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REDUCTION OF THE ELECTRON MOBILITY IN HIGH-� MOS
SYSTEMS CAUSED BY REMOTE SCATTERING WITH SOFT

INTERFACIAL OPTICAL PHONONS
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IBM Research Division, Thomas J. Watson Research Center

P. O. Box 218, Yorktown Heights, NY 10598, USA
2 International Sematech Assigneee at IMEC, Kepeldreef 75, B-3001 Leuven, Belgium

The poor electron mobility presently observed in metal-insulator-semiconductor de-
vices using high-� insulators may be due to a variety of processing and material-related
issues. However, here we argue that the high-� itself may present an intrinsic, unavoid-
able cause of this poor performance. Indeed, the high dielectric constant is usually
accompanied by the presence of soft optical phonons. The long-range dipole �eld
associated with the interface excitations, while small in the case of SiO2, for most
high-� materials is suÆciently large to depress the e�ective electron mobility in the
inversion layer of the Si substrate. We study the dispersion of the interfacial coupled
phonon-plasmon modes, their electron-scattering strength, and their e�ect on the elec-
tron mobility for Si-gate structures employing �lms of SiO2, Al2O3, AlN, ZrO2, HfO2,
and ZrSiO4 for `SiO2-equivalent' thicknesses ranging from 5 nm to 0.5 nm.
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I. INTRODUCTION

Insulators with a large static dielectric constant (usually referred to as `high-� insu-
lators) are presently being considered as possible replacements for SiO2, because of the
necessity of increasing the gate capacitance of Si metal-oxide-semiconductor �eld-e�ect
transistors (MOSFETs), while avoiding the problems which arise when the SiO2 thick-
ness is reduced below the 1.5-1.0 nm range, as demanded by device scaling1;2. At least
at present, these e�orts are still mainly aimed at improving the chemical and physical
properties of the insulating materials. Yet, in this paper we point out an intrinsic,
possibly unavoidable, and unwanted property of these materials, namely, the fact that
their high dielectric constant may necessarily cause a reduction of the electron mobility
in the inversion layer of Si MOSFETs. The dielectric constant of a (non metallic) solid
results from the contribution of the ionic and the electronic polarization. The latter is
roughly inversely proportional to the square of the direct band gap of the solid, averaged
over the Brillouin Zone. Insulators, by de�nition, have large band-gaps, so that there
is little one can do to increase the electronic polarization and a larger (static) dielectric
constant can only stem from a larger ionic polarization, often due to highly polariz-
able (`soft') metal-oxygen bonds. Associated with soft bonds are low-energy optical
phonons. By contrast, the `hard' Si-O bonds in SiO2 yield a reduced ionic polarization.
Associated with `hard' bonds are `sti�' optical phonons.

In 1972, Wang and Mahan3 showed that electrons in the inversion layer at the
interface between a semiconductor of optical permittivity �

1

s
and a dielectric of static

and optical permittivities �0
ox

and �
1

ox
, respectively, can couple with the surface-optical

(SO) modes (arising at the insulator/Si interface from the longitudinal-optical (LO)
modes of the insulator) with a coupling strength proportional to

�h!
SO

"
1

�1
s
+ �1

ox

�

1

�1
s
+ �0

ox

#
: (1)

Here �h is the reduced Planck constant and !
SO

is the frequency of the SO insulator-
phonon, given by:

!
SO

= !
TO

"
�
0
ox
+ �

1

Si

�1
ox
+ �1

Si

#1=2
: (2)

Equation (1) is physically equivalent to the well-known Fr�ohlich electron/LO-phonon
scattering strength, proportional to

�h!
LO

�
1

�1
�

1

�0

�
; (3)

in a material with static and optical permittivities �0 and �
1, respectively, and LO-

phonon frequency !
LO
. In Eq. (3) the di�erence between the inverse of �0 and of �1 is

proportional to the squared-amplitude of the dipole �eld solely due to the oscillating
ionic polarization of the material; that is, to the coupling between electrons and the
bulk LO-phonons. Equation (1) results from the same physics, but the dipole �eld is
modi�ed by `image-charge e�ects' at the insulator/semiconductor interface, a�ecting
the decay of the dipole �eld of the insulator-phonons away from the bulk of the insulator
into the semiconductor inversion layer. The e�ect of this scattering mechanism, called
`remote phonon scattering', on hot-electron transport in the Si/SiO2 system was later
studied by Hess and Vogl4 and by Moore and Ferry5, and its e�ect on the e�ective
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electron mobility by one of us (MVF)6. For the Si/SiO2 system, and restricting our
attention { now and throughout the rest of the paper { to the electron mobility, remote
scattering does not play a major role. There are two reasons for this. First, the ionic
polarizability of SiO2 is not very large, because of the hard nature of the Si-O bond.
While this results in a small static dielectric constant, it also results in a small di�erence
between �

0
ox

and �
1

ox
, and so in a small coupling constant for electron/remote-phonon

scattering. Second, the sti� Si-O bond also results in a large LO (and SO) phonon
energy (�h!

LO
� 0:15 eV). Electrons at thermal energies (which should be considered

when interested in their Ohmic mobility) cannot emit excitations of such a large energy,
and at room temperature there are too few thermally-excited phonons to be absorbed.
Note that another bulk SiO2 phonon with �h!

LO
� 63 meV could potentially have a

larger e�ect, as far as these energetic considerations are concerned, but its oscillator
strength is too small: If it were not so, SiO2 would have a signi�cantly larger �.

Considering now the case of high-� insulators, their high-frequency dielectric re-
sponse is mainly electronic { since heavier and `slower' ions cannot respond fully at
suÆciently large frequencies {and so it is not too di�erent from that of SiO2. On the
contrary, the large ionic response dominates at low frequency. This does indeed yield a
larger static dielectric constant, but also yields both a large di�erence between �

0
ox
and

�
1

ox
, and so in a large scattering strength, Eq. (1), and in a low SO-phonon frequency,

which allows frequent emissions and absorption processes by thermal electrons. The
net result is that the very same physical properties which are responsible for the higher
� of the insulator are also likely to yield (with some important exceptions we shall
consider later) a degradation of the e�ective electron mobility in the inversion layer of
MOS-systems using the high-� insulator. We should remark that there is nothing novel
about these arguments: Hess and Vogl4 were already very well aware of these ideas
in 1979, when they concluded their article with the optimistic remark: \In passing,
we note that a reduction of the ionic polarizability of SiO2, or better of the di�erence
�
0
ox
� �

1

ox
, would reduce the electron-phonon coupling, [...] and correspondingly, enhance

the �eld dependent electron mobility in MOS transistors". Unfortunately in our context
we must move in the opposite direction, from SiO2 to higher-� materials with a higher
di�erence �0

ox
� �

1

ox
, thus achieving the opposite e�ect of depressing the mobility.

It is instructive to start by giving a rough idea about the size of the e�ect we are
considering. In Fig. 1 we plot the e�ective electron mobility in the inversion layer at the
interface between Si and an in�nitely-thick �lm of several insulators we have considered
(SiO2, HfO2, ZrO2, ZrSiO4, AlN, and Al2O3). Full details will be given below. For now
it suÆces to say that the triangular well approximation has been used to treat the
inversion layer, an anisotropic and nonparabolic band-structure model has been used
to account for (anisotropic) scattering with acoustic phonons, as described in Ref. 7,
surface roughness has been accounted for empirically using Matthiessen's rule, and
scattering with remote SO modes has been treated using Fermi's Golden Rule with the
Wang-Mahan matrix element proportional to the scattering strength given in Eq. (1).
While this model is excessively oversimpli�ed for the reasons stated below, it shows
that e�ects as large as a factor of 2 or more can be expected.

In principle, the results shown in Fig. 1 are only suggestive of what we should ex-
pect. A more accurate assessment of the the importance of remote phonon scattering in
realistic high-�MOS systems requires that we account for two additional complications:
the coupling between surface/interface optical modes and the two-dimensional electron
plasma at the insulator/semiconductor interface, and the coupling between interfacial
optical and plasma modes at the substrate/insulator and at the gate/insulator inter-
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Fig. 1: E�ective electron mobility in Si inversion layers of MOS systems with the insulators indicated.
A triangular well approximation has been used to model the subband structure of the inversion layer.
Anisotropic scattering with acoustic phonons and remote scattering with surface optical phonons has
been accounted for (when indicated). Scattering with surface roughness has been added empirically
using Matthiessen's rule and �tting the roughness-parameters to match the experimental `universal'
mobility for the Si/SiO2 system at an electron sheet density of 1013 cm�2. The limit of in�nite
insulator thickness has been taken, and no additional dielectric e�ects (screening by substrate and
gate electrons, plasmon-phonon coupling) have been considered here.

faces. In thin-insulator structures this coupling alters signi�cantly the dispersion of the
excitations and their coupling with the electrons in the channel. The coupling between
substrate- and gate-interface plasmons has been investigated before, �nding that a sig-
ni�cant gate Coulomb-drag yields by itself a reduction of the electron mobility for SiO2

layers thinner than about 2-1.5 nm.7 Here we must extend the treatment by including
the coupling of surface plasmons to surface-optical modes, by accounting for electron
scattering with the resulting phonon-like modes, and considering MOS systems with
various thickness of di�erent insulators of practical technological importance. Antici-
pating our main result, the proximity of the heavily-doped gate has the bene�cial e�ect
of screening to a large extent the interaction between electrons and interface optical
modes at the smallest insulator thickness considered for all but two (HfO2 and ZrO2)
of the high-� insulators we have considered, and at suÆciently large electron density
in the depleted poly-Si gate.

This chapter is organized as follows: In Sec. II we present our theoretical scheme.
In Sec. III we present our results. In particular, Sec. III.B presents a discussion of the
non-trivial problem of selecting physical quantities (LO and/or transverse-optical, or
TO, phonon energies, dielectric constants, and oscillator strengths) of the insulating
�lms, comparing information available in the literature with data extracted from Fourier
Transform InfraRed (FTIR) Spectroscopy. Finally, in Sec. IV we present some estimates
about the role played by an interfacial SiO2 layer and conclude in Sec. V. The role
of remote phonon scattering on hot-electron (i.e. non Ohmic) transport will not be
investigated here, although we should expect signi�cant e�ects, along the line of a
previous investigation of long-range Coulomb e�ects on the transconductance of Si
n-MOSFETs (Ref. 8).
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II. INTERFACE MODES

A. Dispersion

Here, as in Ref. 7, we shall consider a structure consisting of degenerately-doped
n-type Si (representing the poly-Si gate) in the half-space z < 0 (gate), an SiO2 or
high-� insulating layer for 0 � z < t, and a p-type Si substrate �lling the half-space
z � t. The latter is assumed to be electrically inverted, and so it is treated as a
two-dimensional electron gas (2DEG). We shall denote by �

g
(!), �

ox
(!), and �

s
(Q; !)

the dielectric functions of the gate, insulator, and substrate, respectively (all in the
long-wavelength limit discussed below). We denote by Q and R the two-dimensional
wave vector and coordinate-vector in the (x; y)-plane of the interfaces, respectively.

We are only interested in the longitudinal electric eigenmodes of the system, since
transverse modes (given by poles of the total dielectric response) correspond to a van-
ishing electric �eld, and so to a vanishing coupling with the charge carriers. These are
transverse-magnetic solutions (TM- or p-waves) of Maxwell's equations. As described
in Ref. 7, we can safely work in the non-retarded limit. Thus, the `usual' boundary
conditions require that the components of the electric �eld on the plane of the inter-
faces be continuous across the two interfaces at z = 0 and z = t, and similarly for
the component of the displacement �eld normal to the plane of the interfaces. We can
expand the electrostatic potential at frequency ! in its Fourier components as:

�(R; z; t) =
X
Q

�
Q;!

(z) eiQ�R e
i!t

: (4)

Here and in the following it must be understood that only the real part of the complex
exponentials must be retained. Assuming an isotropic dielectric response everywhere,
and thanks to the cylindrical symmetry of the problem, �

Q;!
(z) depends only on the

magnitude of the wave vector Q. Thus, we are led to �nding the solution of the Laplace
equation which in Fourier space reads as:

d
2
�
Q;!

(z)

dz2
�Q

2
�
Q;!

(z) = 0 : (5)

The boundary conditions at the interfaces imply that a physically acceptable solution
of Eq. (5) exists provided we satisfy the secular equation:

�
ox
(!)2 + �

ox
(!)[�

g
(!) + �

s
(Q; !)] cotanh(Qt) + �

g
(!)�

s
(Q; !) = 0 : (6)

The solutions of this equation yield the dispersion of the modes, !(Q) = !
(i)
Q
, where

the index i runs over the branches of the modes. The solution �
Q;!

(z) has the form:

�
Q;!

(i)
Q

(z) =

8>>><
>>>:

a
Q;!

(i)
Q

e
Qz (z < 0)

b
Q;!

(i)
Q

e
�Qz + c

Q;!

(i)
Q

e
Qz (0 � z < t)

d
Q;!

(i)
Q

e
�Qz (z � t)

; (7)

where:

b
Q;!

(i)
Q

=
�
ox
(!

(i)
Q
)� �

g
(!

(i)
Q
)

2�
ox
(!

(i)
Q
)

a
Q;!

(i)
Q

; (8)
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c
Q;!

(i)
Q

=
�
ox
(!

(i)
Q
) + �

g
(!

(i)
Q
)

2�
ox
(!

(i)
Q
)

a
Q;!

(i)
Q

; (9)

d
Q;!

(i)
Q

=
�
ox
(!

(i)
Q
)� �

g
(!

(i)
Q
)

�
ox
(!

(i)
Q
) + �

s
(Q; !

(i)
Q
)
a
Q;!

(i)
Q

; (10)

The determination of multiplicative constant a
Q;!

(i)
Q

will be discussed below in Sec. II.B.

The selection of a model dielectric-response for the insulator is a quite delicate issue.
In principle, we should account for polarization e�ects due to a multitude of optical
modes, functions not only of the chosen materials, but also of their chemical com-
position (stoichiometric or not, depending on deposition and annealing conditions), on
their allotropic forms (amorphous or, if crystalline, on their crystallographic structure),
etc. In order to keep the model tractable, we consider only two bulk optical modes,
obtained by averaging over direction (e.g., over the A2u and Eu

modes for bc tetragonal
ZrO2 or ZrSiO4), by considering only the two modes exhibiting the largest oscillator
strength, by lumping `bands' of modes into two groups, or by combining of all of these
approximations.9 Thus, we assume an ionic dielectric function of the `oscillator' form:

�
ox
(!) = �

1

ox
+ (�i

ox
� �

1

ox
)

!
2
TO2

!
2
TO2 � !2

+ (�0
ox
� �

i

ox
)

!
2
TO1

!
2
TO1 � !2

; (11)

where �0
ox

and �
1

ox
are the static and optical permittivity of the insulator, respectively,

(so that � = �
0
ox
=�0, where �0 is the permittivity of vacuum) and !

TO1 and !
TO2 are the

angular frequencies of the only two TO-phonon modes we shall consider in the insulator.
We assume !

TO1 � !
TO2. Finally, �i

ox
is the insulator permittivity describing the

dielectric response at some intermediate frequency !
int

such that !
TO1 � !

int
� !

TO2.
Physically, it is related to the oscillator strength of each mode and it must be determined
from the energy splitting between longitudinal and transverse optical modes via the
Lyddane-Sachs-Teller relation (or its trivial extension in the case of two optical modes),
which allows us to rewrite Eq. (11) as:

�
ox
(!) = �

1

ox

(!2
LO2 � !

2)(!2
LO1 � !

2)

(!2
TO2 � !2)(!2

TO1 � !2)
; (12)

where the frequency of the two LO-modes is given by the generalized Lyddane-Sachs-
Teller relation:

!
2
LOi

=
1

2�
[b� (b2 � 4�c)1=2] (i = 1; 2) ; (13)

with:
� = �

1

ox

b = �(!2
TO1 + !

2
TO2) + (�i

ox
� �

1

ox
) !2

TO2 + (�0
ox
� �

i

ox
) !2

TO1

c = (� + �
0
ox
� �

1

ox
) !2

TO1!
2
TO2 :

(14)

For the electronic response of the gate we take the usual long-wavelength expression:

�
g
(!) = �

1

Si

 
1 �

!
2
p;g

!2

!
; (15)

where !
2
p;g

= e
2
N
g
=(�1

Si
m

g
) is the bulk plasma frequency of the polycrystalline-Si

gate with an electron density N
g
(obtained from some suitable average of the electron
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density over the depletion layer of the poly-Si gate, as discussed below in Sec. III.A),
with an e�ective mass m

g
(= 0.32 m0, where m0 is the electron mass), and optical

permittivity �1
Si
. Finally, for the inverted substrate we assume:

�
s
(Q; !) = �

1

Si

"
1 �

!
p;s
(Q)2

!2

#
; (16)

where !
p;s
(Q)2 = [

P
�
e
2
n
�
Q=(�1

Si
m

�
)]1=2 is the plasma frequency of the 2DEG, n

�
and

m
�
being the electron density and conductivity mass in each of the occupied subbands

labeled by the index �.
Equation (6) is an algebraic equation of sixth degree in !

2, and which we shall

label its six positive solutions as !
(i)
Q
. Two of these solutions (which we shall label

with the indices i = 5; 6) are associated with a small scattering �eld and will be
ignored. Indeed, for small values of Qt, they behave like bulk TO-modes and couple
poorly with the electrons in the inversion layer. At large values of Qt, instead, they
are mainly localized at the `far' gate/insulator interface { thus yielding a scattering
strength depressed by a factor � e

�2Qt { , with frequencies approaching the frequencies
of the bare SO modes at that interface. The remaining 4 solutions (which we shall label

with the index i running from 1 through 4, ordered so that !
(1)
Q
� !

(2)
Q
� !

(3)
Q
� !

(4)
Q
)

represent coupled interface plasmon-phonon modes.
Two issues regarding these modes must be addressed before we can evaluate their

scattering strength: How to estimate their separate phonon- and plasmon-content, and
how to handle them in a regime in which Landau damping dominates.

The �rst issue can be addressed by extending the result of Kim and coworkers11 to
the case of interest here. The gate-plasmon content of mode i will be de�ned as:

�(G)(!
(i)
Q
) �

�������
(!

(i)
Q

2
� !

(�g;1)
Q

2
) (!

(i)
Q

2
� !

(�g;2)
Q

2
) (!

(i)
Q

2
� !

(�g;3)
Q

2
)

(!
(i)
Q

2
� !

(j)
Q

2
) (!

(i)
Q

2
� !

(k)
Q

2
) (!

(i)
Q

2
� !

(l)
Q

2
)

������� ; (17)

where the indices (i; j; k; l) are cyclical. The `approximate' sign above results from
having neglected the two solutions mentioned above. Similarly, considering the three

solutions !
(�s;�)
Q

) (� = 1; 3), obtained from the secular equation Eq. (6) by ignoring the

plasma response of the 2DEG in the substrate (that is, by replacing �
s
(Q; !) with �

1

Si
),

we de�ne the substrate-plasmon content of mode i as:

�(S)(!
(i)
Q
) �

�������
(!

(i)
Q

2
� !

(�s;1)
Q

2
) (!

(i)
Q

2
� !

(�s;2)
Q

2
) (!

(i)
Q

2
� !

(�s;3)
Q

2
)

(!
(i)
Q

2
� !

(j)
Q

2
) (!

(i)
Q

2
� !

(k)
Q

2
) (!

(i)
Q

2
� !

(l)
Q

2
)

������� : (18)

It can be veri�ed that Eqns. (17) and (18) satisfy the normalization conditions:

4X
i=1

�(G)(!
(i)
Q
) = 1 ;

4X
i=1

�(S)(!
(i)
Q
) = 1 : (19)

Having ignored the solutions !
(5)
Q

and !
(6)
Q

forces us to approximate the phonon content

of each mode as follows. From Eqns. (17) and (18) it follows that the total phonon
content of mode i will be:

�(!
(i)
Q
) = 1 � �(G)(!

(i)
Q
) � �(S)(!

(i)
Q
) : (20)
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In order to de�ne separate phonon-1 and phonon-2 contents, we also consider the

three solutions !
(�TO1;�)
Q

(� = 1; 3), obtained from the secular equation, Eq. (6), but

now ignoring the response of phonon-1 { that is, by replacing �
ox
(!) with �

1

ox
(!2

LO2 �

!
2)=(!2

TO2 � !
2) { and the three solutions !

(�TO2;�)
Q

(� = 1; 3) similarly obtained by

ignoring the response of the TO-mode 2 by setting in Eq. (6) �
ox
(!) ! �

1

ox
(!2

LO1 �

!
2)=(!2

TO1 � !
2). Therefore, the relative phonon-1 content of mode i will be

R
(TO1)(!

(i)
Q
) �

�������
(!

(i)
Q

2
� !

(�TO1;1)
Q

2
) (!

(i)
Q

2
� !

(�TO1;2)
Q

2
) (!

(i)
Q

2
� !

(�TO1;3)
Q

2
)

(!
(i)
Q

2
� !

(j)
Q

2
) (!

(i)
Q

2
� !

(k)
Q

2
) (!

(i)
Q

2
� !

(l)
Q

2
)

������� ; (21)

(where, as before, i; j; k; l are cyclical) so that, �nally, the TO-phonon-1 content of
mode i will be:

�(TO1)(!
(i)
Q
) �

R
(TO1)(!

(i)
Q
)

R(TO1)(!
(i)
Q
) +R(TO2)(!

(i)
Q
)
[1 � �(G)(!

(i)
Q
) � �(S)(!

(i)
Q
)] ; (22)

and similarly for �(TO2)(!
(i)
Q
). Once more, it has been veri�ed numerically that these

de�nitions satisfy the additional normalization conditions:

4X
i=1

�(TO1)(!
(i)
Q
) = 1 ;

4X
i=1

�(TO2)(!
(i)
Q
) = 1 ; (23)

and, for each mode i:

�(G)(!
(i)
Q
) + �(S)(!

(i)
Q
) + �(TO1)(!

(i)
Q
) + �(TO2)(!

(i)
Q
) = 1 : (24)

At suÆciently short wavelengths plasmons cease to be proper excitations. In our

context this may happen when the gate-plasma-like solution !
(ig)
Q

(where usually i
g
=

1 at large enough N
g
) enters the single-particle continuum in the gate, the substrate-

plasma-like solution enters the single-particle continuum in the substrate, or both. In
order to account for Landau damping, albeit approximately, we proceed as follows.

Whenever the substrate-plasmon-like excitation !
(is)
Q

(where, usually, i
s
= 4) enters the

single-particle continuum of the 2DEG evaluated in the extreme quantum limit (i.e.,

!
(is)
Q

� [(�hQ)=(2m
t
)](Q+2K

F
), whereK

F
= (�n

s
)1=2,m

t
= 0:19m0 being the transverse

e�ective mass), we consider only the three solutions !
(�s;i)
Q

(i = 1; 3) given above.

These represent the three coupled gate-plasmon/insulator-TO-modes which exist when
the substrate plasma is absent. The plasmon/phonon content and scattering strength
for these modes are obtained in a way completely analogous to the one discussed so
far. Similarly, when the frequency of the gate-plasmon-like excitation enters the single-

particle continuum of gate (that is, !
(ig)
Q

� (�hQ)=(2m
g
)(Q + 2k

F
), where k

F
is the

zero-temperature Fermi wave vector of the electron gas in the gate, k
F
= (�2N

g
=2)1=3,

and the index i
g
takes a value of 1 or 2, depending on electron density in the gate,

frequency of the high-energy TO-mode, !
TO2, and dielectric constants of the material

considered), we consider only the three solutions !
(�g;i)
Q

(i = 1; 3) representing the three

coupled substrate-plasmon /insulator-TO-modes which exist when the gate plasma does
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not respond. In this case only phonon-like scattering with these modes is considered.
Equation (33) describes the surface-phonon scattering �eld, setting �

gate
(!) = �

1

Si
in

�
(TOi)
TOT;high

(!) and �
(TOi)
TOT;low

(!) to re
ect the absence of the gate plasma.
Finally, when both the gate- and the substrate-plasmons-like dispersions are within

their respective Landau-damping regions, we consider only the two phonon-like modes

of frequencies !
(SOi)
Q

(i = 1,2), whose associated scattering �eld is given by Eq. (33)

with �
gate

(!) = �
substrate

(Q; !) = �
1

Si
employed into �

(TOi)
TOT;high

(!) and �
(TOi)
TOT;low

(!).

B. Scattering strength

The amplitude a
Q;!

of the �eld, Eq. (7), can be determined using the semiclassical
approach originally proposed by Stern and Ferrel12 which we also followed in Ref. 7 and
described in a simple case in Appendix A of Ref. 8. We �rst consider the time-averaged

total (electrostatic, including self-energy) energy, < W
(i)
Q

>, associated with the �eld

�
(i)
Q
(R; z; t) caused by the excitation of mode i oscillating at the frequency !

(i)
Q
. (The

bra-kets < ::: > denote time average). Let us write the electrostatic potential at a given
wavelength as:

�
(i)
Q
(R; z; t) = �

(i)

Q;!

(i)
Q

(z) cos(Q �R� !
(i)
Q
t) : (25)

Since phonons and plasmons in the harmonic and linear-response approximations, re-
spectively, are represented as harmonic oscillations, the time-averaged total energy
associated with these excitations is simply twice the time-averaged potential energy,

< U
(i)
Q

>. This, in turn, is the electrostatic (self)energy of the interface polarization

charge density �
(i)
Q
(R; z; t) in the presence of the potential �

(i)
Q
(R; z; t) caused by the in-

terface charge itself. We may express this potential energy in two alternative equivalent
ways: From the expression (7) for the potential, the density of the polarization charge
associated with mode i is localized at the two interfaces and can be obtained from the
Poisson equation �

(i)
Q
(R; z; t) = �r � [�(!

(i)
Q
; z)r�

(i)
Q
(R; z; t)] (where the z-dependence

in �(!
(i)
Q
; z) re
ects the fact the we must use the appropriate dielectric functions across

the interfaces):

�
(i)
Q
(R; z; t) = fÆ(z) [ �

gate
(!

(i)
Q
) a

Q;!

(i)
Q

+ �
insulator

(!
(i)
Q
) (b

Q;!

(i)
Q

� c
Q;!

(i)
Q

) ]

+ Æ(z � t) [ �
insulator

(!
(i)
Q
)(c

Q;!

(i)
Q

e
Qt

� b
Q;!

(i)
Q

e
�Qt)

+ �
substrate

(Q; !
(i)
Q
) d

Q;!

(i)
Q

e
�Qt ] g Q cos(Q �R� !

(i)
Q
t) ; (26)

having introduced the new functions �
gate

(!), �
insulator

(!), and �
substrate

(Q; !) which
must be chosen in a way consistent with the component of the polarization charge

�
(i)
Q
(R; z; t) we are considering, as discussed below. Therefore, for the energy < W

(i)
Q

>

we can write:

< W
(i)
Q

> = 2 < U
(i)
Q

> =
2




�Z


dR

Z
1

�1

dz �
(i)
Q
(R; z; t) �

(i)
Q
(R; z; t)

�
; (27)

where 
 is a normalization area. Alternatively, using Green's identity and accounting
for the discontinuity of the electric and displacement �elds across the interfaces, we can
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express < W
(i)
Q

> in terms of the electrostatic energy of the �eld E
(i)
Q
= �r�

(i)
Q
:

< W
(i)
Q

> =
2




�Z


dR

Z
1

�1

dz �(!
(i)
Q
; z) jE

(i)
Q
(R; z; t)j2

�
: (28)

From Eqns. (8-10) and either using Eq. (27) or performing the integrals in Eq. (28)
using Eq. (7), we obtain:

< W
(i)
Q

> = Q �
TOT

(Q; !
(i)
Q
)

2
4 �

ox
(!

(i)
Q
)� �

g
(!

(i)
Q
)

�
ox
(!

(i)
Q
) + �

s
(Q; !

(i)
Q
)

3
5
2

a
2

Q;!

(i)
Q

e
�2Qt

: (29)

Here the `total' e�ective dielectric function of the substrate coupled to the gate and the
insulating layer has been de�ned as:

�
TOT

(Q; !) = �
gate

(!)

"
�
ox
(!) + �

s
(Q; !)

�
ox
(!)� �

g
(!)

#2
e
2Qt

+ �
insulator

(!)

8<
:
"
�
ox
(!) + �

s
(Q; !)

2�
ox
(!)

#2
(e2Qt � 1) +

"
�
ox
(!)� �

s
(Q; !)

2�
ox
(!)

#2
(1� e

�2Qt)

9=
;

+ �
substrate

(Q; !) ; (30)

having made repeated use of the relations (6) to reach one of the many possible equiv-
alent algebraic forms. The semiclassical nature of the argument enters the �nal step of

setting the quantity < W
(i)
Q

> equal to the zero-point energy, �h!
(i)
Q
=2, of the quantized

excitation. This �nally determines the `normalization constant', a
Q;!

(i)
Q

, and thus the

amplitude of the scattering �eld in the substrate (z � t):

�
(i)

Q;!

(i)
Q

=

2
4 �h!

(i)
Q

2 Q �
TOT

(Q; !
(i)
Q
)

3
5
1=2

e
�Q(z�t)

; (31)

up to the appropriate Bose factors of the excitations, n
(i)
Q

1=2
and (1 + n

(i)
Q
)
1=2
, which

multiply the scattering potential for absorption and emission processes, respectively.
The choice of the dielectric functions �

gate
(!), �

insulator
(!), and �

substrate
(Q; !), which

appear in the expression for �
TOT

(Q; !), is a crucial element of our discussion. When-
ever we are interested in determining the potential energy due to a particular type of
response of the system (ionic or electronic), we cannot include this response into these
dielectric functions. For example, by setting �

gate
(!) = �

g
(!), �

insulator
(!) = �

ox
(!),

and �
substrate

(Q; !) = �
s
(Q; !), we e�ectively lump the entire dielectric response, ionic

and electronic, into the dielectric functions, and we expect that the potential energy
of `whatever response is left' (none, in this case) in the �eld and charge, �

Q
and �

Q
,

should vanish. Indeed when so doing, the resulting �
TOT

(Q; !) vanishes for ! = !
(i)
Q
,

the equation �
TOT

(Q; !) = 0 being equivalent to the secular equation (6). So, when
taking �

gate
(!) = �

1

Si
, �

substrate
(Q; !) = �

1

Si
, and �

insulator
(!) = �

0
ox

we consider only the
plasmon contribution to the polarization charges. Indeed, the response of the insulator
lattice is removed from the electrostatic �eld by being lumped into the insulator permit-
tivity when setting �

insulator
(!) = �

0
ox
, while the electronic response is removed from the
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dielectric functions of the gate and substrate, and is included directly into the ampli-
tude of the electrostatic �eld and polarization charge, �

Q
and �

Q
. In this case Eq. (31)

represents the amplitude of the �eld induced by plasma excitations. Thus, de�ning

as �
(PL)
TOT

(Q; !
(i)
Q
) the total plasma dielectric function so obtained, scattering between

electrons in the substrate and gate plasmons is described by the e�ective scattering
�eld:

�
(i;g;PL)

Q;!

(i)
Q

(z) =

2
4 �h!

(i)
Q

2 Q �
(PL)
TOT

(Q; !
(i)
Q
)
�(G)(!

(i)
Q
)

3
5
1=2

e
�Q(z�t)

: (32)

Scattering with the �eld induced by the polarization charges of the insulator lattice
(i.e., with the optical phonons in the insulator) can be evaluated in a way essentially
identical to the approach followed by Kittel13 to evaluate the Fr�ohlich coupling in
bulk polar materials. The only di�erence between Kittel's and our approach consists
in following Stern and Ferrel12 in evaluating the ground-state energy semiclassically,
rather than from second-order perturbation theory. In order to isolate the contribution
of each phonon independently and consider only the lattice polarization, the squared,
time-averaged amplitude of the scattering �eld is computed by lumping the electronic
response into the dielectric functions of the gate and substrate, while letting one phonon
(say, phonon 2 to �x the ideas) respond, but �rst by `freezing' the other mode (TO1)
and then by considering its full response. The di�erence between the two squared
amplitudes so obtained constitutes the e�ect of the ionic polarization charge associated
solely with the optical mode 1. To be explicit, in our case the amplitude of the �eld
(31) when only phonon 2 responds is obtained by setting �

gate
(!) = �

g
(!) (response of

the gate plasmons lumped into the gate dielectric function), �
substrate

(Q; !) = �
s
(Q; !)

(response of the substrate plasmons lumped into the dielectric function of the inversion
layer), and setting �

insulator
(!) = �

1

ox
(!2

LO2�!
2)=(!2

TO2�!
2) (phonon 2 responds at the

frequency !, while phonon 1 does not respond). Let �
(TO1)
TOT;high

be the resulting e�ective
dielectric function. On the contrary, when phonon 1 is allowed to respond fully, we have
�
insulator

(!) = �
1

ox
[(!2

LO2 � !
2)=(!2

TO2 � !
2)](!

LO1=!TO1)
2 (which reduces to �

0
ox

in the
simpler case of insulators exhibiting only one TO-mode), the full response of phonon 1

now being accounted for by the term (!
LO1=!TO1)

2. Let �
(TO1)
TOT;low

denote the resulting
dielectric function. Thus, the interaction between electrons in the inversion layer and
the TO1-phonon-content of the mode i will be described by the scattering �eld:

�
(i;PH1)

Q;!

(i)
Q

(z) =

8<
:�h!

(i)
Q

2Q

2
4 1

�
(TO1)
TOT;high

(Q; !
(i)
Q
)
�

1

�
(TO1)
TOT;low

(Q; !
(i)
Q
)

3
5 �(TO1)(!

(i)
Q
)

9=
;
1=2

e
�Q(z�t)

:

(33)
The scattering strength with phonon mode 2 can be trivially obtained by swapping the
indices 1 and 2 in the discussion above.

C. Discussion

We summarize graphically the results of this section by showing in Figs. 2 and 3
the signi�cant properties of the interface modes for the Si/SiO2/Si and the Si/ZrO2/Si
systems, respectively, as a function of the in-plane wave vector Q. These two MOS
systems are the extreme cases of a low-� (SiO2) and a high-� (ZrO2) material, the
Si/SiO2/Si system exhibiting some of the sti�est modes, the Si/ZrO2/Si some of the
softest optical modes. The curves in the �gures have been obtained using electron
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Fig. 2: Calculated dispersion (a) and total scattering strength (b) for the insulator-optical-
phonon/substrate-and-gate-plasmons interface modes for the Si/SiO2/Si system. In (a), the curves
labeled by !LDs and !LDg identify the boundary of the substrate and gate Landau-damping regions,
respectively. Modes 5 and 6 have been ignored.
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Fig. 3: As in Fig. 2, but for the Si/ZrO2/Si system. Note that the two highest-energy modes are
plasmon-like.

concentrations in the gate and in the Si substrate and an `equivalent' insulator thick-
ness, t

eq
, (de�ned as t�0

ox
=�

0
SiO2

), which are representative of typical situations. The
subband model employed has been described in Sec. II of Ref. 7: We have employed
an anisotropic, non-parabolic band-structure, used a triangular-well approximation for
the potential in the inversion layer, and embraced the long-wavelength approximation
for the dielectric function discussed above, also ignoring intersubband-plasmons.

In Figs. 2 and 3 we show in (a) the dispersion of the modes and in (b) the total
scattering strength for each mode. The scattering strength with the phonon-like com-

ponent of each mode i, �
(i)
SO
(Q), has been de�ned, according to Eq. (33), by summing

the scattering strength of both TO-modes �:

�
(i)
SO
(Q) =

2X
�=1

�
(i)
SO;�

(Q)

= �0

2X
�=1

������
�h!

(i)
Q

2

2
4 1

�
(TO�)
TOT;high

(Q; !
(i)
Q
)
�

1

�
(TO�)
TOT;low

(Q; !
(i)
Q
)

3
5 �(TO1)(!

(i)
Q
)

������ ; (34)
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and similarly for the scattering strength for the gate-plasmon content of mode i,

�
(i)
SP
(Q), de�ned, according to Eq. (32), as:

�
(i)
SP
(Q) = �0

������
�h!

(i)
Q

2 �
(PL)
TOT

(Q; !
(i)
Q
)
�(G)(!

(i)
Q
)

������ : (35)

(In both Eqns. (34) and (35) we have included a factor �0 to give the scattering strengths
an `intuitive' dimension of energy.) Note that, comparing Eq. (33) with Eq. (34) and
Eq. (32) with Eq. (35), the (squared) scattering amplitude will be modulated by a
factor Q�1 { which is compensated by the density-of-states factor Q while integrating
over �nal scattering states. The scattering �eld will also exhibit the exponential decay
exp[�Q(z � t)] into the substrate, away from the substrate/insulator interface.

Landau damping has been ignored in these �gures. However, the two curves labeled
!
LDg

and !
LDs

identify the region of strong damping of the gate and substrate plasma,
respectively. As explained above, Landau damping is approximately accounted for by
ignoring the substrate plasma for values of Q such that !(4)

� !
LDs

(in both �gures)

and by ignoring the response of the gate electrons whenever !(2)
� !

LDg
(in Fig. 2) or

!
(1)
� !

LDg
(in Fig. 3).

In Fig. 2(a), the mode labeled !
(1) appears clearly to be mostly a phonon-like

mode, originating from the high-frequency SiO2 TO-mode at about 0.135 eV. The mode
!
(2) is mainly a gate-plasmon mode, its coupling to the high-frequency phonon mode

increasing at shorter wavelengths. The second, low-energy SiO2 TO-mode at about
0.06 eV is strongly coupled to the substrate plasmons. Indeed, the modes labeled !

(3)

and !(4) result from this strong coupling: The former is mostly phonon-like at small Q,
but it quickly becomes mainly a substrate-plasma mode as Q grows, while the mode
!
(4) shows the opposite behavior.
Figure 3 conveys essentially the same information, but it shows how the sti�est

mode, labeled !
(1), is now mainly gate-plasmon-like, mode !(2) is mainly phonon-like

at small Q, substrate-plasmon-like at shorter wavelength. The mode labeled !
(3) is

mainly phonon-like, but its phonon content switches from the low-energy (small Q) to
the high-energy (large Q) insulator phonon mode, crossing the substrate-plasma mode

at intermediate wavelength. The mode labeled !
(4) starts as substrate-plasma-like at

low Q, but it becomes almost completely phonon-like at larger Q.
Although not shown in the �gures, the SiO2-system (!(2)) shows a larger gate-

plasmon scattering strength than for the ZrO2-system (!(1)). As explained before7,
this is simply due to the closer proximity of the gate in the SiO2-system. Conversely,
looking at the scattering strength of the !(2)-mode, for example, at the largest values of
Q in the undamped region, the ZrO2-system exhibits a stronger scattering strength with
phonon-like modes. Finally phonon-like scattering with modes !(3) (in Fig. 2) and !

(2)

(in Fig. 3) is signi�cantly enhanced by the phonon-plasmon coupling. This e�ect results
from the anti-screening properties of the electron gas(es). Whenever the frequency of an
excitation is larger than the frequency of the electron plasma, the coupling strength with
the excitation is enhanced, while Landau damping gains strength. Indeed this e�ect is
signi�cant well within the region in which we must account for Landau damping. In
our case the situation is noticeably complicated by the presence of two plasmas (the
gate and the substrate) and by two optical phonons. As we shall see below discussing
the e�ective electron mobility, each of the phonon-like excitations may be screened by
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one plasma and anti-screened by the other.

III. EFFECTIVE MOBILITY OF THE 2D ELECTRON GAS

A. The model

The calculation of the e�ective electron mobility in the inversion layer of the MOS
systems considered here has been performed using the approximations and models de-
scribed in detail in Sec. III of Ref. 7. We have employed Eq. (63) of that reference, using
the total relaxation time computed by adding relaxation rates due to electron scatter-
ing with intravalley, intra- and inter-subband acoustic phonon using an anisotropic
deformation potential (Eq. (86) of Ref. 7), scattering with intervalley phonons as de-
scribed in Sec. III D of that reference, and considering scattering with the coupled
plasmon/insulator-phonon interface modes employing Eq. (77) of Ref. 7, but substitut-

ing the `e�ective' �eld amplitude jA
Q
j
2 with the scattering strengths �

(i)
SO;�

(Q)=Q and

�
(i)
SP
(Q)=Q given by Eqns. (34) and (35) above. The Si inversion layer has been modeled

using the triangular well approximation, employing a number of subbands suÆcient to
account correctly for absorption processes by thermal electrons.

The complexity and computer requirements of the numerical procedure limit the
maximum number of subbands (and so on the minimum electron density) which we
could consider. Even so, some `numerical noise' is evident in our results. The dispersion
of the interfacial modes has been obtained by solving the secular equation (6) for a set
of tabulated values Q

i
and storing its roots in look-up tables. In general there will be

four of them in the undamped region of low Q, three or only two as Landau damping
enters the picture at larger values of Q. We also tabulate, for each Q and branch i,
the amplitude of the scattering �elds and the group velocity of the modes, required
to evaluate the Jacobian factor g (in the notation of Ref. 7). A linear interpolation
of these functions of the magnitude of the momentum-transfer Q has been performed
during the numerical integration of the SO-limited relaxation time.

The electron concentration, N
g
, entering the evaluation of the gate plasma has been

estimated by �rst integrating numerically the Poisson equation in the gate for a given
electron concentration, n

s
, in the inversion layer of the Si substrate. We have then

either employed the electron concentration at the insulator/gate interface, or, instead,
the average quantity

< N
g
(Q) > =

R 0�
zmax

N(z) eQz dzR 0�
zmax

eQz dz
: (36)

This expression has a heuristic justi�cation. The potential associated with the interface
excitations has the form given by Eq. (7), exhibiting an exponential decay e

Qz for
z � 0. Therefore, the `e�ective' average electron density seen in the gate by an interface
excitation will approach the gate donor density, N

Dg
, at long wavelength and N(z = 0�)

at short wavelength. Equation (36) empirically captures this behavior. Note that this
Q-dependent average must be employed to compute the dispersion of the interface
modes, since it appears via !

p;g
, and so via �

g
(!), in the secular equation (6).

Finally, scattering with interface roughness has been included using Matthiessen's
rule and adding to the calculated mobility �

PH;SO;SP
{ including scattering with Si

phonons (PH), coupled surface-optical (SO), and interface plasmons (SP) modes - the

14



contribution of a surface-limited mobility, �
SR

of the form �
SR

= �0(10
13
=n

s
)2, with

n
s
measured in cm�2. The constant �0 has been determined by �tting the resulting

`total' mobility �
tot

= [1=�
PH;SO;SP

+1=�
SR
]�1 calculated for thick (5nm) SiO2-systems

at n
s
= 1013 cm�2 to the experimental value in lightly-doped substrates of about 308

cm2/Vs (see Ref. 15). The resulting value was �0 = 1:473�103 cm2/Vs when usingN
g
=

N(z = 0�), and �0 = 1:167 � 103 cm2/Vs when using N
g
=< N

g
(Q) >. Converting

the latter value to commonly used expressions, it implies a surface-roughness-limited
mobility about a factor of 2 larger than what we obtained in the past6 (using Monte
Carlo simulations, and also used in Fig. 1, which assumed the values � = 1.3 nm and
� = 0.48 nm for the Ando's parameters14), and within 10% of a typical empirical �t16

to the e�ective electron mobility.

B. Insulator parameters

We have considered MOS systems with 6 di�erent insulators: SiO2, Al2O3, AlN,
ZrO2, HfO2, and ZrSiO4. These materials cover a range of parameters (dielectric con-
stants, phonon energies, etc.) wide enough to give an idea of the qualitative bahavior
of the electron mobility as a function of the physical properties of the insulator.

In order to select the parameters required to evaluate the electron/SO-modes scat-
tering strength, it is convenient to rewrite Eq. (11) in the following more general form
accounting for N

TO
TO-modes:

�
ox
(!) = �

1

ox
+ �0

NTOX
�=1

f
�
!
2
TO;�

!
2
TO;�

� !2
: (37)

We can relate this expression to its alternative form, Eq. (11), by rewriting the oscillator

strength f
�
of the TO-mode � in terms of the `intermediate' dielectric constants �(�) �

�
ox
(!

�
), where !

��1 � !
TO;�

< !
�
for !

�
ordered so that !

��1 < !
�
:

f
�
=

�
(��1)

� �
(�)

�0
: (38)

Here �
(�=0) = �

0
ox

and �
(�=NTO) = �

1

ox
. For a single TO-mode and, approximately,

for TO-modes widely separated energetically, the Lyddane-Sachs-Teller (LST) relation
provides the LO/TO splitting:

!
2
LO;�

�

�
(��1)

�(�)
!
2
TO;�

: (39)

For materials exhibiting two or more TO-modes at nearby frequencies, the energy of
the LO-modes must be determined by the generalized LST-relation �

ox
(!) = 0, such

as Eq. (14) valid in the case of two TO-phonons. In order to determine completely
the frequency dependence of �

ox
(!) in the model-form (37), for each bulk mode � we

need knowledge of two of the quantities !
TO;�

, !
LO;�

, and �
(�) (or, equivalently, f

�
).

Experimentally, Infrared (IR) absorption experiments can provide mainly information
on !

TO;�
, while Raman and electron tunneling-spectroscopy17 can also provide direct

information about the LO-frequency, !
LO;�

. The relative amplitude of each peak in the
IR spectra can be correlated with the oscillator strength f

�
. In addition, one could rely

on theoretical calculations. Unfortunately, things are more complicated. Our ultimate
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Table 1: Parameters used to compute the electron-phonon coupling in polar insulators. The
frequency of the optical phonons and/or the dielectric functions �0, �i, and �1 are taken from
the literature, when available, and the unavailable data are obtained using the Lyddane-Sachs-
Teller relation. When more than two modes are present, only the two strongest modes (based
on the magnitude of the LO-TO energy splittings) have been considered. When anisotropic
quantities are given { such as in Refs. 24 and 36 for the energies of E

T
and A2T (bc tetragonal)

or E
u
and A2u (hexagonal) modes propagating in directions perpendicular and parallel to the

crystal c-axis, respectively, and also for the elements of the dielectric tensor { a simple average
has been taken. The Fr�ohlich coupling constants for each mode are also indicated. Note the
large coupling constants for the low-energy modes in ZrO2 and HfO2, which are indeed the
materials yielding the lowest mobility.

Material SiO
(a)
2 Al2O

(b)
3 AlN(c) ZrO

(d�f)
2 HfO

(f;g)
2 ZrSiO

(h)
4

Quantity (units)

�
0
ox

(�0) 3.90 12.53 9.14 24.0(i) 22.00 11.75
�
i

ox
(�0) 3.05 7.27 7.35 7.75 6.58 9.73

�
1

ox
(�0) 2.50 3.20 4.80 4.00 5.03 4.20

!
TO1 (meV) 55.60 48.18 81.40 16.67 12.40 38.62

!
TO2 (meV) 138.10 71.41 88.55 57.70 48.35 116.00

�1 0.0248 0.0788 0.0248 0.2504 0.3102 0.0322
�2 0.0113 0.0814 0.0423 0.0779 0.0362 0.2942

(a) Refs. 4 and 24 and references therein. (f) Ref. 27.
(b) Ref. 25. (g) Ref. 33.
(c) Ref. 18. (h) Ref. 36 and references therein.
(d) Ref. 28. (i) Ref. 31.
(e) Ref. 29.

goal is the calculation of the electron mobility, possibly comparing our results with
experimental data. However, as thin-insulator MOS structures are typically manufac-
tured with processes which must be compatible with the current Si technology, The
structure and composition of the grown or deposited insulator can often be inferred
only indirectly. The dielectric response of any given material may depend on its mor-
phology: For example, AlN exhibits di�erent properties in its wurtzite and zinc-blende
structure18. It can also depend on its closeness to the ideal chemical composition: In-
completely oxidized Al2O3, for example, shows additional modes, possibly related to
unoxidized Al ions19. Undesired, but so far unavoidable, `native' interfacial layers (SiO2

when dealing with oxides, Si3N4 when dealing with nitrides) can mask the response of
the `pure' dielectric under study, as discussed in Sec. IV. Finally, the information avail-
able in the literature is incomplete, occasionally inconsistent. Here we shall rely on both
experimental data and theoretical results, and we shall compare this input with with
Fourier transform infrared (FTIR) spectra we have obtained, and attempt to obtain a
consistent picture. Some of these have already been reported, including experimental
details20. Additional spectra are shown in Fig. 4. Table 1 summarizes the values we
have employed.
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Fig. 4: FTIR spectra for some of the insulators considered. In all spectra (except for xSiO2+(100-
x)ZrO2 with x=85% in the bottom panel) two curves are shown, one in the far-IR range of 50 to 600
cm�1 and one in the mid-IR range of 400 to 4000 cm�1. In the bottom frame (`nominally' ZrSiO4

obtained from chemical-solution deposition of xSiO2+(100-x)ZrO2) spectra for x=85% and x=25%
are shown, to illustrate the decay of the SiO2-mode at about 1080 cm�1 with decreasing x.

In the table we also show the dimensionless coupling constant

�
i
=

e
2

4��h

�
m

t

2�h!
SOi

�1=2  1

�
1

Si
+ �1

ox

�

1

�
1

Si
+ �0

ox

!
; (40)

for each of the two modes i, which corresponds to the dimensionless Fr�ohlich coupling
constant usually de�ned in bulk materials. These coupling constants have been obtained
using for the energy of the SO-phonons the approximate expressions given by Eq. (2),
with the appropriate optical, static, and `intermediate' dielectric constants. Note how
well these values correlate with the mobility shown in Fig. 1. In particular, the high
values of the coupling constants relative to the low-energy modes in HfO2 and ZrO2 hint
very directly at the importance of remote scattering with SO-modes in MOS systems
using these materials.

The FTIR spectra of SiO2 were obtained from thermally grown SiO2. The �-
Al2O3 FTIR spectra were obtained from a chemical-solution-deposited �lm annealed at
1200 C for 60 minutes in oxygen. The FTIR spectra of tetragonal and monoclinic ZrO2

were obtained from chemical-solution-deposited �lms annealed at 500 C and 900 C,
respectively. The FTIR spectra of xSiO2 +(100-x)ZrO2 with x= 85% and 25% were
obtained from a chemical-solution-deposited �lm annealed at 700 C. Additional details
regarding deposition, phase formation, and FTIR analysis of the ZrO2, HfO2 and xSiO2

+(100-x)ZrO2 �lms can be found in the literature
20. The monoclinic HfO2 spectra were

obtained from a �lm chemical-vapor-deposited at 700 C.

SiO2. The SiO2 FTIR spectrum shown in Fig. 4 exhibits two strong peaks at
1076 and 461 cm�1, corresponding to TO-modes at 133.4 and 57.2 meV, associated
with an asymmetric stretching of the SiO4 unit and a bending of the Si-O-Si bond,
respectively. We neglect a weak third mode at 806 cm�1 (� 100 meV), due to a
symmetric stretching mode of the Si-O-Si bond. The `shoulders' at 1255 and 532 cm�1

are related to the corresponding LO modes. These values are in good agreement with
the experimental energies reported by Hess and Vogl4 - from Refs. 21- 23. Also the
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LO/TO splittings are consistent with the oscillator strengths reported in the literature,
but those derived from the areas under the FTIR peaks appear to give a stronger high-
energy mode, the strength of the mode 1076 cm�1 being about 5 times stronger than
the strength of the low-energy phonon. We have decided to use the most common
values for the oscillator strengths reported in the literature. Indeed, recent calculations
of the Raman-active intensities in �-quartz, based on a �rst-principle density functional
approach, give a variety of modes.24 Averaging the two strongest transverse modes over
symmetry directions (the A2T and E

T
modes at the � point) gives two modes at about

1100 and 450-480 cm�1. A similar average over the longitudinal modes ( A2L and E
L
)

provides the LO/TO energetic splitting and, via the LST relation Eq. (39) and Eq. (38),
a ratio of 3:4 for the oscillator strengths of the modes.

Al2O3. Two peaks are clearly visible in the FTIR spectrum, at 579 and 437 cm�1

for a �lm deposited at 600 C and annealed in oxygen at 1200 C for 60 minutes to
ensure complete oxidation. The areas under the peaks yield a ratio 56:44 for their
respective oscillator strengths. High-resolution energy loss spectroscopy in thin Al2O3

�lms provides two sets of modes, in the plane of the �lm and o�-plane25. The in-plane
TO-modes (at 578 and 390 cm�1) are in fair agreement with our FTIR results. Chen
and co-workers19 see a variety of modes as a function of annealing conditions of the
thin �lms, typically grouped into three LO bands around 400-430, 600-655, and 850-895
cm�1. The low-energy band is attributed to excess (unoxidized) Al. The remaining
two bands are in satisfactory agreement with the TO energies and oscillator strengths
which can be derived from the FTIR spectrum and Ref. 25. The selection reported in
Table 1 can be viewed as a satisfactory compromise.

AlN. For AlN we employ the theoretical results by Ruiz and co-workers18 (an ab
initio Hartree-Fock study of the hexagonal (wurtzite) phase of AlN) and by Gorczyca
et al.26 (a muÆn-tin analysis of both the wurtzite and zinc-blende phases). In the
hexagonal phase two almost degenerate TO modes (at around 660 and 715 cm�1, with
oscillator strengths in a 59:41 ratio) originate from a single cubic TO mode at about
650 cm�1, as a result of the doubling of the available optical modes moving from the
cubic to the hexagonal structure. For the wurtzite phase, the modes reported in Table 1
have been obtained by averaging the modes over the various allowed symmetries. The
particular structure selected (wurtzite or zinc-blende) is largely immaterial as far as
electron scattering is concerned, since the total oscillator strength carried by the almost-
degenerate modes in the hexagonal phase coresponds approximately to the oscillator
strength of the the single mode in the cubic phase. Finally, we have neglected a weak
low-energy mode at 250 cm�1 seen in Raman spectra, reported in Refs. 18 and 26.

ZrO2. Desgreniers and Lagarec27 have published Raman spectra for polycrystalline
(cotunnite phase) HfO2 and ZrO2. For the latter insulator, they have observed two TO
modes at wavenumbers of about 390 (an oscillation of the Zr-O bond) and 100 cm�1,
with the corresponding LOmodes at about 430 and 170 cm�1. Raman spectra by Morell
and co-workers28 for Y- and Ca-stabilized ZrO2 give two LO modes at 620 and 160 cm�1,
the former mode possibly in
uenced by the dopants. Lattice-dynamics calculations for
cubic and tetragonal lattices29 give three transverse modes at wavenumbers 164 (E

u
),

339, and 467 (A2u) cm�1, with corresponding longitudinal frequencies at 232, 354,
and 650 cm�1. These values, in rough agreement with the dispersions calculated by
Mirgorodsky et al.30 for cubic and tetragonal ZrO2, show that the 339(TO)/354(LO)-
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cm�1
A2u-mode is quite weak. In Fig. 4 we show FTIR spectra we have obtained for

both tetragonal and monoclinic ZrO2. The former exhibits a weak peak at 161 cm�1,
a weak shoulder at about 300 cm�1, signature of the weak 339 cm�1 mode reported in
Refs. 29 and 30, and a stronger structure around 439 cm�1. These are in good agreement
with both the experimental27 and the theoretical29;30 frequencies we have just discussed.
The spectrum relative to tetragonal ZrO2 is quite similar, while showing sharper peaks.
Therefore, we have employed the LO-energies reported in Ref. 29, but have lowered
the TO-frequency of the low-energy mode to account for the higher static dielectric
constant (� 24 �0) observed in thin �lms31. Note that in FTIR spectra oscillations at
wavenumbers below about 100 cm�1 remain elusive, as impurities (dopants) in the Si
substrate render it opaque to the IR radiation.

HfO2. The dominant high-frequency mode seen in the Raman spectra of Ref. 27
(TO at 395 cm�1 with corresponding LO at 450 cm�1) { a vibration of the Hf-O bond {
is also seen in the FTIR spectrum of this material in the monoclinic phase, as a double
peak around 337-409 cm�1. It corresponds to one of the modes of the monoclinic
structure also reported in Ref. 32. The low-frequency mode seen in the spectrum of
Ref. 27 (TO at 115 cm�1, LO at 210 cm�1), despite its strength is not easily visible in
IR spectroscopy, as explained above. Thus, we have embraced essentially unaltered the
results of Ref. 27, using the values for the refractive index from Refs. 34 and 35, and
ignoring the weaker modes at 235 and 256 cm�1 seen in the spectrum of Fig. 4.

ZrSiO4. FTIR spectra of chemical-solution deposited xSiO2+(100-x)ZrO2 (with x

in percent) �lms, such as those shown in Fig. 4 or in Ref. 20, usually show two TO
bands (a strong one at 430-460 cm�1, a weaker one around 810-930 cm�1). A strong
signal around 1080 cm�1 can be attributed to residual `unconverted' SiO2, since, as
shown by the dashed line in the bottom spectrum of Fig. 4, its intensity decreases with
decreasing x. Averaging over the frequencies of the A2u and E

u
modes calculated for

bc tetragonal ZrSiO4 by Rignanese and co-workers36, the two strongest modes appear
to be at approximately 310 and 940 cm�1 (with corresponding LO wavenumbers at
410 and 1060 cm�1). The relative oscillator strengths are approximately in the ratio
73:27. The low-energy mode can be assigned to an oscillation of the Zr-O bond, the
high-energy mode to a vibration of the Zr-O-Si bond. Using the dielectric constants
reported in Ref. 36 and the index of refraction from Ref. 37, we obtain the values shown
in Table 1.

C. Results

Before presenting the results of our calculations including the full dielectric response
of the gate and substrate electron plasmas and their coupling with the optical modes
of the insulating layer, it is interesting to revisit Fig. 1. The results shown in this
�gure illustrate the e�ect of the polar �eld of the optical modes of the insulators on
the mobility of the electrons in the inversion layer, as determined by the parameters
discussed in the previous section and by the simple Wang-Mahan scattering strength
given by Eq. (1). Let's recall that in these calculations screening e�ects of the electrons
in the inversion layer are ignored, as well as screening by the (in�nitely far) gate.

SiO2 (dots, solid line) is moderately a�ected by the presence of the SO modes, as
a comparison with the curve calculated by neglecting them (open circles, dashed line)
reveals. As stated in our introductory section, the sti�ness of the Si-O bond results in
a high-frequency LO-mode which couples poorly with thermal electrons, and a mode
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Fig. 5: Calculated e�ective electron mobility in the inversion layer of MOS systems with various insula-
tors for the `SiO2-equivalent' thicknesses of 0.5 (left) and 5.0 nm (right). The Kubo-Greenwood expres-
sion for the mobility has been used by employing an anisotropic momentum relaxation time accounting
for scattering with bulk Si phonons, gate/insulator interface plasmons (SP), and surface-optical (SO)
insulator phonon. The e�ect of scattering with interface roughness at the substrate/insulator inter-
face has been included by �tting the experimental mobility for the SiO2-based system at an electron
density of 1013 cm�2 and using Matthiessen's rule. The plasma response of the depleted poly-Si gate
has been assumed to be given by the electron concentration at the gate/insulator interface determined
by a numerical solution of the Poisson equation. In both frames the `universal mobility curve' by
Takagi et al.

15 (thick solid line) and an empirical �t from Ref. 16 (thick dashed line) show the range of
experimental value. All data refer to systems with negligible scattering with dopants in the substrate
or charges in the insulator.

of lower frequency with a small coupling constant, Eq. (1). Thus, SO-modes have a
very small e�ect, of about 5%, on the electron mobility. AlN has a somewhat larger
dielectric constant (9.14) and in its wurtzite phase exhibits two almost degenerate
modes at energies still larger than the thermal temperature. As for SiO2, the electron
mobility is only moderately a�ected by the presence of these phonons. But as soon
as we consider materials with soft metal-oxygen bonds, the dielectric constant raises,
and so does also the Wang-Mahan coupling. In addition, modes of lower energy {
usually caused by oscillations of the oxygen ion in metal-O bonds { emerge and couple
very e�ectively with thermal electrons. The insulators with the highest � (ZrO2 and
HfO2) are negatively a�ected by the presence of low-energy modes and by the larger
electron/SO-phonon coupling constant, exhibiting the lowest mobility over the entire
range of electron sheet densities. The dependence of the mobility on n

s
is almost

completely dominated by scattering with the SO-modes and by the electronic form-
factor (overlap intergral) entering the expression for the relaxation rate associated with
this process (see Eq. (79) of Ref. 7). Al2O3 and ZrSiO4 are intermediate materials,
both as far as their mobility as well as their dielectric constant are concerned.

In Figs. 5 and 6 we now show the e�ective mobility accounting for the plasmon/TO-
phonon coupling, and for the screening (or anti-screening) e�ects of the gate and sub-
strate plasma. We show results relative to two SiO2-equivalent insulator thicknesses:
in�nitely-thick insulators, and 0.5 nm. In Fig. 5 we have employed the gate/insulator
surface electron concentration to determine the bulk plasma frequency of the gate, as
determined by the solution of the Poisson equaton. In Fig. 6, instead, we have employed
the Q-dependent average, < N

g
(Q) >, given by Eq. (36) above. We see a few major

di�erences between Fig. 1 on the one side, and Figs. 5 and 6 on the other: Screening
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Fig. 6: As in Fig. 5, but with the plasma response of the depleted poly-Si gate now computed using
a wave vector dependent average electron concentration in the depletion layer of the gate.

of the electron-SO scattering by the substrate electrons themselves results in a higher
mobility for ZrO2 and HfO2 at large ns: In these materials the mobility is dominated
by SO-scattering, the relevant SO-modes have relatively low energy, so their in
uence
can be e�ectively screened by 2D-plasmons of higher frequency. At lower sheet densi-
ties, however, the frequency of the interface excitations becomes larger than the plasma
frequency of the 2DEG in the substrate, and anti-screening takes e�ect, boosting the
scattering rate and lowering the mobility with respect to the unscreend value shown in
Fig. 1. At the smaller t

eq
, however, another interesting e�ect emerges: Screening by

the electrons in the gate. For suÆciently small electron sheet densities in the substrate,
n
s
� 5� 1012 cm�2, SiO2, AlN, Al2O3, and ZrSiO4 exhibit mobilities approaching the

value limited only by scattering with Si phonons. Even the mobilities of ZrO2 and HfO2

improve at these small densities, as a result of the competition between gate screening
and substrate anti-screening.

The di�erence between the results shown in Fig. 5 and those shown in Fig. 6 is
not qualitative, but only quantitative. Since the choice of a Q-dependent average
< N

g
(Q) > results in a larger gate plasma frequency over most of the interesting range

of values for Q, scattering with gate plasmons and the reduction of the SO-frequency
is less pronounced in the dispersions used in Fig. 6. This results in large e�ective
mobilities at large values of n

s
.

In Figs. 7 and 8 we show the dependence on the thickness of the insulator of the
various components of the mobility. Note in Fig. 7 that the SP-limited mobility is quite
large even for SiO2 and at the smallest teq investigated, because both of Landau damping
and of the large gate-plasma frequency at the small electron density in the inversion
layer (and so larger electron density in the gate) assumed in the �gure (n

s
= 1:54�1012

cm�2).7 Note also the screening e�ect of the gate plasma on the SO-limited mobility at
small t

eq
. On the contrary, at the larger electron density employed in in Fig. 8 (n

s
= 1013

cm�1) we see all of the e�ects which our previous discussions, here and in Ref. 7, had
anticipated: Scattering with (gate) surface plasmons is negligible (i.e., small enough not
to contribute signi�cantly to the total mobility) in all materials, except obviously SiO2.
On the contrary, this `advantage' of the high-� materials is unfortunately more than
compensated by a much stronger scattering with the TO-components of the interface
excitation. The SO-limited mobility decreases at small t

eq
{ as also evident in Fig. 5
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Fig. 7: Calculated components of the total mobility (�tot) at an electron sheet density in the substrate
of 1:54 � 1012 cm�2 as function of the `SiO2-equivalent' thickness teq for the SiO2- (left) and ZrO2-
based MOS structures (right). The curves labeled �SO1 and �SO2 refer to the components of the
mobility limited by scattering with the TO1 and TO2 phonon-like components of the interface modes.
The curve labeled �SP has been obtained from the total mobility and the SO-limited mobilities using
Matthiessen's rule. The total mobility accounts for scattering with bulk Si phonons, SO- and SP-
limited processes, but it does not account for scattering with interface roughness.

{ because of the anti-screening e�ect of a strongly depleted gate: When using the
gate/insulator interface electron concentration, the strongly depleted gate will exhibit
a lower plasma frequency, and so it will be unable to screen the SO-component of the
scattering �eld, actually anti-screening it. Finally, in Fig. 9 we show the dependence of
the SO-limited electron mobility on the static dielectric constant of the insulator. We
have chosen a relatively small value for the electron concentration, in order to minimize
the e�ect of scattering with surface roughness and with the gate-plasmon component of
the interface excitations. Thus, the SO-limited component of the mobility is the major
correction to the Si-phonon-limited component in the absense of Coulomb scattering
with dopants and insulator charges. Note how the mobility decreases monotonically
as � increases, thanks to the softer oxygen bonds. AlN is indeed the single exception,
thanks to the higher energy of the nitrogen-related optical phonons.

IV. EFFECT OF A SILICON DIOXIDE INTERFACIAL LAYER

In this �nal section we discuss the e�ect caused by the presence of a thin layer
of SiO2 between the Si substrate and the high-� dielectric on the electron mobility
in the Si inversion layer. In particular, we have in mind the bene�cial e�ect of the
interfacial layer in MOS systems based on materials (such as HfO2 or ZrO2) exhibiting
a large ionic polarizability, so that removing the high-� layer farther away from the
Si substrate should reduce the strong interaction with the SO-modes of the high-�
dielectric. Therefore, the formation of a thin SiO2 layer may be not only hard to avoid
during the growth/deposition/annealing of the high-� insulator, but also desirable.
To formulate more precisely our expectations, note that the length-scale relevant for
the calculation of the electron mobility is the Fermi wavelength of the 2DEG, �

F
�

K
�1
F

� n
�1=2
s

. Since the scattering potential decays with increasing distance z from
the high-� insulator as exp(�Qz), the e�ects of an SiO2 interfacial layer of thickness
t
ox

will be of 1. turning on the interaction with SiO2 SO-modes, which we have seen
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Fig. 8: As in Fig. 7, but at an electron density in the substrate of 1013 cm�2.

is quite small, and 2. reducing the scattering strength of the high-� SO-modes by a
factor � exp(�2K

F
t
ox
). At small electron sheet densities n

s
, the small value of the

Fermi wave vector means that unreasonably thick oxides are required in order to boost
the electron mobility. Not so at large n

s
(and so at large K

F
), in which case even a

0.5-1.0 nm-thick SiO2 layer can have a signi�cant bene�cial e�ect.
The analysis of the coupled plasmon-phonon modes of the full Si-gate/high-�/SiO2/Si

system is quite cumbersome. Following a trivial generalization of the procedure de-
scribed in Sec. II.A, the secular equation { whose solutions yield the dispersion of the
modes { takes the form of a 16-th degree algebraic equation in !

2. Even using the
long-wavelength approximations for the dielectric functions, the problem is extermely
cumbersome, the 16 positive solutions representing the dispersion of the 16 coupled
modes resulting from 2 TO-like modes in each insulating �lm, and 12 surface modes
(at large Q identi�able as groups of four modes mainly localized at each one of the
three interfaces).

Here our aim is just to investigate qualitatively the e�ects caused by the interfa-
cial layer. Thus, we reduce the complexity of the problem by making the following
approximations.

1. A comparison between Fig. 1 and Figs. 5 or 6 shows that the `in�nitely-thick in-
sulator limit' captures the most important qualitative (and even quantitative) as-
pects of the problem. Thus, it seems appropriate to consider the simpler in�nitely-
thick-high-�/SiO2/Si system and ignore electronic screening e�ects. Thus, the
dispersion of the modes is given by the solutions of the secular equation

�
ox
(!)2 + �

ox
(!)[�

�
(!) + �

1

Si
] cotanh(Qt

ox
) + �

ox
(!)�1

Si
= 0 : (41)

This is exactly Eq. (6) with the role of the gate now played by the high-� dielectric
and with �

s
(Q; !) replaced by �

1

Si
.

2. Low-energy SO modes are most important in determining the electron mobility.
Thus, we approximate the response of the two insulators considering only their
low-energy TO phonons and employ dielectric functions of the form:

�
ox
(!) = �

i

ox


2
LO
� !

2


2
TO
� !2

; �
�
(!) = �

i

�

!
2
LO
� !

2

!2
TO
� !2

(42)
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Fig. 9: Calculated SO-limited component of the electron mobility in the inversion layer of MOS
systems with various insulators at an electron density of 1:54� 1012 cm�2 as a function of the static
dielectric constant of the insulator.

where 

LO

= (�0
ox
=�

i

ox
)1=2


TO
and !

LO
= (�0

�
=�

i

�
)1=2!

TO
are the longitudinal fre-

quencies of the low-energy optical modes of the SiO2 and high-� layers, respec-
tively.

3. Since we are most interested in understanding how `low-mobility' materials be-
have in the presence of the interfacial oxide layer, and since these materials usually
exhibit very soft optical modes, we typically have !

TO
<< 


TO
, as seen in Ta-

ble 1 for HfO2 and ZrO2. Therefore, the SiO2 and high-� modes become largely
decoupled. In the fully-decoupled limit, excellent approximations of the three
solutions of Eq. (41) are given by:
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where 2�
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)]2�4�1
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�
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1=2. The

solution !
(�)
Q

represents the SO-mode associated with the TO phonon of the high-

� �lm. For small Qt
ox
the solution !

(+)
Q

approaches 

TO

, thus being essentially a
bulk SiO2 TO-mode, while in the limit of largeQtox it approaches the frequency of
the SiO2 mode at the `far' high-�/SiO2 interface. In either limit, this mode couples
only weakly with the electrons in the inversion layer and { while retaining it {

could safely be neglected, similarly to the modes labeled !
(5)
Q

and !
(6)
Q

in Sec. II.A.
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Fig. 10: (a) Calculated enhancement of the SO-limited mobility in the inversion layer of a
HfO2/SiO2/Si system as a function of thickness of the interfacial SiO2 layer for the three indicated
values of the electron concentration in the inversion layer. An in�nitely thick HfO2 layer and only the
low-energy TO-modes in the insulators have been consider ed. For a given thickness of the interfacial
oxide, the enhancement is larger at large electron densities, since the length-scale is set by the Fermi
wavelength of the two-dimensional electron gas. (b) Calculated total electron mobility (including scat-
tering with Si phonons and interfacial roughness), as in (a). The horizontal lines at the far right are
the asymptotic limits of in�nite oxide thickness (i.e., the mobility for the `pure' Si/SiO2 interface).
As in (a), in order to approach the mobility at the Si/SiO2 interface, a thicker SiO2 interfacial layer
is required at lower electron sheet density.

Finally, the solution !
(�)
Q

is the SO-mode at the Si/SiO2 interface associated with

the SiO2 TO-mode. All modes, !
(�)
Q

and !
(�)
Q

, exhibit a very weak dependence
on Q. We shall ignore their dispersion and employ their short-wavelength limits,
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)]1=2. The scattering strength associated with the

high-� mode can be obtained as in Sec. II.B:
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where the last expression is evaluated for ! = !
(�)
Q
. Similarly, for the scattering

strength of the modes !
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we get:
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where �
�
(!) and �

ox
(!) are evaluated at ! = !

(�)
Q

. Note that, as expected,

�(�)(Q) � e
�2Qtox while �(�)(Q)! 0 as Qt

ox
! 0.

4. Finally, we consider only one subband in the inversion layer. Therefore, the
electron mobility can be obtained using Eqns. (68) and (85) of Ref. 7 (the latter
equation unfortunately being mistyped in that reference: the factor b6e�2Qtox in
the integrand should be replaced by unity), by substituting jA

Q
j
2 with [�(�)(Q)+

�(+)(Q) + �(�)(Q)]=Q in Eq. (85).

We show in Fig. 10 our results for the HfO2/SiO2/Si system, similar results having been
obtained also for the ZrO2/SiO2/Si system. The top frame shows the enhancement of
the SO-limited mobility resulting from the presence of the SiO2 interfacial layer, i.e., the
ratio between the SO-limited mobility calculated for the HfO2/SiO2/Si system with an
SiO2 layer of thickness tox, and the mobility calculated using the same approximations
for the `pure' in�nitely-thick-HfO2/Si system. As expected, a 1.0 nm-thick interfacial
SiO2 layer boosts the SO-limited mobility by a factor of more than 4 at the largest
electron density considered (1013 cm�2), but an SiO2 layer as thick as 2.0 nm is required
to obtain the same enhancement at the lowest density (1012 cm�2). The bottom frame
illustrates the dependence of the overall mobility (accounting also for scattering with
Si phonons and surface roughness, included empirically using Matthiessen's rule). The
horizontal lines at the far right indicated the asymptotic limit of an in�nitely thick
SiO2 layer. Once more, at the largest density the mobility of the `pure' in�nitely-thick-
SiO2/Si system is recovered quickly even for thin interfacial layer. Not so at the lowest
density: Even in the presence of a 1.0 nm-thick interfacial oxide layer, we remain almost
a factor of 2 below the `desired' SiO2/Si limit.

V. DISCUSSION AND CONCLUSIONS

The mobilities shown in Figs. 5 and 6 show a clear trend, emphasized in Fig. 9. It
appears that the price one must pay for a higher � is a reduced electron mobility. Among
the materials we have investigated, metal-oxides appear to be the worst, because of the
soft modes caused by the oscillation of the oxygen ions, while AlN and, to some extent
ZrSiO4, show signi�cant promise, albeit with the caveats we shall mention below.

Several sources of uncertainty a�ect the quantitative accuracy of our results: First
and foremost is the choice of parameters for the insulators. This concerns both the
overall quality of the parameters listed in Table 1 for `ideal' materials, as well as their
applicability to `real' insulators, almost invariably of a `non-ideal' composition and
structure. This has been already discussed above and will be emphasized again in the
following paragraph. Second, the di�erence between the results shown in Fig. (5) and
those shown in Fig. (6) clearly points at the importance of knowing accurately the
electron density in the depletion layer of the gate. Again, this source of uncertainty
a�ects not only the `ideal' calculations we have performed, but also the `real world'
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complications we should expect: The poly-crystalline structure of the Si gate, for ex-
ample, will undoubtely result in an electron concentration exibiting inhomogeneities
not only in the z-direction, but also on the plane of the interface. Dopant segregation
at grain boundaries is another possible cause of inhomogeneities. Nevertheless, our
results stress at least qualititatively (but, hopefully, also quantitatively) the major role
played by the gate both in screening the electron-SO interaction, as well as in triggering
the gate/substrate Coulomb drag studied in Ref. 7. In particular, we should note that
the use of metal gates should be bene�cial in both cases, by inducing a more complete
screening of the surface optical modes and by reducing the plasmon-mediated (long-
range) component of the Coulomb drag. Finally, we have approximated the potential in
the inversion layer as a triangular-well. This approximation is likely to be satisfactory
at the large electron sheet densities of interest, but it will cause additional inaccuracies
in the opposite limit of low n

s
.

It would be interesting to support the results of our calculation with experimental
evidence. Unfortunately, we have already alluded to the many experimental and pro-
cessing complications which hamper a fair comparison. One could claim that, at least at
present, the use of high-� insulators has indeed resulted in disappointing performance
in those few instances in which high-�-based MOS transistors have been made in order
to measure e�ective electron mobilities. Ragnarsson et al.38 have reported a peak mo-
bility of 266 cm2/Vs for nMOSFET fabricated using aluminum gates and Al2O3 �lms of
`equivalent' thickness t

eq
� 2.9 nm. Similarly, Qi and co-workers39 have measured low

mobilities when using 1.6 nm-thick ZrSiO4 and 2.5 nm-thick ZrO2 �lms, the former ap-
pearing to be about 40% better. Even lower values have been observed for other ZrSiO4

�lms31, and even for AlN �lms40. While some of these observations seem to agree quite
nicely with our results (AlN being an exception we shall discuss shortly), it should be
kept in mind that our calculations assume an ideal scenario: Perfectly stoichiometric
�lms with no charges, electron traps (and the associated hysteresis) or interfacial layers.
On the contrary, the structure or even the composition of the insulator itself is often
unknown with the required accuracy. Charging e�ects, almost always seen, make it for
a diÆcult, often impossible, accurate determination of the mobility (since an accurate
determination of n

s
becomes a hard task). Moreover, interfacial SiO2 (or Si3N4) layers

are almost always present. On the one hand this changes substantially the theoretical
picture, with the additional complication arising from the coupling of the optical modes
of two insulator and the presence of an additional interface (in Sec. IV we estimate
these e�ects in a simpli�ed situation). On the other hand, the structural property of
the interface, and not SO scattering, may dominate the experimental situation. This is
probably the case for AlN-based MOSFETs, in which the Si3N4 interfacial layer, with
the well-known associated electron traps and instabilities, may completely mask the
e�ects we are trying to observe. In conclusion, it is fair to say that, at least at present,
we only have `suggestive' and 'circumstantial' experimental evidence supporting our
results. But no quantitative conclusions should be drawn.
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