering document content in IS&R systems. Our purpose is to
meet new customer requirements especially in Enterprise Search
Systems. This approach enabled indexing the enhanced content,
rendering custom layouts, flexible URL and parameter based
filtering the search results.

7. REFERENCES
[1] S. Brin and L. Page. The Anatomy of a Large-Scale
Hypertextual Web Search Engine. In Proceedings Of the 7th
International World Wide Web Conference (WWW7), 1998.

[2] S. Chakrabarti, B. Dom, and M. ven den Berg. Focused
crawling: A new approach to topic-specific web resource
discovery. In Proceedings of the 8th International World Wide
Web Conference (WWW8), 1999.

[3] K. Bharat and A. Broder. A technique for measuring the
relative size and overlap of public web search engines. In
Proceedings of the 7th World Wide Wide Web Conference
(WWW7), 1998.

[4] S. Lawrence and C.L. Giles. Searching the World Wide Web.
Science 280, 98-100, April 1998.

[5] S. Raghavan and H. Garcia-Molina. Crawling the hidden Web.
In the Proceedings of the 27th Intl. Conf. on Very Large
Databases (VLDB), pp. 129-138, September 2001.

[6] D. Gillmor. Small portals prove that size matters, Tech column
in San Jose Mercury News, December 1998.

[7] Ester M., Groß M., Kriegel H.-P. Focused Web Crawling: A
Generic Framework for Specifying the User Interest and for
Adaptive Crawling Strategies. The 27th International Conference
on Very Large Databases (VLDB ‘01), Rome, Italy, 2001.

[8] S. Chakrabarti, B. Dom, and M. ven den Berg. Distributed
Hypertext Resource Discovery Through Examples. In Proceedings
of the International Conference on Very Large Databases
(VLDB’99), pp.375-386, 1999.

[9] A. Heydon and M. Najork.. Mercator: A Scalable, Extensible
Web Crawler. World Wide Web, Vol. 2, nbr. 4, pp. 219-229,
1999.

[10] O. McBryan. GENVL and WWWW: Tools for Taming the
Web. In Proceedings of the First International World Wide Web
Conference, pages 79–90, 1994.

[11] D. Eichmann. The RBSE Spider – Balancing Effective Search
Against Web Load. In Proceed-ings of the First International
World Wide Web Conference, pages 113–120, 1994.

[12] B. Pinkerton. Finding What People Want: Experiences with
the WebCrawler. In Proceedings of the Second International
World Wide Web Conference, 1994.

[13] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. In Proceedings of the Seventh
International World Wide Web Conference, pages 107–117, April
1998.

[14] R. Miller and K. Bharat. SPHINX: A framework for creating
personal, site-specific Web crawlers. In Proceedings of the
Seventh International World Wide Web Conference, pages 119–
130, April 1998.

[15] M. Burner. Crawling towards Eternity: Building an archive
of the World Wide Web. Web Tech-niques Magazine, 2(5), May
1997.

[16] T. Gruber, "Virtual Documents", A talk given at the Stanford
Computer Forum WWW Workshop - September 20-21, 1994,
http://www-ksl.stanford.edu/people/gruber/virtual-
documents/abstract.html

[17] C. Watters, "Information Retrieval and the Virtual
Document", Journal of the American Society for Information. To
appear. Hawaii International Conference on System Sciences.
Maui, Hawaii. CD-ROM Publication, 1999,
http://topology.eecs.umich.edu/archive/virtual_document.pdf

[18] R. Wilkinson, "User Modeling for Information Retrieval on
the Web", in Proceedings of the 2nd Workshop on Adaptive
Systems and User Modeling on the WWW, pp.117-119, 1999,
http://wwwis.win.tue.nl/asum99/wilkinson.html

[19] F. Paradis, A.-M. Vercoustre and B. Hills, "A Virtual
Document Interpreter for Reuse of Information", in Lecture Notes
in Computer Science 1375, Proceedings of Electronic Publishing
'98, Saint-Malo, France, pp.487-498, 1-3 April, 1998,
http://citeseer.nj.nec.com/paradis98virtual.html

