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Abstract

In recent years, there have been privacy concerns over the proliferation of gathering of

personal information by various institutions and merchants over the internet. This has led to the

development of data mining algorithms which preserve the privacy of the people whose personal

data are collected and analyzed. A novel approach to such privacy preserving data mining

algorithms was recently proposed where the individual data in a large data set is perturbed

by adding a random value from a known distribution. This perturbation is performed by the

user so that the true value of the data is not known to the data mining algorithm. In these

applications, the distribution of the original data set is important and estimating it is part of the

goals of the data mining algorithm. This distribution is estimated via an iterative algorithm. An

algorithm based on the Expectation Maximization (EM) algorithm was subsequently shown to

have desirable properties such as the ability to have low privacy loss and high fidelity estimates of

the distribution of the data set. Both these algorithms are iterative in nature and each iteration

requires computation which is proportional to the size of the data set and to the number of

points in the estimate. This can require large computation time to estimate the distribution.

In this paper we propose two methods to reduce the amount of computation. The first method

constructs in one step an initial estimate of the distribution to aid the iterative algorithm in

order to reduce the number of iterations. In the second method, we propose another scheme

for perturbing data which also has the nice properties of allowing arbitrarily small privacy loss

and arbitrarily high fidelity in the estimate (i.e. zero information loss). The main advantage

of this proposed scheme is the simplicity of the estimation algorithm. In contrast to iterative

algorithms such as EM, the proposed scheme admits an algorithm which estimates the unknown

distribution in one step. This is significant in applications where the data set is very large or

when the data mining algorithm is run in an online environment.
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1 Introduction

The proliferation of data mining algorithms to extract statistics and trends from large sets of user

supplied data results in the need for data mining algorithms which preserve privacy. In [1, 2, 3] this

problem is addressed from a cryptographic standpoint where data mining computations among

several parties are performed on the combined data sets of the parties without revealing each

party’s data to the other parties and the problem is solved using multi-party secure computation.

This approach is not suitable for scenarios where a single party collects data from many users

who do not talk to each other and where this single party performs data mining operation on

this data. An example of this is a survey that is conducted over the internet. In [4], a novel

approach to address this problem is proposed where the data is perturbed by a random value from

a known distribution. The specific random value is generated at the user’s site and is unknown

to the data mining algorithm. This random value is tied to the data, so that repeated queries

return the same perturbed value. The data mining algorithm can reconstruct or estimate the

distribution of the original data set, yet does not know the exact value of the individual items. The

estimation algorithm is an iterative algorithm derived from Bayesian analysis. In [5], this problem is

solved with a Expectation Maximization (EM) estimation algorithm which has better convergence

properties and can be shown to converge to the maximum likelihood estimate (MLE). Furthermore,

[5] introduced two new metrics, namely privacy loss and information loss to capture the amount of

data in an individual record leaked to the data mining algorithm and the fidelity of the estimate

respectively. One of the design goals of such privacy preserving data mining algorithms is to derive

algorithms which can have a small privacy loss and a small information loss. It is clear that privacy

loss is small when the perturbation is large. In [5], using a convergence result of EM, it was shown

that the information loss is small when the data set is large. Both the estimation algorithms in [4]

and in [5] are iterative in nature. The algorithm is run until a stopping criterion is met at which

point an estimate for the distribution of the data set is obtained. The entire data set is used in

each iteration. Thus the number of computations at each iteration is proportional to the size of

the data set and the number of bins used in the estimate. The purpose of this paper is to present

two ways to reduce the amount of computation in the estimation algorithm. In the first way, we
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generate in one step a good estimate of the distribution in order to reduce the number of iterations

needed or eliminate the iterative step completely (Section 3).

For the second way, we modify the protocol of data perturbation and propose a novel privacy

preserving scheme for data mining applications which also can have arbitrarily small privacy loss

and information loss when the data set is large (Section 4). The main advantage of this proposed

scheme is that the estimation algorithm is an extremely simple one-step process. This has significant

performance advantages, especially when the data set is very large or when the data mining is

done in an online dynamic environment. The simplicity of the estimation algorithm also makes it

amenable to a simple analysis and correctness proof.

Finally, we propose other metrics for quantifying privacy loss and information loss and show that

the proposed scheme can achieve arbitrarily small privacy loss and information loss. To quantify

the loss of privacy, we study the probability in which an estimate of a single sample is correct.

We also consider a slightly different information loss metric than the one proposed in [5] which we

believe is more accurate in categorizing the loss of information due to the perturbation.

2 Problem definition

The basic problem can be abstracted into the following mathematical problem. Consider a set of

n original data values x1, . . . , xn, each considered as samples taken independently from the same

random variable X. To create the perturbation, n values y1, . . . , yn are taken independently from

the same random variable Y and the perturbed values zi = g(xi, yi) are created. We also assume

that X and Y are independent. Given these perturbed values and the density function fY (y) of

Y , the goal is to estimate the density function fX(x) of X. In the example of the internet survey,

xi correspond to the participants’ answers, yi correspond to the perturbations generated and zi

correspond to the perturbed answers which are sent to the server for collection. In [4, 5] xi and yi

are real numbers and the composition function g is simply addition, i.e. zi = xi + yi.

Here we take the more general view that xi, yi and zi are not necessarily real numbers, but

live in some spaces SX , SY and SZ respectively. In Section 4 we present a protocol using a more

complicated composition function g where yi and zi are both vectors. It may seem unintuitive, but

by using a more complicated function g, the corresponding estimation algorithm is very simple and

efficient.
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3 Calculating the Fourier coefficients of fX

Consider the case as in [4, 5] where xi and yi are real numbers and zi = xi + yi. In this section we

show how the Fourier coefficients of fX can be computed in one step to generate an estimate of fX .

Estimating the Fourier coefficients of fX in order to estimate fX belong the the class of orthogonal

series estimators [6, 7]. This estimate can be further refined using the iterative methods of [4, 5].

When the one-step estimate is close to fX , the number of iterations needed in the refinement step

is smaller than in [4, 5] (see example below).

Assume that the data is properly scaled so that the support of X is a subset of [0, 1]. We want

to express fX as a Fourier series defined on the interval [0, 1]: fX(x) = a0 +
∑∞

i=1 ai sin(2πix) +
∑∞

i=1 bi cos(2πix). Since fX is a probability density function, a0 = 1. As
√

2 sin(2πix) and
√

2 cos(2πix) are orthonormal in f([0, 1]), it follows that ai = 2E(sin(2πiX)) and bi = 2E(cos(2πiX).

Because of the independence of X and Y , we have

E(sin(2πiZ)) = E(sin(2πi(Y + X)))

= E(sin(2πiY ))E(cos(2πiX)) + E(cos(2πiY ))E(sin(2πiX))

E(cos(2πiZ)) = E(cos(2πi(Y + X)))

= E(cos(2πiY ))E(cos(2πiX)) − E(sin(2πiY ))E(sin(2πiX))

Therefore 


ai

bi


 = 2




E(sin(2πiX))

E(cos(2πiX))


 = 2A−1

i




E(sin(2πiZ))

E(cos(2πiZ))




where

Ai =




E(cos(2πiY )) E(sin(2πiY ))

−E(sin(2πiY )) E(cos(2πiY ))




Since fY is known, A−1
i can be computed in advance and E(sin(2πiZ)) and E(cos(2πiZ)) are

estimated as 1
n

∑n
j=1 sin(2πizj) and 1

n

∑n
j=1 cos(2πizj) respectively. One of the drawback of this

method is that it works as long as Ai is not close to being singular for the coefficients that we

are interested in. In other words, this method works well if fY has higher frequency components

than fX . On the other hand, the estimated density function is independent of the number of bins

used in the iterative algorithms of [4, 5]. As is common in orthogonal series estimators, the Fourier

coefficients need to be smoothed e.g., via finite truncation of the Fourier series or by weighting the

coefficients [8].
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Figure 1: Plot of distribution of unperturbed data and the estimated distributions using 1) Fourier

coefficients based method and 2) EM method. The number of samples is 500000. The perturbation

Y is a uniform distribution in the range [0, 20]. The EM algorithm is run for 100 iterations.

To illustrate the effectiveness of this estimation method, consider the following example: X

is a bimodal distribution, and Y is a uniformly distributed random variable in the range [0, 20].

Fig. 1 shows the estimated probability distribution and the unperturbed distribution using 500000

samples. The unperturbed distribution is computed using k = 50 bins. The density function is

estimated using Fourier coefficients ai, bi ,i = 1, 2, ..., 12 and forced to be nonnegative. Also shown

in Fig. 1 is the estimated distribution using the EM algorithm in [5] after 100 iterations. We

see that the Fourier-based estimate, which is computed in a much shorter time, is comparable in

quality to the EM-based estimate.

Using the same distribution for X and Y , in Fig. 2 we show the unperturbed distribution using

100000 samples. Also shown is the estimated distribution from Fourier coefficients up to the 10th

harmonic and refined using the EM algorithm for 50 iterations. To compare with the method in

[5] where EM is used starting from a uniform distribution, we also plot the estimated distribution

starting from a uniform distribution after 92 iterations of EM. The same stopping criteria for

EM are used in both cases. We see that using the Fourier-based estimate as an initial guess to

EM results in a superior estimate, i.e. a smaller information loss (Section 7), while requiring less

iterations.
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Figure 2: Plot of distribution of unperturbed data and the estimated distributions using 1) Fourier

based method as an initial guess to EM and 2) using the uniform distribution as a initial guess to

EM. The number of samples is 100000 samples. The perturbation Y is a uniform distribution in

the range [0, 20].

4 A data perturbation scheme with a one-step estimation algo-

rithm

Even though the Fourier series based estimation method in Section 3 gives an estimate of the density

function of X in a single step, its main drawback is that it does not estimate the coefficients well

when the corresponding matrix Ai is close to singular. In this section, we modify the protocol of

data perturbation, so that a simple one-step estimation algorithm exists which is guaranteed to

approximate the unperturbed distribution given enough data samples. First note that one way to

estimate fX(x) is to decompose SX into k regions or bins, and count the number of times xi lies

in each region. Normalized by n and the measure of the regions, these numbers give estimates of

fX(x) at the centers of these regions. We propose a data perturbation protocol which estimate fX

in this way, except that the count is perturbed. Let us denote the regions as R1, . . . Rk, and the j-th

characteristic function of x as χj(x) = 1 if and only if x ∈ Rj and 0 otherwise. Then the estimate

of fX(mj) where mj is the center of Rj is simply 1
n

∑n
i=1 χj(xi)/m(Rj) where m(Rj) is the measure

of Rj. Without loss of generality, let us assume that m(Rj) = 1.We call χ(x) = (χ1(x), . . . , χk(x))

the characteristic vector of x. We assume that the regions are non-overlapping and cover SX . This
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implies that χ(x) is a unit coordinate vector, a vector with zeros and a single 1. One can view

χ(x) as a quantization of x, with the quantization becoming finer as the number of bins increases.

We construct yi as an k-vector of iid samples from a distribution W with mean µ. The vector zi is

defined as the k-vector zi = χ(xi) + yi. It’s intuitive that by making the variance of W large, the

loss of privacy, i.e. the ability to reconstruct xi from zi can be made small.

The estimation algorithm is very simple and its correctness easily proved. It essentially consists

of calculating the average of zi’s and subtracting the mean µ. Let zij be the j-th component of the

k-vector zi. Then 1
n

∑n
i=1 zij − µ = 1

n

∑n
i=1 χj(xi) + 1

n

∑n
i=1 yij − µ which converges to the correct

estimate 1
n

∑n
i=1 χj(xi) as n → ∞ by the law of large numbers. In other words, the information

loss is arbitrarily small for large enough n. To force the estimate of the j-th bin to be nonnegative,

we set it equal to max(0, 1
n

∑n
i=1 zij − µ).

5 Choosing the distribution of the perturbation W

What are some of the requirements in choosing the distribution of the perturbation random variable

W ? A slightly simpler estimation algorithm can be obtained by requiring W to have zero mean

(µ = 0). This can be obtained by subtracting the mean from the samples of W . On the other hand,

as we will see later, it is sometimes helpful to allow a nonzero mean in order to efficiently store and

transmit the vectors zi. To be able to mask the characteristic vector of X, p(W > m) should be

non-vanishing for arbitrarily large m. An obvious choice would be the normal distribution. In this

case, each zi is a k-vector of real numbers and for large k, the amount of information in the vector

zi which needs to be stored and transmitted can be too large. Therefore it is better to choose W

to be a discrete random variable. This way zi can be represented as a k-vector of integers rather

than a k-vector of reals. For example, we can choose W as W = γround(N), where N is a normal

distribution with zero mean and variance σ. We will call this the discrete normal distribution. Other

possible distributions for W include the Poisson distribution pW (γx) = λxe−λ

x! for x a nonnegative

integer or the discrete random variable with probability distribution pW (γx) = 6
(2π2−6)(|x|+1)2 for x

an integer (note that this distribution does not have a mean). Here γ denotes the strength of the

perturbation. The higher γ is, the stronger the perturbation is, and the smaller the privacy loss

is. To ensure that zi looks like a sample from Y , i.e. zi ∈ SY , we choose γ to be the inverse of a

positive integer.
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6 Quantifying privacy loss

One way to quantify the loss of privacy is to calculate the mutual information between Z and X

[5]. Another way to quantify the loss of privacy is by defining it as the probability in which an

estimate from a single sample zi is correct assuming we know the probability distribution of both

X and W .

We show here two cases where the privacy loss approaches 0 as the number of bins increases.

First we consider a distribution for W for which we can easily calculate the maximum likelihood

estimate (MLE). Because χ(x) is a many-to-one map, the MLE cannot distinguish between xi’s

lying in the same region Rj. Therefore we will estimate xi by finding the region it belongs to.

Let us define Sn =
∑∞

k=1
1
kn which exists for n > 1. Consider the following mass function for

W : pW (k) = 1
S3k3 , k > 0. The mean is S2

S3
≈ 1.368. The MLE given a sample zi is Rj∗ where

j∗ = arg minj{zij |zij ≥ 2}. It can be shown that the probability that the MLE is incorrect

approaches 1 as the number of bins increases, i.e. the loss of privacy approaches 0.

Let S(a) =
∑∞

i=0
1
ai = a

a−1 for a > 1. Consider the following distribution for W : pW (k) =
1

S(a)ak = a−1
ak+1 for k = 0, 1, . . .. For this distribution, we can easily calculate the maximum a posterior

estimate (MAP). The MAP estimate given a sample zi is Rj∗ where j∗ = arg maxj{pX(Rj)|zij ≥ 1}.
For continuous random variables X, it is easy to see that the probability the MAP estimate is

incorrect approaches 1 as the number of bins increases.

7 Information loss metric

By adding perturbation, we lose precision in estimating fX , the density function of X. In [5] this

is referred to as information loss and a metric is proposed to quantify this. The metric is defined

as half the expected value of the L1 norm between the original distribution of X and the estimated

distribution, which we will denote by I. Note that this metric depends on k, the number of bins

used in estimating the distribution. This metric is zero for perfect reconstruction. However, the

information loss metric should measure the additional decrease in precision in estimating pX due

to the perturbation Y , and should be 0 when the perturbation Y is zero. This is not the case for

the metric I in [5] since even with the unperturbed samples there is imprecision in estimating pX ,

especially when the number of samples n is small. One way to remedy this is to subtract from I

the value of I when the perturbation is 0. Therefore, we propose to measure the information loss

by one half of the expected value of the L1 norm between the histogram of xi and the reconstructed
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Figure 3: Plot of estimated distribution and of the distribution of the unperturbed data points.

n = 10000 and k = 30. The perturbation is the discrete normal with γ = 0.5, σ = 1.

histogram. This metric also depends on k. For this metric, its value is 0 for perfectly reconstructing

the histogram of xi, i.e. its value is 0 when Y = 0.

In Section 4 the function χ(x) classifies points into bins and is a many-to-one function and there

is some loss of information. On the other hand, calculating the histogram of the unperturbed data

or estimating the distribution using EM also require classifying points into bins and thus also incur

some loss of information. If the sets of bins used in these algorithms are the same then it is clear

from the discussion in Section 4 that the information loss approaches 0 as the number of samples

n increases.

8 Examples

We run the algorithm in Section 4 on 10000 data points from the bimodal distribution in Section

3. The perturbation W is the discrete normal with γ = 0.5, σ = 1. Fig. 3 shows a plot of the

estimated distribution and the distribution of the unperturbed data points. The number of bins is

k = 30.

In Fig. 4 we show the decrease in the proposed information loss metric as the number of samples
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Figure 4: Decrease of information loss as n increases. The perturbation is a discrete normal with

γ = 1.

n increases for various σ of the perturbation W . The perturbation W is a discrete normal with

γ = 1.

9 Conclusions

We present two methods to speed up the estimation of the density function of the data in privacy

preserving data mining applications where the data is perturbed by samples from a known distri-

bution. In the first method, we estimate the Fourier coefficients of the density functions in order

to obtain an estimate in one step. This estimate can be further refined by iterative methods such

as EM. In the second method, we propose a novel privacy preserving data mining scheme where

the density function of the original data set can be estimated using a simple one-step algorithm,

compared with more complicated iterative procedures that have been proposed in the past. The

presentation in Section 4 deals primarily with numerical data (i.e. xi are real numbers), but cate-

gorical data can be handled by considering each region as a separate category. Indeed, categorical

data is more natural in this setting than numerical data. One drawback of the proposed scheme

in dealing with numerical data versus the scheme in [4] is that when the number of regions k is

large, the number of bits needed to store/transmit the vectors zi in the proposed scheme is also
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large. In practice this is not a serious drawback, since in many cases, k is quite small (for instance,

a person’s salary is usually categorized into a few salary ranges or a preference is ranked on a scale

of 1 to 5). Furthermore, because the estimation algorithm is essentially a summation of the vectors

zi’s, only a running total of the zi is needed in storage at any one time. This is in contrast to the

iterative algorithms in [4, 5] where all the vectors zi’s are needed at each iteration.
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