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Abstract 
 
This paper presents a linear-time algorithm for the DC 
analysis of a power grid, based on a random walk 
technique. Experimental results show that the proposed 
method is faster than existing approaches and has an 
acceptable error margin. It also has a desirable property 
of localizing computation, and can be extended to RC-
network transient analysis. This method has been applied 
to circuits of up to 70K nodes, for which the solution time 
for a single node was 0.42 sec and the complete solution 
was obtained in 17.6 sec. 
 
1. Introduction 
 

A reliable power grid is an indispensable part of a 
VLSI design. A drop in the supply voltage causes 
increases in gate delays, and, when it exceeds a certain 
limit, causes logic failure. As technology proceeds from 
one generation to the next, interconnect resistance 
increases due to the reduced wire width, and the amount 
of current flowing through a chip increases. These effects 
lead to potentially larger IR voltage drops. At the same 
time, the VDD voltage decreases from one technology 
node to the next and demands a narrower noise margin. 
Therefore, power grid analysis and optimization is 
becoming a critical issue. 

 
Figure 1. Circuit model for a power grid. 

An important subproblem in power grid analysis is 
related to the DC analysis, where a power grid is modeled 
as a resistive network, as shown in Figure 1. Currents 
drawn by logic gates are represented by current sources 
connected to the nodes in the bottom-most layer of the 
grid, and for modeling purposes, perfect voltage sources 
are distributed at nodes in the top-most layer. The 
problem of finding the voltage value at each node is 
formulated as: 

GX=E                                     (1) 
where G is a conductance matrix, X is the vector of node 
voltages, and E is a vector of independent sources. By 
exploiting the sparse and positive definite nature of G, X 
can be solved efficiently. However, it is still very 
expensive to solve a power grid with tens of millions of 
nodes, and with the circuit-size growing, it will 
eventually become prohibitive. 

Different methods have been proposed to address this 
issue. For example, [9] utilizes the hierarchical structure 
of a power grid, divides it into a global grid and multiple 
local grids, and solves them separately. The approach in 
[4] proposes a grid-reduction scheme to coarsen the 
circuit recursively, solves a coarsened circuit, and then 
maps back to find the solution to the original circuit. The 
existing methods sacrifice a certain degree of accuracy for 
a lower time and space computational complexity. 

In this paper, we apply a statistical approach based on 
the relationship between random walks and electrical 
networks to solve this problem, and use test results to 
show that it reaches a good accuracy-runtime tradeoff, 
compared with other methods. This method is particularly 
useful and efficient when only a small fraction of the 
nodes in the grid are to be analyzed. 

This paper is organized as follows. Section 2 presents 
the theoretical basis of the proposed algorithm, Section 3 
uses a simple example to illustrate how to apply this 
theory in circuit analysis, Section 4 gives experimental 
results and compares with other methods, Section 5 
extends the proposed algorithm to RC-network transient 
analysis, and Section 6 provides a conclusion. 
 
2. Random walk principles 
 

The random walk is a classical problem in statistics, 
and has been found useful in engineering. A prominent 
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example of the use of random walks in CAD is [6], which 
applies this idea to capacitance extraction. Other 
applications can be found in [2][5][8]. An earlier 
approach in [1], which inspires the work in this paper, 
interprets the relationship between resistive networks and 
probabilities. Specifically, the solution to any network 
with resistors and voltage sources can be interpreted as 
being equivalent to an equivalent probabilistic problem. 
In our work, we apply and extend this method to handle 
the problem of DC analysis of a power grid. For purposes 
of illustration, we will focus our discussion on the 
description of a VDD grid, pointing out the difference for a 
ground grid where applicable. 

 
Figure 2. A representative node in a power grid. 

To apply the method to the DC analysis of a power 
grid such as that shown in Figure 1, let us look at a single 
node in the circuit, node x, which is shown in Figure 2. 
For convenience, we will represent the resistors in terms 
of conductances. Applying Kirchoff’s Current Law, 
Kirchoff’s Voltage Law and the device equations for the 
conductances, we can write down the following equation 
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where adjacent nodes of x are labeled 1, 2, … degree(x), 
Vx is the voltage at node x, Vi is the voltage at node i, gi is 
the conductance between node i and node x, and Ix is the 
current load connected to node x. Equation (2) can be 
reformulated into the following form: 
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For a power grid problem with N non-VDD nodes, we 
have N linear equations similar to the one above, one for 

each node. Solving this set of equations will give us the 
exact solution. 

 
Figure 3. The random walk model. 

Now let us look at a random walk “game.” Given a 
finite undirected connected graph (for example, Figure 3) 
representing a street map. A walker starts from one of the 
nodes, and goes to an adjacent node k every day with 
probability px,k for k= 1,2,…, degree(x), where x is the 
current node, and degree(x) is the number of edges 
connected to node x. These probabilities satisfy the 
following relationships: 

1)(degree,2,1, =+++ xxxx ppp L              (4) 

The walker pays an amount mx to a motel for lodging 
everyday, until he/she reaches one of the homes, which 
are a subset of the nodes. If the walker reaches home, 
he/she will stay there and be awarded a certain amount of 
money, m0. We will consider the problem of calculating 
the expected amount of money that the walker has at the 
end of the walk, as a function of the starting node, 
assuming he/she starts with nothing. 

The gain function for the walk is therefore defined as 
f(x) = E[total money earned |walk starts at node x] (5) 

It is obvious that 
f(one of the homes) = m0      (6) 

For a non-home node x, assuming that the adjacent 
nodes of x are labeled 1, 2, … degree(x), we can write 
down the following equation 
( ) xxxxx mxfpfpfpxf −+++= ))(degree()2()1( )(degree,2,1, L (7) 

For a random-walk problem with N non-home nodes, 
we have N linear equations similar to the one above, and 
the solution to this set of equation will give us the exact 
values of f at all nodes. 

It is easy to draw a parallel between this problem and 
that of analyzing supply nets. Equation (7) becomes 
identical to Equation (3), and Equation (6) reduces to the 
condition of perfect VDD nodes if we let 
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The analysis technique for GND nets is analogous; the 
major differences are that (i) the Ix’s have negative 
values, (ii) VDD is replaced by zero. As a result, the 
walker earns money in each step, but gets no award at 
home. 

In other words, for any power grid problem, we can 
construct a random walk problem that is mathematically 
equivalent, i.e., characterized be the same set of 
equations. And, it can be proven, easily by contradiction, 
that such an equation set has and only has one unique 
solution [1]. It is both the solution to the random walk 
problem, and the solution to the power grid problem. 
Therefore, if we find an approximated solution for the 
random walk, it is also an approximated solution for the 
power grid. A natural way to approach the random walk 
problem is to perform a certain number of experiments 
and use the average money left in those experiments as 
the approximated solution. If this amount is averaged 
over a sufficiently large number of walks by playing the 
game a sufficiently large number of times, by the law of 
large numbers [7], an acceptably accurate solution can be 
obtained. This is the idea behind our proposed algorithm. 

According to the Central Limit Theorem [7], the error 
is a 0-mean Gaussian variable with variance inversely 
proportional to M, where M is the number of experiments. 
Thus we have an accuracy-runtime tradeoff. Instead of 
fixing M, we employ a user-specified stopping criterion: 

P[-∆ < Ve-V < ∆] > 99%               (9) 
where Ve is the estimated voltage by M experiments, and 
∆ is a user-specified error margin. The above criterion 
can be written as 
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where Var is the variance of the results of the M 
experiments. In a normal power grid, each node is in a 
similar environment, with similar-value-range devices 
around it and similar distances to perfect-voltage nodes. 
Therefore, different nodes have similar Var, and M is 
roughly a constant. 

In the implementation, we will impose a limit, L, on 
the number of steps in a walk; details are provided in 

Section 4. Thus, for a power grid with N non-VDD nodes, 
we can estimate worst-case time complexity as O(LMN), 
where each unit corresponds to one random-number 
generation, a few logic operations and one addition. 
Practically, since both L and M are upper-bounded by 
constants, we have worst-case time complexity that is 
linear in the number of nodes. For average case, since 
each node is in a similar environment, the M experiments 
take similar CPU times for processing each node. 
Therefore, the average-case runtime is also linear in the 
number of nodes. 

A desirable feature of the proposed algorithm is that it 
localizes the computation, i.e., it can calculate a single 
node voltage without having to solve the whole circuit. 
This is especially meaningful when the designer knows 
which part of his power grid is problematic, or when the 
designer makes a minor change in the design and want to 
see the impact. 

For example, if the objective of the analysis is to find 
the voltage at a single node, then this approach is very 
useful since it can perform a number of random walks 
starting from that node.  In a typical supply net that has a 
sufficiently large number of pads that are reasonably 
close to any node, such a walk is likely to reach home 
soon.  As compared to a conventional approach that must 
solve the full set of matrix equations to find the voltage at 
any one node, the computational advantage of this 
method could be tremendous, and we validate this in 
Section 4.  We will also study the applicability of this 
method, as against direct solution, for finding the voltages 
at a larger number of nodes in Section 4, and study its 
extension to transient analysis in Section 5. 

 
Figure 4. A simple example circuit. 

 
3. A simple example 
 

In order to show how the proposed algorithm works, 
let us look at a simple circuit, as shown in Figure 4. The 
true voltage values at node A, B, C and D are 0.6, 0.8, 0.7 
and 0.9, respectively. 

Applying Equation (8) to this circuit, we construct an 
equivalent random walk game, as shown in Figure 5, 
where numbers inside circles represent motel prices and 
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home awards, and numbers beside the arrows represent 
the transition probabilities from each node to a 
neighboring node. 

 
Figure 5. The random walk game corresponding 

to the circuit in Figure 4. 
Let’s say we want to find out the voltage of node A, 

we start the walker at node A. He/she pays the motel price 
of $0.2, then either goes up with probability 0.33 to the 
terminal and end this walk, or goes down with probability 
0.67 to node C, then pays 0.022, and continues from 
there. Such a walk could be very short: for example, the 
walker may directly goes up and ends up with $0.8. 
Alternatively, the walk could be very long, if it keeps 
going back and forth between A, B, C and D, so that the 
walker ends up with very little money; however, the 
probability of such a walk can easily be verified to be 
low. We perform M such experiments and take the 
average of the M results as the estimated money earned 
during the walk, and change the units from dollars to 
volts to obtain the estimated voltage of node A. 

Table 1 shows how the estimated voltage of node A 
converges to the true value of 0.6V, as the number of 
experiments increases. Columns in the table represent 5 
different runs of the proposed algorithm. 

Table 1. Convergence of the simple example. 
M Exp #1 Exp #2 Exp #3 Exp #4 Exp #5 

100 0.6108 0.6316 0.6456 0.6250 0.6001 
1000 0.5955 0.6090 0.5898 0.5861 0.5887 
5000 0.6033 0.5998 0.6043 0.6049 0.5978 
 
4. Experimental results. 
 

We now apply the proposed algorithm to a real-life 
power grid model. Our benchmark is a 70729-node 
industrial circuit, and we solve for the 15876 bottom-
layer VDD nodes and 15625 bottom-layer GND nodes, as 
they are the voltages of interest. The VDD value is 1.2V.  
Because we need HSPICE to provide the correct answer 
to evaluate the accuracy of the method, the circuit size is 
limited by the maximum size that HSPICE can handle in 
a reasonable amount of time and within the memory 
constraints of the machines available to us. However, we 
can be assured that the proposed algorithm will have the 
same accuracy for a larger circuit, and the runtime will be 
proportional to the number of nodes, as it is a linear-time 

algorithm. Our computations are carried out on a Linux 
workstation with 2.8GHz CPU frequency. 

 
Figure 6. Voltage waveform for a single node. 
Figure 6 shows the result of computing the solution for 

only one node, where the markers are estimated values of 
the voltage for different M, and the dashed line is the true 
voltage. The ultra-accurate right-most point, for which 
M=4000, only takes 0.42 second runtime, and thus shows 
the efficiency of using our algorithm to solve individual 
nodes without solving the whole circuit. 

When solving for the voltage multiple nodes, several 
efficiency-enhancing techniques can be used.  Since the 
voltage at each already calculated node is known, it 
becomes a new home in the game with an award amount 
equal to its calculated voltage. This operation speeds up 
the algorithm dramatically, as there are more terminals to 
end a walk, and therefore the average number of steps in 
each walk is reduced. At the same time, this operation 
improves accuracy without increasing M, because each 
experiment that ends at such a node is equivalent to 
multiple experiments. 

As indicated in Section 2, another implementation 
issue is that, in order to avoid any possible deadlock, we 
need to set a limit, L, on the number of steps in a walk. 
Any walk that fails to end within L steps will be forced to 
end, and be awarded VDD if inside the VDD net, be 
awarded 0 if inside the GND net. This operation is 
optimistic and will results in a bias in the estimated 
voltage; however, if the limit is chosen appropriately, the 
error will be very small as the probability of a walk of this 
length is minute. Thus a new degree of accuracy-runtime 
tradeoff is introduced, and we empirically set this limit to 
be 10000 steps as a good tradeoff point, where the bias 
error is acceptable and not much runtime is wasted. 

The above tradeoff only affects runtime indirectly, 
while the error margin ∆ in Equation (9) decides M, 
which is directly proportional to runtime and need careful 
investigation. Figure 7 plots the relation between ∆ and 
runtime for the industrial circuit. The runtime is always 
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larger than 8 seconds because the minimum value of M is 
set to be 40. 

 
Figure 7. Runtime-accuracy tradeoff. 

In practice, the user decides the tradeoff point by 
choosing ∆ according to the needs of the analysis. Here 
we choose ∆=4mV as a good tradeoff point. By 
definition, 99% nodes have an estimation error less than 
4mV. In fact, among the 15876 bottom-layer nodes in the 
VDD net, the average error is 1.5mV, and the maximum 
error is 7.4mV. Considering the true voltage range 
1.1324—1.1917, this accuracy is sufficient. The 
corresponding runtime is 17.60 seconds. 

To compare the runtime of our approach with other 
algorithms, we use the runtimes reported in [9] as the 
baseline. [9] reports both serial runtime and parallel 
runtime. Since the random-walk algorithm is inherently 
compatible with parallel computing, and it is likely that it 
could beat any other method in that case, we only 
compare serial mode runtime. 

Table 2. Runtime comparison with [9]. 

Method Runtime per thousand nodes 
(sec) 

Random walk 0.25 
Chip-1 0.66 
Chip-2 0.55 
Chip-3 1.09 
Chip-4 1.33 
Chip-5 1.44 

Method in 
[9]  

Chip-6 1.70 
The runtime comparison for a complete analysis of all 

nodes in the supply grid is shown in Table 2. In viewing 
these numbers, it is important to note that our computer is 
approximately 3 times faster than the computer used by 
[9], according to SPEC benchmarks [10]. The six circuits 
in [9] have much larger sizes than our benchmark, Chip-2 
is the smallest, and Chip-6 is the largest. The runtime per 
thousand nodes increases with circuit size for [9] due to 
its superlinear time complexity. Since our proposed 

algorithm has linear time complexity, as power grid size 
increases, it will outperform [9] even further. 
Additionally, as mentioned earlier, if the objective is to 
analyze a small subset of the grid, the random walk 
approach has major speed advantages. 
 
5. Transient analysis: extension 
 
The proposed method can be extended to transient 
analysis of RC supply grids. In this case the equations to 
be solved may be written as follows [3]: 

G y(t) + C y’(t) = b(t)                      (11) 
where G is a conductance matrix, C is the matrix 
introduced by capacitors, y(t) is the vector of node 
voltages, and b(t) is the vector of independent sources. 
Applying the backward Euler formula with a time step of 
h, the equations become 

(G + C/h)  y(t) = b(t) + C/h y(t-h)          (12) 
This transformation translates the problem to that of 
solving a circuit with resistors and capacitors, as before, 
and considering node x at one time step at time t, we can 
write down the following equation 

( ) ( ) )()()()()(
)(degree

1
tIhtVtV

h
C

tVtVg xxx
x

x

i
xii +−−=−∑

=

(13

) 
where Vx is the voltage at node x, Vi(t) is the voltage at 
node i = 1, 2, … degree(x), gi is the conductance between 
node i and node x, Cx is the capacitance between node x 
and ground, and Ix(t) is the current source connected to 
node x. 

For RC-network with capacitors between nodes, 
those capacitors can be replaced by resistors and voltage-
controlled current sources, while a current source 
between two nodes can be replaced by two current 
sources between the two nodes and ground. The 
following algorithm is still applicable. Here we only 
discuss the case described in Equation (13). 

Equation (13) can be converted to the following form 
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The rules of the random walk game are changed to 

accommodate the changes in the above equation. As 
shown in Figure 8, each node x has an additional 
connection, and the walker could end the walk and be 
awarded the amount Vx(t-h) with probability 
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Intuitively, this rule is equivalent to replacing each 
capacitor by a resistor and a voltage source. 

 
Figure 8. Altered random walk model for 

transient analysis. 
In transient analysis, traditional methods, i.e., those 

that solve Equation (12) directly, are efficient in 
computing solutions for succeeding time steps after initial 
matrix factorization since only a forward/backward 
substitution step is required for each additional time step. 
Analogously, our random walk algorithm employs a 
speed-up mechanism. We first perform a DC analysis that 
is used as the initial condition. Next, when computing the 
first transient timestep, we keep a record for each node. 
This record keeps a count of, in these M walks, how many 
times the walker ends at VDD, how many times the walker 
ends at some V(t-h), how many times the walker pays for 
a motel at some node, and so on. Then, in the follow-up 
timesteps, we do not need to walk any more, simply use 
these records recursively and assume that the walker gets 
awards at same locations, pays for same motels, and only 
the award amounts and motel prices have changed. Thus 
new voltages can be computed by some multiplications 
and additions efficiently. The space complexity 
demanded by this bookkeeping is approximately linear in 
the number of nodes, and is not worse than the space 
complexity of a traditional direct solver. 

 
 
 
 
 
 
 
 
 
 

Table 3. Transient analysis results. 
 Circuit 1 Circuit 2 Circuit 3 

Circuit size 2500 400 10000 
Number of time 
steps  

30 300 1000 

Voltage range 0.9297V 
to 

1.1950V 

1.0886V 
to 

1.1731V 

(cannot be 
simulated by 

HSPICE) 
CPU time per 
timestep for sub-
sequent timesteps 

0.7msec 0.06msec 1.6msec 

Mean error 0.0010 0.0014 (unavailable) 
Maximum error 0.0086 0.0059 (unavailable) 

In order to evaluate the transient analysis, since we 
were unable to obtain real-life RC power grid circuits, we 
generated 3 circuits with random resistances and 
capacitances. Perfect voltage sources are connected to 1% 
of their nodes at random locations, and current sources 
have a random-size peak at a random time range. The 
results of our approach are shown in Table 3. The CPU 
times shown correspond to the runtimes for the time steps 
that follow the initial DC analysis and the first transient 
step. The solutions for circuits 1 and 2 are compared with 
HSPICE, while circuit 3 is too large to be simulated in 
HSPICE for an accuracy evaluation. The runtimes are 
several times faster than traditional direct solver runtimes 
reported in [9], even after normalization by the speed 
factor of 3. 

 
Figure 9. Localizing transient analysis. 

The efficiency of transient analysis can be improved 
by taking advantage of the property of localization for 
random walks. Because the value of V(t-h) must be 
updated for every node for each timestep, we cannot 
restrict the computation to only a single node any more. 
However, the computation can still be limited to a small 
region because of the inherent locality of the problem. As 
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shown in Figure 9, the smallest circle is the region that we 
are interested to solve, and we define a larger area around 
this, called the “active area,” which consists of nodes 
whose voltages are likely to affect nodes in the area to be 
solved.  Since faraway nodes are unlikely to influence the 
solution significantly, we do not solve for their values 
with a great deal of accuracy.  Specifically, we perform 
some approximations in the outside faraway region: for 
example, we can either ignore all the capacitors, or 
perform a grid coarsening by combining sets of nodes. 
Since the likelihood that a random walk from the smallest 
circle will go out of the active region is very small, this 
approximation has minor impact on accuracy, yet there is 
a tremendous speed-up. 
 
6. Conclusion 
 

An efficient power grid DC analysis algorithm has 
been proposed based on random walk technique, and can 
be extended to RC transient analysis. It has linear time 
complexity, and is shown to reach a good accuracy-
runtime tradeoff. It also has the meaningful feature of 
localizing computation, making it especially useful when 
only a part of the supply grid is to be solved. 
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