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Introduction 
Today’s information technology (IT) departments are besieged with uncertainty. New applications are 

deployed, but their resource demands are unknown. Businesses offer promotional discounts, but the volume of 
customer responses is uncertain. Traditionally, these situations have been addressed by over-provisioning IT 
resources and/or manual intervention to adjust for resource imbalances. Unfortunately, both approaches are 
undesirable. The first is costly in terms of equipment, licenses, electricity, etc.; the second requires expert 
operators who are in short supply and costly as well. This paper discusses an approach we have developed to 
react rapidly to workload surges so as to preserve service level objectives in a cost effective way. 

Examples of subscriber overloads abound. On September 11, 2001, CNN (along with other news 
agencies) saw traffic double every seven minutes to a total of twenty times the normal volume until the web site 
was overwhelmed (Bill Lefebvre, CNN Internet Technologies, 2001 LISA Invited talk “Facing a world crisis”). 
The Victoria’s Secret web site had a similar experience as a result of an advertising campaign during the 1999 
Super Bowl (http://www.cnn.com/TECH/computing/9902/05/vicweb.idg/). Others have noted that "sites such as 
Encyclopaedia Britannica, egg.com, and H&R Block have suffered massive overload from subscribers" 
(http://www.zeus.com/library/articles/webvital.htm). 

Many systems have been developed to adapt to changes in workload, but not to automate surge 
protection. The ThinkProvision technology of Think Dynamics (http://www.thinkdynamics.com), HP’s Utility 
Data Center (UDC) (http://www.hp.com), and Sun’s N1 (http//:www.sun.com) initiatives provide convenient 
ways for operators to move resources between systems. However, no automation is provided to determine when 
resources are moved. The MVS workload manager (Aman et al., “Adaptive algorithms for managing a 
distributed data processing workload,” IBM Systems Journa l, 1997, 36) incorporates algorithms for adjusting 
resource allocations to achieve service level objectives. These algorithms assume that actions take effect 
immediately (e.g., changing CPU priorities) and so do not address actions with substantial startup delays, such 
as server provisioning in response to workload surges. The DynamicIT technology of ProvisionSoft 
(http://www.provisionsoft.com) uses long-term forecasts to anticipate well-understood time-of-day effects. 
However, it does not address unexpected workload surges. Indeed, Chandra et al. (“Impact of Space-Time 
Multiplexing Granularity on Provisioning in On-Demand Data Centers”, TR03-3, Computer Science 
Department, University of Mass.) report that there is considerable value in rapidly adjusting resource 
allocations. 

The foregoing motivates our development of  a system that automates the response to workload surges. 
At the core of this system employs three technologies: adaptive forecasting, on- line capacity planning, and rapid 
configuration management. Adaptive forecasting detects and anticipates the progression of surges. On-line 
capacity planning determines the resources needed to defend service levels. Rapid configuration management 
addresses the resource requirements by tuning, provisioning, and/or workload throttling to adapt to the onset 
and subsiding of unexpected surges. 
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Architecture and Algorithms 
The system is structured into three layers as shown in Figure 1. The Application layer provides the 

business function. In our prototype, a two-tier web application is used that consists of one or more application 
servers and a database server. In general, we require that  the application layer scale horizontally. That is, 
resources may be added and removed without requiring a system shutdown (e.g., by adding application servers). 
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Figure 1: Architectural layers 

The Deployment Manager provides a generic interface for monitoring and configuring the application 
layer. In our current implementation, the data monitored are transaction rates and response times, and 
configuration management focuses on provisioning (specifically the addition and removal of application 
servers). The architecture assumes that for each resource type there is a provisioning function that manages a 
resource pool that can be shared among applications. Longer-term configuration management will address not 
only resource provisioning but also adjustments to configuration parameters (e.g., buffer pool sizes) and setting 
admission control parameters. 

The Controller is responsible for maintaining service levels by determining the state of the application 
layer and initiating appropriate actions if a service level objective (SLO) violation is anticipated or if SLOs can 
be maintained in a more cost-effective way. Figure 2 depicts the information and control flow within the 
Controller. The forecaster generates workload forecasts. The capacity planner determines the resources needed 
to maintain service level compliance for the forecasted workload. The decision logic manages the information 
flow and determines the resource (or other) adjustments needed.  
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Figure 2: Control and information flow 

 
The system operates based on six time intervals. 

1. The measurement interval (M) is the interval between collecting measurements from the application. This 
should be long enough to moderate measurement variability and reduce collection overheads but short 
enough to respond to workload changes. 

2. The control period ( P ) is the interval between executions of the control engine. Clearly, P should be no 
smaller than M,  but it may be larger if the overhead of control is high. 

3. The startup delay (S) is the time required to have an action executed. In our prototype, this relates to the 
time to provision or de-provision a server for an application. Data gathered during a startup interval is 
suspect since it includes transient effects that are indistinguishable from noise. As a result, the control 
engine is dormant during startup intervals.  

4. The forecast horizon (H) is the time into the future for which workload demands are predicted. The forecast 
horizon must be long enough to anticipate the action to be taken, but no longer since forecast accuracy 
decreases as H increases. The forecast horizon should be an integral multiple of the control period.  

5. The overflow interval (O ) is the time between occurrences of  situations in which resources need to be 
adjusted to avoid violating a service level objective. The control engine can respond if O is no larger than 
P+2S. (The doubling is needed since the Controller is not active during the startup delay.) 

6. The underflow interval (U) is the time until the service level objective could be satisfied with fewer 
resources. As with the overflow interval, the Controller can handle a U no smaller than P+2S. 

We conclude that H should be close to P+2S. The values of P and S depend on the specifics of the application 
layer. In our prototype, the Provisioner uses the WAS 5.0 cellular cluster and its AddNode command to 
incorporate the new server into the cluster. This results in an S that is approximately 20 seconds. After some 
experimentation, we found that setting M and P to 10 seconds works well. Incorporating a 10 second “safety 
margin”, we set H to 60 seconds. 

The capacity planner inputs workload forecasts and the SLO and outputs the resource requirements 
(which in our prototype is the number of application servers). For the capacity planner, we incorporated an IBM 
internal tool that has been widely used in service engagements over the last two years. The capacity planner 
provides both performance estimates and the ability to determine resource requirements given the workload and 
the SLO. 
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The forecaster, which provides the workload predictions used by the capacity planner, has been 
challenging to develop. While a variety of forecasting techniques exist, switching between long-term and short-
term forecasts in a robust way requires some invention. Our approach employs Box-Jenkins ARIMA 
(autoregressive, integrated, moving average) models and dynamically adjusts the model order (the number of 
autoregressive terms) based on the stability of the estimates. The latter is determined by checking if the poles of 
the transfer function lie within the unit circle (a requirement for stability in discrete time systems). This 
approach simplifies matters in that we do not need to eliminate surges from the historical data. However, it also 
means that the training data used by the long-term forecaster includes the unexpected surges.  In some cases, 
this results in the prediction of phantom surges. This problem led to further refinements. 
 

Results 
Figures 3-5 show the results of running our autonomic system for a workload in which simulated users 

request various business operations, and there are occasional workload surges caused by a large influx of 
simulated users. The service level objective is that response time should be under 2 seconds.  

Figure 3 plots the actual (blue or darker line) and forecast (lighter or green line) business operations per 
second (BOPS), the metric used to characterize workload. We see that during the non-surge period, BOPS 
hovers around 20. When a surge begins (e.g., 9:37, 9:49), BOPS increase rapidly to a peak of 120, or a factor of 
6 over the non-surge period. Forecast BOPS (the green or lighter line) closely approximates the actual BOPS 
during periods of normal workload, such as 9:30 to 9:35. Initially, the forecast underestimates the actual BOPS  
because the forecast is based on non-surge data. After a minute, the short-term forecaster is used, and accuracy 
improves considerably. However, forecasts made during surges are not nearly as accurate as those during the 
non-surge periods. 

  
Figure 3: Predicted and Actual Business Operations Per Second (BOPS) 

Figure 4 shows the changes of the state and the number of application servers in response to the actual 
and forecast demands on the system. When a rapid increase in load (and associated increase in response time) is 
detected at 9:37, a server is added (the leading dark or blue section). A second server is added at 9:38 as the 
short-term forecaster anticipates the progression of the surge. As the surge subsides around 9:42, servers are 
released (the trailing red or less dark section). 
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Figure 4: Number of Application Servers 

Figure 5 depicts the effect of these actions on response times. We see an initial bump in response time 
around 9:37. In part, this is due to the increased load that cannot be handled until the server has completed its 
startup phase. But there is also some delay introduced by the action of adding a server. A similar response time 
bump occurs at 9:39 as a second new server comes on- line. These actions are able to contain response times 
within the SLO. We note that because of the stochastics of the system, different surges result in different control 
actions and different responses, as evidenced by the response time peak at 9:50 followed by the much smaller 
response time bumps. 

 
Figure 5: Response Time of Application 

Conclusions 
The autonomic system we describe integrates three technologies that provide a cost effective approach 

to handling unexpected workload surges. Adaptive forecasting provides a way to anticipate the trajectory of 
workload demands once a surge is detected. On-line capacity planning determines the resources required to 
maintain a service level objective (SLO) based on the anticipated workload. Rapid configuration management 
addresses the resource requirements by tuning, provisioning, and/or workload throttling to adapt to the onset 
and subsiding of unexpected surges. 

Our future work will address the handling of multiple workloads, incorporating tuning as well as 
provisioning actions, and consider remote resources that are accessed through Grid services. 


