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ABSTRACT
Airlines routinely overbook flights based on the expectation
that some fraction of booked passengers will not show for
each flight. Accurate forecasts of the expected number of no-
shows for each flight can increase airline revenue by reducing
the number of spoiled seats (empty seats that might other-
wise have been sold) and the number of involuntary denied
boardings at the departure gate. Conventional no-show fore-
casting methods typically average the no-show rates of his-
torically similar flights, without the use of passenger-specific
information.

We develop two classes of models to predict cabin-level
no-show rates using specific information on the individual
passengers booked on each flight. The first of these models
computes the no-show probability for each passenger, us-
ing both the cabin-level historical forecast and the extracted
passenger features as explanatory variables. This passenger-
level model is implemented using three different predictive
methods: a C4.5 decision-tree, a segmented Naive Bayes al-
gorithm, and a new aggregation method for an ensemble of
probabilistic models. The second cabin-level model is for-
mulated using the desired cabin-level no-show rate as the
response variable. Inputs to this model include the pre-
dicted cabin-level no-show rates derived from the various
passenger-level models, as well as simple statistics of the
features of the cabin passenger population. The cabin-level
model is implemented using either linear regression, or as a
direct probability model with explicit incorporation of the
cabin-level no-show rates derived from the passenger-level
model outputs.

The new passenger-based models are compared to a con-
ventional historical model, using train and evaluation data
sets taken from over 1 million passenger name records. Stan-
dard metrics such as lift curves and mean-square cabin-level
errors establish the improved accuracy of the passenger-
based models over the historical model. All models are also
evaluated using a simple revenue model, and it is shown that
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the cabin-level passenger-based model can produce between
0.4% and 3.2% revenue gain over the conventional model,
depending on the revenue-model parameters.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Applications—
Data mining

General Terms
Data mining

Keywords
Airline overbooking, no-show forecasting, predictive model-
ing, classification, probabilistic estimation, model aggrega-
tion

1. INTRODUCTION
The practice of optimizing revenue by controlling the avail-

ability and pricing of airline seats is commonly referred to
as revenue management[7]. Sophisticated revenue manage-
ment systems are in use at all major airlines today, and are
widely viewed as a critical component of an airline’s over-
all logistics framework. Rather than offering identical seats
at a common fare, revenue management systems introduce
multiple booking classes differentiated by the offered fare as
well as other possible restrictions such as cancellation op-
tions or overnight-stay requirements. The number of seats
allocated to each booking class is determined by the esti-
mated demand for each class. Sales of tickets in each class
are controlled in an attempt to maximize revenue. For ex-
ample, it is desirable to reserve seats in high-fare classes for
last-minute travelers willing to pay higher fares, while lim-
iting the number of seats sold in lower-fare classes earlier
in the booking process. Revenue management establishes
booking policies to determine whether to accept or reject a
booking in a specific booking class, given the current num-
ber of bookings and expected additional demand prior to
departure.

Booking policies must also take into account the possibil-
ity that a booking may be cancelled prior to departure, or
that a booked passenger may fail to show up at the time
of flight departure. Such “no-shows” will result in lost rev-
enue if the flight departs with empty seats that might oth-
erwise have been sold. For this reason, airlines will typically
accept bookings in excess of the cabin capacity, based on
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Figure 1: The booking process.

estimates of the number of no-shows. Accurate forecasts of
the expected number of no-shows for each flight are essential
inputs to the determination of the overbooking level: under-
prediction of no-shows leads to loss of potential revenue from
empty (or spoiled) seats, while over-prediction can produce
a significant cost penalty associated with denied boardings
at the departure gate. Optimal booking policies seek the
maximum revenue as a tradeoff between the revenue due to
additional sales offet by the cost of any denied boardings
that may result. In general, airlines introduce contraints to
strictly control the number of involuntary denied boardings.

Conventional forecasting methods (see [4]) predict cabin-
level no-show rates via statistical methods applied within
groups of similar historical flights. The input data for these
historical models is limited to past no-show rates at the
fare-class level, and does not include information specific
to individual passengers. In this paper, we use detailed pas-
senger information to develop improved models to predict
cabin-level no-show rates, and compare the results of sev-
eral passenger-based models with a simple baseline historical
method. In the following section, we describe the no-show
forecasting problem in more detail.

2. NO-SHOW FORECASTING AND
OVERBOOKING

Figure 1 shows a simplified view of the booking process,
where the capacity can refer to either the cabin capacity or
the allocation of seats to each booking class. Bookings are
accepted well in advance of the flight departure date, and
no-show forecasting models provide continuously updated
predictions of the number of no-shows in the cabin. These
forecasts are used to set the overbooking limit for the cabin
or booking class; in the simplest case, the overbooking limit
is taken as the capacity plus the estimated number of no-
shows. Bookings are accepted up to this limit, and hence
the total bookings may exceed the capacity. Figure 1 shows
an ideal situation where overbooking, based on a correct
estimate for the number of no-shows, has resulted in 100%
capacity utilization with no denied boardings.

Conventional forecasting methods predict the number of

no-shows using time-series methods such as taking the seasonally-
weighted moving average of no-shows for previous instances
of the same flight leg.1 Since they do not depend on the
specific characteristics of the passengers booked at the time,
such forecasts can be provided early in the booking process,
with continuous refinement as more recent historical data
become available. Passenger-based no-show models com-
pute the no-show probability for each booked passenger, and
hence are incapable of producing a complete forecast early
in the booking process when relatively few bookings have
been made. As discussed in [4], the no-show forecast at any
time prior to departure can be taken as a weighted average
of the historical and passenger-based forecasts, with increas-
ing weights assigned to the passenger-based forecast as more
bookings are realized.

Recently reported passenger-based predictive models em-
ploy explanatory variables extracted from databases con-
taining specific information on each passenger and the pas-
senger’s itinerary. Hueglin et. al. [4, 2] have applied clas-
sification trees and logistic regression to the problems of
predicting both no-shows and cancellations at the passen-
ger level throughout the booking phase. Kalka and We-
ber [5] at Lufthansa have used induction trees to compute
passenger-level no-show probabilities, and compared their
accuracy with conventional, historical-based methods. Con-
tinental Airlines [9] describes a decision-tree model based
on a relatively small number of input passenger records and
features. Selby [12] discusses an application of radial ba-
sis functions to passenger-based forecasting, but does not
report specific results.

These methods have in common the objective of comput-
ing the probability that each individual passenger will not
show for the booked flight. The passenger-based probabili-
ties are summed to produce the desired no-show rates at the
booking-class or cabin-level. In this paper, we develop two
different passenger-based no-show predictive models. The
first follows earlier work (but with different explanatory fea-
tures and predictive methodologies) to compute the no-show
probability for each passenger. Unlike previous work cited
above, we use the standard historical forecast as input to this
passenger-level classification problem. Using the results of
this passenger-level model, we develop a second cabin-level
model to predict directly the required cabin-level no-show
rate. This latter approach has not been explored previously.

In the following four sections, we describe the available
input data, the predictive models, the features used as ex-
planatory variables in the models, and the relative perfor-
mance of these models. Section 7 develops a simple revenue
model in order to provide estimates of the overall revenue
impact attributable to the use of these new passenger-level
no-show forecasting models.

3. DATA
Information about individual passengers is available in the

form of Passenger Name Records (PNRs), which are typi-
cally transferred to a PNR database from an airline’s flight
reservation system. A new PNR is generated whenever a
customer makes a flight reservation. In general, a single

1A flight leg refers to a section of a flight involving a single
takeoff and landing, with no boarding or deplaning of pas-
sengers at any intermediate stops. We will often use “flight”
in place of flight leg.



Table 1: Summary of input data
Complete Train Evaluation

data set set
Number of PNRs 1,258,169 883,269 374,900
Number of flights 15,019 10,931 4,088
First departure date 5/1/2002 5/1/2002 7/11/2002
Last departure date 7/31/2002 7/10/2002 7/31/2002
Mean no-show rate 0.0995 0.0963 0.1071

PNR represents an itinerary that typically will contain mul-
tiple flights (segments), and may include more than one pas-
senger flying the same itinerary. In this paper, we will use
PNR to refer to a single passenger flying a single flight.
The PNR data includes, for each passenger, specifics of all
flights in the itinerary, the booking class, and passenger-
specific information such as frequent-flier membership, tick-
eting status, and the agent or channel through which the
booking originated. Each PNR is tagged with a label indi-
cating whether the passenger was a no-show for the specified
flight.

In order to faciliate comparison with Air Canada’s revenue
management system, we extracted only PNRs for coach (Y)
cabin on single-leg flights departing from Toronto. Table 1
summarizes the characteristics of the resulting filtered PNRs
used in our analysis. Approximately 1.26 million PNRs are
included, covering a total of 15,019 flights with departure
dates spanning a 3 month period. Train and evaluation sets
are determined via a split on departure date: the training
data spans 71 days of departures, with the subsequent eval-
uation period covering 21 days. Note that the mean no-show
rate in the evaluation data is somewhat lower than the dur-
ing the test phase.

The data used for our analysis represents a snapshot of the
PNR database taken immediately prior to flight departure (t
= 0 in Figure 1). For this reason, our no-show forecasts are
also computed immediately prior to departure. This implies
no limitation on the methodology, however, since our mod-
els could be applied to a PNR database snapshot taken at
any time t prior to departure (see Figure 1), and the result-
ing passenger-based forecast combined with a conventional
historical forecast using some weighting scheme similar to
[4], as mentioned in Section 2.

4. MODEL DEVELOPMENT
In this section, we begin with a description of a conven-

tional historical-based statistical model, and then describe
two different passenger-based no-show forecast models. The
final subsection discusses the specific predictive techniques
used for the passenger-based models.

4.1 Historical Model
Historical models predict the number of no-shows on an

upcoming flight by computing the mean no-show rate over
a group of similar historical flights:

ρm
hist(b) =

P
m′∈Nm

NSm′(b)P
m′∈Nm

Bm′(b)
, (1)

where

m denotes a flight characterized by a unique flight number
and departure date,

ρm
hist(b) is the predicted no-show fraction in booking class

b for flight m,

NSm(b) is the number of no-shows in booking class b on
flight m,

Bm(b) is the number of passengers booked in class b on
flight m, and

Nm denotes the set of similar historical flights for flight m.

In practice, Nm might include earlier flights with the same
origin and destination as flight m, departing on the same
day of the week as flight m. We will discuss specific imple-
mentations of the historical model in Section 6.

Given ρm
hist(b), the predicted number of no-shows NSm

hist

in the cabin (over all booking classes) is

NSm
hist =

NbX
b=1

ρm
hist(b)B

m(b) , (2)

where Nb is the number of booking classes. The cabin-level
no-show rate for flight m is

ρm
hist =

NSm
hist

Bm , (3)

where Bm is the total number of bookings in the cabin.

4.2 Passenger-level Model
We begin by defining a set of features (explanatory vari-

ables) characterizing each passenger flying a single flight in
a PNR. Upper-case letters will be used to denote these fea-
tures, with the values of the features given in lower-case.
Let Xi, i = 1, . . . , I denote I features associated with each
passenger. Combining all features yields the feature vector

X = [X1, . . . , XI ] .

Each passenger, n = 1, . . . , N , booked on flight m is repre-
sented by the vector of feature values

xm
n = [xm

n,1, . . . , x
m
n,i, . . . , x

m
n,I ] ,

and a class label C with values cm
n denoting either NOSHOW

(NS) or SHOW.
In addition to these PNR-based features, we use the cabin-

level no-show rate ρm
hist, predicted using our historical model,

as an additional model input. It is understood that a passen-
ger n on flight m inherits ρm

hist for that flight. The passenger-
level predictive model is then stated as follows: given a set
of class labels cm

n , a set of feature vectors xm
n , and a cabin-

level historical prediction ρm
hist, predict the output class of

passenger n on flight m:

P (C = cm
n |ρm

hist,X = xm
n ) .

We are specifically interested in the no-show probability,
cm

n = NS, and write this probability in the simplified form

P (NS|ρm
hist,x

m
n ) . (4)

The number of no-shows in the cabin is estimated as

NSm
pax =

X
n∈m

P (NS|ρm
hist,x

m
n ) . (5)

Here, the summation is taken over the passengers n booked
on flight m, and “pax” refers to a “passenger-level” model
because we are computing the no-show probability for each



individual passenger. The passenger-level no-show rate ρm
pax

for the cabin is defined as in Equation (3), i.e.

ρm
pax =

NSm
pax

Bm . (6)

4.3 Cabin-level Model
Since it is the cabin-level no-show rate that is ultimately

required, it is of interest to formulate a predictive model
using ρm

actual directly as the response, rather than computing
the no-show probabilities for each passenger in the cabin,
and summing them to obtain the cabin rate. We refer to
this as a “cabin-level” model since we predicting the no-show
rate for the cabin. Of course, we continue to use passenger-
specific information in developing such a cabin-level model.
An analogous approach can also be used to predict no-show
rates at the fare-class level.

Explanatory features for the cabin-level model are ob-
tained as simple statistics of the in-cabin passenger pop-
ulation. If xm

n,i is a real (continuous) feature, the analogous
cabin-level feature is obtained simply by taking its mean
(and possibly higher-order moments) over all passengers n
on flight m, e.g.

x̂m
i ≡ 1

Nm

X
n∈m

xm
n,i , (7)

where Nm is the number of passengers booked on flight m.
If xm

n,i is a nominal feature with J discrete values, we first
perform the usual 1 → J expansion to create J new bi-
nary features, and then take the means (and possibly higher-
order moments) of each new feature as in Equation (7). For
example, if the passenger-level feature is a binary variable
(YES/NO) indicating frequent-flier membership, the result-
ing two (mean) cabin-level features will be the fractions of
the in-cabin passengers with YES and NO labels, respec-
tively. In general, the J cabin-level features generated from
a J-value nominal passenger-level feature will sum to one.
Performing these operations on all passenger-based features
results in a cabin-level feature vector x̂m for flight m. The
length Î of x̂m (i.e. the number of cabin-level features) will
depend upon the number of discrete values for each of the
passenger-level nominal features, as well as number of mo-
ments retained; in our models, Î is typically several times
I.

Given the expanded feature vectors, the cabin-level no-
show rate can be modeled as either a regression problem,

ρm
cabin = f̂(ρm

pax, x̂m) , 0 ≤ ρm
cabin ≤ 1 , (8)

or directly as a cabin-level probabilistic model,

ρm
cabin = P (NS|ρm

pax, x̂m) . (9)

Note that in either formulation, the cabin-level no-show rate
ρm

pax predicted by the passenger-level model is used as an in-
put feature. Since Equation (4) can be implemented using
any of a number of probability-estimation methods, equa-
tions (8) and (9) can be extended to include as inputs the
values of ρm

pax estimated by multiple passenger-level approx-
imation techniques, e.g.

ρm
cabin = P (NS|ρm

pax1 , . . . , ρm
paxL

, x̂m) . (10)

The specific implementations are discussed in the following
subsection.

4.4 Predictive Models
The passenger-level model given by Equation (4) can be

implemented using any classification method capable of gen-
erating the normalized in-class probabilities required to eval-
uate Equation (5). Obvious candidates include the conven-
tional Naive Bayes [8] and decision-tree algorithms such as
C4.5 [11]. In addition to C4.5, we have implemented the
passenger-level model using ProbE [1] and APMR [3]. Brief
discriptions of these methods are provided here.

ProbE: IBM ProbE (for probabilistic estimation) [1] is
a scalable data mining engine particularly well-suited for
implementing segmentation-based modeling techniques in
which the input data records are partitioned into segments,
and separate predictive models are developed for each seg-
ment. ProbE is able to perform the segmentation and pre-
dictive modeling within each segment simultaneously, thereby
optimizing the segmentation as to maximize the overall pre-
dictive accuracy and thus to produce better models. ProbE
uses a top-down tree-based algorithm for constructing seg-
mentations, along with a collection of other algorithms to
construct the models within each segment. For the passenger-
level model, we used the stepwise Naive Baye algorithm,
and hence our ProbE implementation can be viewed as a
segmented, feature-selected, Naive Bayes predictive model.

Following [13], we calibrated the ProbE-computed prob-
abilities against the actual densities observed in the train
data. The calibration curve was generated using a window-
based smoothing technique, and then used to recalibrate the
probabilities computed for each record in the test data.

APMR: The Adjusted Probability Model (APM)[3] is a
new approach to aggregating the outputs of multiple proba-
bilistic models. Given L model outputs, the l-th model out-
put, Pl(C = c|X), contributes to the APM ensemble output
as follows:

P (C = c|X) ∝ P (C = c)

LY
l=1

�
Pl(C = c|X)

P (C = c)

�αl

, (11)

where the Pl(C = c|X) is the probability of observing class
label c, given features X as in Section 4.2. The αl values are
the importance weight for the l-th model fitted for the mini-
mum loss à la logistic regression. When the α values are set
to 1, and the individual models are just single-feature mod-
els, i.e., Pl(C = c|X) = P (C = c|Xl), the APM becomes
identical to the Naive Bayes model as shown in [3]. Unlike
the Naive Bayes model, APM is not adversely affected by
correlated features. The regularized version of APM, called
APMR, is used in our modeling.

We now consider the specific application of APMR to the
passenger-level and cabin-level models defined above. To
illustrate, we consider first the calculation of P (NS|xm

n ) in
Equation (4), where we neglect ρm

hist for the moment. The
APM estimate is

P (NS|xm
n ) ∝ P (NS)

IY
i=1

�
P (NS|xm

n,i)

P (NS)

�αi

, (12)

where P (NS) is the prior probability of observing a no-show.
If outputs ρ1, ..., ρL from L other probabilistic models are
available, Equation (11) can be written to include these es-
timates explicitly,

P (NS|ρ1, ..., ρL,xm
n ) ∝

P (NS)
QL

l=l

h
ρl

P (NS)

iαl QI
i=1

h
P (NS|xm

n,i)

P (NS)

iαi

. (13)



Table 2: Explanatory variables
Number Information

Name Description Type of Values Gain
No-show label Target label (Y == no-show) nominal 2 NA
Passenger Ticketed Ticket number issued? (Y/N) nominal 2 0.0563
Frequent Flier Air Canada Frequent Flier? (Y/N) nominal 2 0.0162
Arrival Airport Identifies unique flight leg nominal 79 0.0112
Flight Leg Group Flight-legs grouped by no-show rate nominal 5 0.0092
PNR Originator Booking originator (e.g. AA) nominal 5 0.0087
Hist Noshow Rate Cabin no-show rate from historical model real (5 bins) 0.0079
Booking Class Booking class nominal 11 0.0044
Booking Class By Noshow Booking class by no-show rate nominal 3 0.0040
Segment distance Segment distance real (5 bins) 0.0034
Gender Derived from title (including unknown) nominal 3 0.0031
Booking Class By Yield Booking class by yield nominal 3 0.0018
Binned Days Since PNR Creation Binned days since PNR was created nominal 5 0.0014
Binned Departure Hour Binned flight departure hour nominal 4 0.0012
Connecting Flight Connecting flight? (Y/N) nominal 2 0.0007
Binned Num Passengers Number of passengers in this PNR nominal 3 0.0006
Special Meal Ordered special-meal? (Y/N) nominal 2 0.0005
Binned Churn Binned churn values nominal 3 0.0004
Binned Num Segments Number of flight segments in this PNR nominal 3 0.0003
Departure Day Departure day of week nominal 7 0.0002

The passenger-level model [Equation (4)] is realized using
ρm

hist as a model input in Equation (13). The cabin-level
model [Equation (9)] is obtained using Equation (13) with
ρl, l = 1, 2, 3, taken as the outputs of the passenger-level
models implemented using C4.5, ProbE, and APMR, re-
spectively.

Conventional linear regression [6] is used to solve the re-
gression form of the cabin-level model given by Equation
(8).

5. FEATURE EXTRACTION
Table 2 summarizes the features extracted for each PNR,

sorted by the information gain computed for each feature.
Information gain [8, 11] is a popular metric for measuring the
contribution of a feature to determination of a class label.
It is important to note that information gain measures the
contribution of the feature in isolation, and it is possible for
a feature with relatively low information gain to improve the
predictive model via interaction with other features.

For purposes of computing information gain, the real fea-
tures were discretized into 5 equal-population bins. The
discretized values were also used as input to the APMR and
C4.5 passenger models, while ProbE accepts the continuous
inputs directly, with discretization handled internally.

Table 2 shows that whether a passenger is ticketed, and
membership in a frequent flier program have the highest in-
formation gain. Although not explicitly shown in this table,
ticketed passengers, as well as frequent fliers, are signifi-
cantly more likely to show for a flight. Other important fea-
tures include the flight-leg destination and the PNR origina-
tor (i.e. the channel through which the booking was made).
The no-show rate predicted for the entire cabin using the
conventional historical model [Equation 3] is also an impor-
tant feature at the passenger level. Whether or not a special
meal was ordered, by itself, does not appear to contribute
much. The Binned Churn feature captures the number of
times the passenger has made itinerary changes after the

PNR was created. We expected that passengers making fre-
quent itinerary changes would be more likely to not show,
but this premise is not supported by the information gain.

All 19 features shown in Table 2 were used as input to
the passenger-level models, since, as noted above, informa-
tion gain neglects possible interaction with other features.
The same features, with the exception of the flight destina-
tion, were provided as initial input to the cabin-level models,
along with the output probabilities from the C4.5, ProbE,
and APMR passenger-level models. Due to the expansions
discussed in Section 4.3, a total of 65 features were generated
for the cabin-level models.

6. RESULTS
In this section, we compare results computed using the

historical, passenger-level, and cabin-level models described
in Section 4. As shown in Table 1, the models were built
using approximately 880,000 PNRs booked on 10,931 flights,
and evaluated against 374,900 PNRs booked on 4088 flights.
All results shown here are for the evaluation set of PNRs and
flights.

Revenue management systems such as PROS [10] employ
proprietary history-based models to predict the required
no-show rates. Since we did not have access to such a
production-level model, we developed a historical model that
appears to be reasonably representative of standard histori-
cal models, with the possible exception that it uses a shorter
historical period since we had access to only 3 months of
flight data. Given that we use our historical model as a
baseline for comparisons with our passenger-based models,
we explored a range of parameters in order to generate the
lowest errors against the evaluation set. The resulting best
model for our data was computed via Equation (1), eval-
uated with Nm taken over identical flight legs (i.e. same
origin and destination), departing on the same day of the
week in the 45 days prior to the target flight m.

Note that unlike the passenger-based models, which are
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Figure 2: Lift curves for 374,900 evaluation PNRs.

built using only data from the train set, the historical model
uses a moving time-series incorporating data from the most
recently available flights. The historical model can also be
viewed as a segmented model in which a separate, trivial
model (taking the mean of past instances) is constructed in
each of many segments formed by selecting identical flights
departing on the same day of the week. In other words,
the historical model can be viewed as an extremely bushy
decision tree generated by hand.

Separate APMR passenger-level models were built in each
of 5 distinct segments formed from splits over the important
features Passenger Ticketed, Frequent Flier, and
PNR Originator shown in Table 2. These segments were de-
termined via limited experimention to produce the minimum
loss over the training set. As noted in Section 4.4, ProbE
automatically generates a segmented model. The segmen-
tation tree of the ProbE model and the upper nodes of the
C4.5 tree generated splits based on these three features.

6.1 Passenger-level No-show Probabilities
Figure 2 shows a conventional lift curve computed us-

ing the three different implementations (Section 4.4) of the
passenger-level model. Each point on the lift curve shows
the fraction of actual no-shows observed in a sample of PNRs
selected in order of decreasing no-show probability. The di-
agonal line shows the baseline case in which it is assumed
that the probabilities are drawn from a random distribution.
In the case of the historical model, the no-show probability
for each passenger is taken as the no-show rate for the pas-
senger’s booking class computed using Equation (1). All
three implementations of the passenger-level model identify
approximately 52% of the actual no-shows in the first 10%
of the sorted PNRs. The C4.5 result degrades because many
of the lower-probability PNRs are assigned to the same leaf
node, producing identical probabilities that yield essentially
random orderings in this region. The ProbE and APMR re-
sults are very similar, with APMR producing a slightly bet-
ter lift than ProbE. The lift curve for the historical method is
much poorer than any of the passenger-level models, iden-
tifying only 21% of the no-shows in the first 10% of the
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Figure 3: Actual versus predicted passenger-level
no-show probabilities.

sorted evaluation PNRs. The dramatic difference between
these lift curves demonstrates the significant improvement
by using PNR-based features in the model.

The lift curve measures the relative ranking of the com-
puted probabilities, but the accuracy of the probabilities is
perhaps more important here given the need to compute
cabin-level no-show rates via Equation (5). Figure 3 shows
the binned actual no-show density as a function of the pre-
dicted no-show probability for each PNR in the evaluation
set. Each curve is computed by sorting the probabilities in
increasing order, binning the result in 100 equal-population
bins, and then calculating the density of actual no-shows in
each bin. Note that the passenger-level APMR model pro-
duces a very strong correlation with the actual density, and
displays relatively little bias as shown by the close alignment
with the ideal curve.

6.2 Cabin-level Error Analysis
In this sub-section, we summarize the accuracy of the var-

ious models measured by the errors in the predicted no-show
rates for the coach (Y) cabin. The root-mean-square (RMS)
error in the Y-cabin no-show rate is given by

εmodel(ρ) ≡

vuut 1

Nf

NfX
m=1

[ρm
model − ρm

actual]
2 ,

where Nf is the number of flights in the evaluation set. The
error in the predicted number of no-shows is given by

εmodel(NS) ≡

vuut 1

Nf

NfX
m=1

[NSm
model −NSm

actual]
2 .

Taking the standard historical forecast as a baseline, we de-
fine the improvement δmodel(NS) in the no-show count for
each model relative to the historical model as

δmodel(NS) ≡ εhist(NS)− εmodel(NS) .

Table 3 summarizes the accuracy of different models us-
ing the cabin-level error metrics defined above. The Prior



Table 3: Summary of cabin-level errors for all evaluation flights
Model εmodel(ρ) εmodel(NS) δmodel(NS)
Prior Probability 0.07422 7.98 -1.98
Historical [Stat] 0.06466 6.00 0.00
Passenger-Level [C4.5] 0.05657 5.50 0.50
Passenger-Level [ProbE] 0.05445 5.24 0.75
Passenger-Level [APMR] 0.05358 4.80 1.20
Cabin-Level [Regression] 0.05387 4.99 1.01
Cabin-Level [APMR] 0.05315 4.80 1.20
4088 evaluation flights:
ρactual = 0.1071
NSactual = 9.82

Probability results refer to the simplest possible model in
which the cabin-level no-show rate for each evaluation flight
is taken simply as the mean no-show rate over the train-
ing set. Not surprisingly, the historical model out-performs
this model noticeably, measured by the errors in both the
no-show rate and the no-show count in the cabin.

The C4.5, ProbE, and APMR passenger-level models demon-
strate progressively better performance relative to the his-
torical model, with the APMR passenger-level model pro-
ducing an improvement of 1.20 seat over the historical model.
Although ProbE and APMR produced similar lift curves
(Figure 2), the APMR errors are significantly smaller than
ProbE. The cabin-level errors in in Table 3 reflects the accu-
racy of the computed probabilities, and one reason could be
that APMR minimizes a loss function that directly penalizes
incorrect estimation of the class probabilities.2 We also note
that the APMR performance is much closer to ProbE when
a single APMR model is built over all the train data, without
using the 5-way segmentation discussed above. Comparing
performance of the APMR passenger-level and cabin-level
models, we observe that the cabin-level model produces a
more accurate no-show rate, but the improvements in the
no-show counts are identically 1.20 seat. The regression
formulation of the cabin-level model does surprisngly well,
significantly outperforming two of the three passenger-level
models.

Heuglin et. al. [4] report results using a slightly different
improvement metric,

δ̂model ≡ 1

Nf

NfX
m=1

|NSm
hist −NSm

actual| − |NSm
model −NSm

actual|
Sm

,

where Sm is the number of shows for flight m. Their Figure
4 plots this improvement during the booking phase, and
shows an improvement of approximately 1.2% immediately
prior to departure. Using this metric, the APMR passenger-
level and cabin-level models both produce improvements of
1.1%. Note that these values depend immediately on the
choice of historical model used in the comparison. Also, only
42 evalation flights are used in [4], whereas our results are
for 4,088 flights. Direct comparison with the other methods
mentioned in Section 2 is not possible due to imprecise or
missing error metrics.

While the errors shown in Table 3 provide a useful sum-
mary of the accuracy of the methods measured by conven-

2Recall from Section 4.4 that the ProbE passenger-level
probabilities are calibrated following [13]; this recalibration
does improve the ProbE accuracy.

tional data-mining metrics, they do not immediately convey
the impact on revenue (reflecting additional seats sold versus
possible denied boardings) due to the improved predictions.
This revenue impact is explored in the following section.

7. REVENUE ANALYSIS
As noted in the Introduction, more accurate no-show fore-

casting models can increase overall revenue by selling seats
that otherwise would fly empty, and by avoiding the cost of
denied boardings at the departure gate. However, evaluating
this revenue impact using past flights is not straightforward:
even if an improved model were to free up an additional seat
for sale, we have no way of knowing whether there was de-
mand for this seat at departure time. For this reason, we
first develop a specific scenario assuming parameterized lev-
els of additional demand during the booking process, and
then evaluate each of the predictive models in terms of the
revenue generated under this scenario.

7.1 Revenue Scenario
For each coach cabin m in our database, we know Bm,

the number of final-booked passengers, NSm, the number of
no-shows among the final booked pasengers, and Cm, the
cabin capacity. The number of shows is Sm = Bm − NSm.
The evaluation scenario is summarized as follows.

1. The total demand Dm for seats is assumed to exceed
the number of final bookings i.e.

Dm = fdemandBm , fdemand > 1 , (14)

where fdemand is the multiplicative demand factor.

2. The no-show predictions for each model are used to
generate an estimate for the expanded cabin C̃m

model,
an upper limit on the total number of bookings that
can be accepted (see Figure 1). The most straightfor-
ward approach is to expand the cabin by the predicted
number of no-shows,

C̃m
model = Cm + NSm

model . (15)

It is possible to extend this expression to include a
model-dependent optimization parameter determined
by maximizing total revenue. However, we retain Equa-
tion (15) in order to focus more immediately on the im-
pact of the accuracy of the no-show forecast, without
the additional complication of separately optimizing
each model.



3. Given the total demand, incremental bookings ∆Bm
model

are accepted up to the minimum of the postulated de-
mand and the expanded cabin, i.e.

∆Bm
model = max(0, min(Dm, C̃m

model)−Bm) .

All incremental bookings are assumed to show, so the
final number of shows is

Sm
model = Sm + ∆Bm

model . (16)

4. The number of denied boardings produced by each
model is

DBm
model = max(0, Sm

model − Cm) .

5. The revenue for flight m is

Rm
model = αSm

model − βDBm
model ,

where α is the mean revenue per seat sold, and β is
the mean cost of a denied boarding. Without loss of
generality, we set α ≡ 1. The total revenue is simply
the sum over all evaluation flights,

Rmodel =

NfX
m=1

Rm
model . (17)

We compare each model with a baseline model in which
no overbooking is permitted,

C̃m
noOB ≡ Cm ,

and define the normalized revenue for each model rel-
ative to this baseline:

R̄model ≡ Rmodel −RnoOB

RnoOB
. (18)

The revenue improvement for each model relative to
the historical method is

δR̄model ≡ R̄model − R̄hist . (19)

7.2 Revenue-Model Results
Table 4 summarizes the percent revenue improvement for

all models as a function of increasing levels of demand above
the actual booking as in Equation (14). The revenue im-
provement of the APMR cabin-level model ranges from 0.41%
with 10% excess demand, to 1.21% with 40% excess de-
mand. These results are for a relatively high denied board-
ing cost (β = 4), but this is not unreasonable given the
strong penalty most airlines attach to involuntary denied
boardings. It is interesting to note that while the accuracy of
the passenger-level and cabin-level APMR models are very
similar in Table 3, the cabin-level model produces larger rev-
enue improvements. Table 3 captures only the mean errors,
while the revenue improvement incorporates the impact of
the asymmetric costs associated with positive and negative
no-show prediction errors, leading to denied boardings and
spoiled seats, respectively.

It is important to note that many of the evaluation flights
are significantly under-booked (B << C). Hence, even with
the assumed additional demand, an improved no-show fore-
cast will not produce additional revenue for these flights
because the number of additional seats that can be sold is
bounded by the demand [see Equation (3)], and there is no
chance for denied boardings since such flights will not be
overbooked. For this reason, Figure 4 examines the revenue

for the best passenger-based model, the APMR cabin-level
model, as a function of a threshold on the bookings as a
fraction of capacity. The z-axis is the revenue improvement
defined in Equation (19), and the x-axis is the denied board-
ing cost. The y-axis sets a threshold based on the ratio of
booked passengers (B) to cabin capacity (C); for example,
the plane generated by min(B/C) ≡ 0 includes all (4,088)
evaluation flights, while min(B/C) ≡ 1 includes only the
subset (633) of flights which are overbooked in the actual
data. Considering only the subset of evaluation flights that
are actually overbooked, revenue improvements (for β = 4)
range from 1.68% to 3.09% as the excess demand increases
from 10% to 40%. These improvements are larger than those
in Table 4 because we are considering the subset of evalua-
tion flights where accuracy of the no-show forecast is critical
in order to avoid denied boardings and spoiled seats.

The range of revenue improvements computed under this
scenario can be significant because additional revenue from
improved overbooking is essentially pure profit, and profit
margins in the airline industry have decreased significantly
over the past two years.

8. DISCUSSION
We have shown that that models incorporating specific in-

formation on individual passengers can produce more accu-
rate predictions of no-show rates than conventional, historical-
based, statistical methods. Performance of the different
methods developed here was measured using three differ-
ent metrics: conventional lift curves, mean-square errors in
the cabin-level no-show rates, and revenue gain evaluated for
a scenario postulating various levels of incremental demand
during the booking process. These metrics measure different
model characteristics, and it is interesting to note that they
provide different insights into the various methods. The lift
curves for the three passenger-level models shown in Figure
2 are quite similar (for the first 10% of records), and yet the
cabin-level errors in Table 3 show noticeable differences in
accuracy for the passenger-level models. As noted in Section
6.2, the improved performance of the APMR passenger-level
model appears to be due to the specific loss function mini-
mized in the APMR algorithm. Table 3 also suggests that
the accuracy of the APMR passenger-level and cabin-level
errors are comparable. However, measured by a revenue
metric (Table 4) that heavily penalizes denied boardings
(which result when a model over-predicts the number of no-
shows), the cabin-level model out-performs the passenger-
level model. From this study, we conclude that APMR is
particularly suitable for the no-show forecasting problem.

An interesting aspect of the model development here is
the combined use of models generated at different levels of
data granularity. Given features for the passengers compos-
ing each cabin, the natural approach to computing behav-
ior (e.g. no-show rates) at the cabin level is via combina-
tion of the predicted behaviors (e.g. no-show probabilities)
for each passenger. Given multiple implementations of the
passenger-level model, and statistics of the passenger fea-
tures for each cabin, we define a coarser, cabin-level model
with the response variable taken as the desired cabin-level
no-show rate. Results given here, along with results of other
models built against subsets of our data, suggest that this
latter approach can generate more accurate predictions of
the aggregate behavior. There are many other data-mining
applications where models can be built based on individual



Table 4: Summary of percent revenue improvement for all evaluation flights
Model fdemand = 1.1 fdemand = 1.2 fdemand = 1.3 fdemand = 1.4
Prior Probability -0.27 -0.34 -0.29 -0.31
Historical [Statistical] 0.00 0.00 0.00 0.00
Passenger-Level [C4.5] 0.09 0.20 0.27 0.42
Passenger-Level [ProbE] 0.15 0.33 0.42 0.54
Passenger-Level [APMR] 0.38 0.73 0.93 1.10
Cabin-Level [Regression] 0.30 0.57 0.73 0.87
Cabin-Level [APMR] 0.41 0.78 1.03 1.21
4,088 evaluation flights
β ≡ 4
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Figure 4: Revenue improvement for the APMR cabin-level model



data, yet the desired prediction is some domain-specific ag-
gregate behavior. We will further study the applicability of
our two-stage model generation for these applications.
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