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Abstract

This chapter presents some of the analytical models and tools that we have developed to support
IBM business units in their effort to manage inventory and improve value chain operations. In IBM’s
businesses, inventory-driven costs, which include price protection, financing, inventory write-downs
(price erosion), and inventory write-offs (obsolescence) are tremendous cost drivers outweighing
all others in terms of impact on business performance. The complexity of the end-to-end value
chain makes it a serious challenge to determine where to hold safety stock to minimize inventory
costs, and provide a committed level of service to the final customer. We describe the successful
development and applications of analytical models for finding the optimal placement of safety stocks
in multi-echelon value chains that are subject to forecast, lead time, and attach-rate uncertainty. We
focus on three types of value chain architecture: the complex configured hardware value chains, the
configure-to-order value chains, and the semiconductor value chains.

�Research undertaken while an academic visitor at IBM Research Division, T.J. Watson Research Center.



1 Introduction and Overview

In the computer industry we see dramatic reductions in the price of computers, driven by advances in

technology and competitive forces pushing towards lower margins. Product life cycles are collapsing

to months rather than years, giving companies less time to recover product development costs and in-

creasing the pressure to rapidly and flawlessly commercialize new technology. We are constantly being

challenged to improve on productivity throughout the enterprise. We continue reengineering business

processes and eliminating steps, and over the past several years our attention has increasingly turned

toward managing the value chain.

IBM and its partners and competitors seek operational and financial performance improvement

through reduced product development cycles, operational efficiency, and better customer responsive-

ness. This quest for excellence has become significantly more complex as enterprises no longer com-

pete as stand-alone entities. The success is achieved through value chain optimization and collaboration

among all value chain participants, from OEM’s, Tier-1’s, and lower tier suppliers to distributors, trading

partners, and retailers. Deploying common business processes across distinct operating entities allows

participants to share decision-making, workflows, and capabilities in pursuit of lower costs and greater

efficiency.

A significant challenge, and opportunity, for IBM is that we have one of the most vertically inte-

grated supply chains in the industry. We manufacture most major assemblies in our computers. As a

result, IBM’s integrated supply chain is even more complex and difficult to manage. Our supply chain

is under constant pressure to move towards the assembly of components from a vast array of outside

suppliers, and to sell components we make to the marketplace. More and more, we deliver components

to internal business units and also sell them to competitors, some who manage their supply chains and

assembly operations to deliver higher levels of profitability than IBM derives from the same markets.

Clearly, such an environment makes managing the extended supply chain critical to our success.

The business environment in the electronics industry, which is characterized by volatility and veloc-

ity, requires tools and applications that can recommend timely supply planning decisions that optimize

profits and balance business risk. Standard enterprise applications such as enterprise resource planning

(ERP), customer relationship management (CRM), and supply chain management (SCM) systems are

effective in managing hundreds of product and service offerings, but they often lack in high-quality

decision making.

In this chapter, we describe analytical models and tools that we have developed to support IBM

business units in their effort to manage inventory and improve value chain operations. In IBM’s busi-

nesses, inventory-driven costs, which include price protection, financing, inventory write-downs (price
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erosion), and inventory write-offs (obsolescence) are tremendous cost drivers outweighing all others

in terms of impact on business performance. The complexity of the end-to-end value chain makes it

difficult to determine where to hold safety stock to minimize inventory costs, and provide a committed

level of service to the final customer. We developed analytical optimization models for finding the opti-

mal placement of safety stocks in multi-echelon value chains that are subject to forecast, lead time, and

attach-rate uncertainty. We will describe the successful application of these analytical models by cross-

functional teams within IBM, our suppliers, and our customers. We also discuss how the teams have

used the models to allocate component inventories, reduce finished goods inventories, manage product

variety, and improve forecast accuracy.

The rest of the chapter is organized as follows. We start with an overview in section 2 of different

value chain architectures, focusing on complex configured hardware value chains, configure-to- order

value chains, and semiconductor value chains, with details of the modeling and applications elaborated

in the next three sections. In section 3, we introduce a multi-echelon inventory model for complex

configured products, and discuss its application in IBM’s hard disk drive supply chain. In section 4, we

develop an optimization algorithm for safety stock placement in a configure-to-order supply chain with

high-volume, high variety products, and describe its application at IBM’s personal computer division. In

section 5, we describe an inventory model for a semiconductor supply chain, and present our application

experience at a large US semiconductor manufacturer. We conclude with a summary in section 6.

A very brief note on related readings: More details of the three application sections can be found

in [4, 5] for section 3.1, [3] for section 4, and [2] for section 5. The two edited volumes, [6, 7], collect

many recent research works on various aspects of supply chain management. Background materials in

inventory theory can be found in [8].

2 High-Technology Value Chains

In this section,we describes three examples of value chain applications in high-technology industries.

For each application, we identify end-to-end management processes which enable their business objec-

tives.

� Complex Configured Hardware Value Chains. Standard part number based product offerings with

complex bills of materials. Fulfilling customer orders through vendor-managed inventory hubs

outside of the customer’s manufacturing plant.

� Configure-to-Order Value Chains. Customizing products and solutions quickly to customer re-

quirements. Developing configure-to-order capabilities for direct selling through the Internet.
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� Semiconductor Value Chains. Implementing postponement strategies to defer customer-specific

configurations until as late as possible. Determining the right safety stock policies at the inventory

postponement points.

2.1 Complex Configured Hardware Value Chains

Complex configured hardware value chains support part number based components and products with

complex bills-of-materials. Customer orders are typically submitted through enterprise web sites for

large enterprise customers, business-to-business portals for business partners, and public websites for

consumers and small and medium business customers. An Advanced Planning System (APS) appli-

cations reconcile customer forecasts with existing supply, and send allocations to a fulfillment system.

The fulfillment system schedules orders, calculates estimated customer arrival dates, and sends manu-

facturing orders to a floor control system to manage the assembly of products.

The manufacturing process of hard disk drives (HDDs) is a typical example of a complex configured

hardware value chain. IBM’s Storage Systems Division, now Hitachi Global Technologies, produces

disk drives for the OEM market, as well as supplies internal IBM business units. The supply chain for

HDDs is complex due both to the vertically integrated nature of IBM and the customers’ requirement

for Just-In-Time (JIT) inventory hubs, where IBM inventory is stocked outside of a customer’s factory.

supplier 1

supplier 2

supplier n

plant 1

plant 2

plant 3

JIT hub 1

JIT hub 2

JIT hub m

Logistics
Center

OEM
customer 1

OEM
customer 2

OEM
customer m

non OEM
customer 1

non OEM
customer 2

non OEM
customer k

Figure 1: Example of a Complex Configured Hardware Value Chain.

HDDs are sold to OEM customers, distributors, and used in other IBM products such as personal
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computers and servers. Two of three product segments, mobile and performance HDDs, are manufac-

tured in Thailand and Hungary, and server HDDs are manufactured in Singapore. In addition to the

JIT hubs, the distribution network includes Logistics Centers and internal IBM direct shipments as il-

lustrated in Figure 1. When HDD’s are in excess supply at one hub but needed at another customer’s

hub, they can be reconfigured at a Logistics Center and then redirected. While reconfiguration occurs

infrequently, it is fairly common to need to reship an HDD for a given customer from one hub to another.

HDDs are assembled from non-configured ”vanilla” drives (called ISOs) at the manufacturing plants,

and shipped to a customer JIT hub fully configured for that customer. When the JIT hub inventory drops

below a reorder point, a pull signal is sent to the plant to configure the ISO’s for that hub. The pull

strategy requires forecasting to determine safety stock levels that protect against variations in demand.

Because of limited production capacity, the plants typically overproduce (versus demand) early in

the quarter to meet peak demands towards the end of the quarter. This demand skew is much more

prevalent in Logistics Centers than it is for JIT hubs. Because the configuration process is relatively

simple, and because demand for the vanilla drives is easier to predict than HDD demand, it is beneficial

to delay customization of an ISO as long as possible.

2.2 Configure-To-Order Value Chains

In computer assembly value chains, products are offered as either fixed configurations or open configura-

tions. Fixed configurations have an individual material code called machine-type/model that is referred

to in customer orders. Open configurations, in contrast, can be fully configured by the customer. Here,

the customer can navigate from a brand, series, or family via a web-based configurator, which shows

the options compatible with the selected machine. The configurator lets the customer choose from a

selection of processors, hard disk drives, network access cards, graphics cards, and memory sizes. Only

the base unit and standard components (called building blocks) have individual material codes. Whereas

fixed configurations are normally made-to-stock, open configurations are assembled-to-order after the

customer order is received (configure-to-order, CTO). Figure 2 illustrates a configure-to-order supply

chain.

The purpose of forecasting in computer assembly value chains is to produce an accurate component

forecast. For fixed configurations, the bills-of-materials of the fixed configurations are simply exploded

to component level. For open configurations, component forecasts are derived from a collaborative fore-

cast for a customer segment (or product family), together with attach-rates that define the distribution

of components within the customer segment (or product family). As the assembly lead time is much

shorter than the component lead time, the component forecast is an important input into procurement de-

cisions. The focus of inventory management in CTO value chains is shifting from configured machines
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towards building blocks, which are replenished based on the component forecast.

Customer 1
Configure-to-Order

ComponentsSuppliers

Pull

Manufacturing

End
products

order
placement

shipment

Customer 2

Customer 3

Customer n

Figure 2: Example of a Configure-to-Order Value Chain.

The configure-to-order paradigm has been widely accepted in the electronics industry. Open config-

urations offer higher product variety, and hence often results in broader market coverage and increased

demand volume. Postponing the final assembly in configure-to-order operations provides flexibility in

terms of product variety, and achieves resource pooling in terms of maximizing the usage of component

inventory. CTO is an ideal business model for mass customization, and provides quick response time to

order fulfillment.

2.3 Semiconductor Value Chains

The semiconductor industry has one of the most complex manufacturing processes and value chains.

Equipment necessary for production is extremely capital expensive and difficult to install. The semi-

conductor industry is at the beginning of a complex network of value chains, which often leads to

tremendous demand fluctuations and high uncertainties of demand forecasts. As a result, many semi-

conductor companies have outsourced key value chain activities to electronic manufacturing service

providers (EMS) to focus on core competencies, such as product design, inventory management, order

fulfillment, and utilizing production capacity efficiently.

The production process of semiconductors consists of two stages called front-end and back-end that

are separated by a die bank. The front-end consists of wafer fabrication and wafer testing, whereas

the back-end performs die bonding, assembly, and module testing. The production process is often

split over several locations in different geographies, e.g. front-end facilities in SOuth-East Asia, and

6



back-end facilities in Europe and North America. The production lead time of the front-end is eight

to twelve weeks. After testing, wafers are sliced into individual chips that are subsequently used to

produce different finished goods. The tested chips are stored in a die bank. The back-end operates in

a make-to-stock or make-to-order mode. In the assembly stage, chips supplied from the die bank are

connected to a platform, bonded, and sealed in plastic. The finished modules are shipped to a customer

or stored in finished goods inventory. The lead time of the back-end is four to six weeks.

Fabrication/Sort
(Front-End)

Assembly/Test
(Back-End)

Die Bank Finished
Goods

wafers/die
(100’s of parts)

devices
(1000’s of parts)

Figure 3: Example of a Semiconductor Value Chain.

The customers of semiconductor manufacturers are usually large resellers or OEM’s that can have

considerable influence. In this industry, high level of customer serviceability is critical since although

an integrated circuit may only be one component of hundreds in a customer’s product, a late delivery

may shutdown a production line.

3 A Multi-Echelon Inventory Model for Complex Configured Hardware
Value Chains

A key driver to achieve supply chain optimization is to manage and reduce uncertainty, and to maintain

flexibility so as to adapt to market changes quickly. How much inventory budget is needed to achieve

good customer serviceability? How much inventory do we need at which locations to meet required

service levels? What is the effect of changes in supplier lead times, or supplier practices? What is the

effect on required inventory levels, of changes to where and how we assemble products? IBM’s Asset

Management Tool (AMT) was designed to answer these questions.
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3.1 AMT: The Optimization Engine

The optimization engine performs AMT’s main function: quantifing the trade-offs between customer

service levels and the inventory in the supply network. The objective is to determine the safety stock

for each product at each location in the supply chain to minimize total inventory investment. Below we

present an overview of this optimization model, referring the complete technical details to [4].

The supply chain is modeled as a multi-echelon network. Each stocking location in the network is

treated as a queuing system that incorporates an inventory control policy: the base-stock control, with

the base-stock levels being decision variables. To analyze such a network, we develop an approach

based on decomposition. The key idea is to analyze each stocking location in the network individually,

and to capture the interactions between different stocking locations through theiractual lead times.

We model each stocking location by a queue with batch Poisson arrivals, and infinite servers with

service times following general distributions, and this model is denoted asMQ=G=1 in queueing no-

tation. To do so, we need to first specify the arrival and the service processes. The arrival process

at each location is obtained by applying the demand explosion technique in standard MRP (materials

requirement planning) to the product structure. The batch Poisson arrival process has three main param-

eters: the arrival rate, and the mean and the variance of the batch size. Therefore, it allows us to handle

many forms of demand data using a three-parameter fit. For instance, demand in a certain period can

be characterized by its min, max and the most likely value. The service time is the actual lead time at

each stocking location. Figure 4 illustrates how the actual leadtime,~Li is calculated from the nominal

leadtime (e.g., production or transportation time),Li, along with the fill rate,fj, of locationi’s supplier

j. In particular, when the supplier has a stockout, which happens with probability1 � fj, the actual

leadtime ati has an additional delay of�j, which is the time required forj to produce the next unit to

supplyi’s order. In our model, the estimation of�j is derived from a Markov chain analysis.

With the arrival and service processes in place, we can analyze the queue and derive performance

measures such as inventory, backorder, fill rates, and customer service levels. The number of jobs in the

MQ=G=1 queuei,Xi, is the key quantity in our analysis. The on-hand inventoryIi and the backorder

levelBi relate toXi through the following simply formulas:

Ii = [Ri �Xi]
+; and Bi = [Xi �Ri]

+; (1)

whereRi is the base-stock level, and[x]+ := maxfx; 0g.

Through the equations in (1), the distributions of bothIi andBi can be related to the distribution

of Xi. To alleviate the computational burden in large-scale applications, we choose to derive the mean

and the variance ofXi, and approximate it with a normal distribution. whereZ denotes the standard
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Figure 4: Actual lead times.

normal variate. Both the mean and the standard deviation of Xi, denoted �i and �i, depend on the actual

lead time (explained above, and used as the service time in the queue model), and can be derived from

queueing analysis (refer to [4]). Then, we write:

Xi = �i + �iZ; (2)

Similarly, we can express the base-stock level as follows:

Ri = �i + ki�i; (3)

where ki is the so-called safety factor. This way, we turn the decision variables from the base-stock

levels to the safety factors. Also note that the base-stock level consists of two parts: �i, the work-in-

process, or pipeline inventory; and ki�i, the safety stock.

The objective of the optimization model is to minimize the total inventory capital: At each stocking

location, there are two types of inventory: the finished goods, or on-hand inventory, and the pipeline

inventory. The expected pipeline inventory is simply �i; the expected on-hand inventory follows from

combining (2) and (3) with (1):

E(Ii) = E[Ri �Xi]
+ = �iE[ki � Z]+:

Let

H(x) := E[x� Z]+ =

Z x

�1

(x� z)�(z)dz = x�(x) + �(x); (4)
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where � and � denoting, respectively, the density function and the distribution function of Z . Then,

E(Ii) = �iH(ki): (5)

Hence, the objective of our optimization model is

min
k

C(k) :=
X
i2S

[ĉi�i + ci�iH(ki)]: (6)

Here S is the set of all stores; ci is the unit cost of finished goods inventory at store i; and ĉi is the unit

cost of pipeline inventory,

ĉi :=
1

2
(ci +

X
j2S>i

cjuji);

where S>i is the set of upstream stores of i, and uji is the usage count, the number of units in store j

that is needed to make each unit in store i.

The constraints of the optimization model are the required customer service levels. They are repre-

sented as the probability (e.g., 95% or 99%) that customer orders are filled within a given due date. We

first derive the required fill rate for each end product so as to meet the required customer service level.

This fill rate relates to the actual lead times of all upstream stocking locations, via the BOM structure

of the network. Therefore, our model captures the interdependence at different stocking locations, in

particular the effect of base-stock levels and fill rates at each stocking location on the service level of

the end product.

To allow fast execution of the optimization, we derive analytical gradient estimates in closed forms.

Consider stocking location j, or the j-th term in the objective function. First, we derive the partial

derivative w.r.t. kj (the safety factor) for stocking location j. For each immediate downstream stocking

location, the partial derivative involves the mean and variance of the number of arrivals over the service

time (i.e., the actual leadtime) in the queue model. For stocking locations further downstream, we simply

ignore their derivatives, since their actual lead times will be weighted by multiples of no-fill rates, which

become negligible as the stocking locations become farther downstream.

This way, we have a constrained non-linear optimization model, with the gradients explicitly de-

rived. A conjugate gradient search procedure is used to generate the optimal solution. As the objective

function has a quite rugged surface, we improve upon local minima by following several heuristic pro-

cedures. For instance, evaluating the objective function at a reasonably large number of randomly

generated points, and selecting the best point to start the gradient search.

3.2 Case Study: IBM’s Hard Disk Drive Value Chain

In late 1997, many of IBM’s HDD customers had adopted the practice of vendor-managed inventory,

which required IBM to establish Just-In-Time (JIT) inventory hubs nearby the customer’s plants. The
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inventory in the JIT hubs was managed and owned by IBM until it was pulled from the hub by the

customer.

As more and more JIT hubs were established and an increasing proportion of HDD inventory flowed

through the hubs, it became more important to minimize the amount of product in the hubs. However, it

was unclear what the impact of delayed customization would be on the supply chain and, in particular,

on inventory levels and customer serviceability. It was also unclear what levels of safety stock, and

therefore what reorder points were needed in the JIT hubs to fulfill customer service requirements.

IBM’s Corporate Headquarter formed a cross-functional team whose charge was to assess the impact of

delayed customization on the SSD supply chain, and to recommend optimal inventory levels for the JIT

hubs.

The primary objective of the team was to use AMT to determine optimal base-stock levels (or reorder

points) at the JIT hubs, to implement a configure-to-pull strategy at these hubs, and to improve inven-

tory turnover while meeting customer service requirements. AMT allowed the explicit representation

of assembly and transport operations. Bills-of-materials and manufacturing lead times (if outsourced,

replenishment lead times) were extracted from SAP and incorporated into the model. Forecast errors

were estimated at the product family level to provide demand distribution data for our analysis.

We created end-to-end simulation models for each product family, and validated these models

against historical data to assure that the information and materials flow through the HDD value chain

was captured accurately. Comparing key output performance measures of our model (i.e., finished goods

inventory at JIT hubs and plants) with historical actuals, we found that JIT hub inventory matched at

a part number level to within 8% of actual on average. JIT hub inventory matched at a product family

level to within just 6% of actual, and plant finished goods inventory matched at a product family level

to within 8% of actual. On-time serviceability matched at close to 100% at part number and order level.

An example of the validations is shown in Figure 5.

Subsequently, we constructed simulation models for a select set of high-volume HDD products

based on historical inventory and demand data. One model represented the current business process,

whereas the other represented a ”configure-to-pull” business process with optimized inventory buffers

at the JIT hubs. The comparison between the two models showed significant savings in hub inventory,

averaging about 69%, can be achieved with configure-to-pull without sacrificing serviceability. The

savings were achieved with only a 21% increase in plant inventory of non-configured vanilla drives

(ISOs) as shown in Figure 6.

By varying the time needed to customize an ISO in the plant, we then established the relative impact
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Figure 5: Comparison of FGI between simulation model and historical actuals.

of reducing the manufacturing lead time on inventory. We found that reducing the lead time by one day,

on average, leads to 8% savings in total inventory. These results were fairly consistent across product

families. Figure 7 depicts this sensitivity.

In summary, the study showed that delayed customization can significantly reduce finished goods

inventory at the JIT hubs, and reduce costs for reshipping products without sacrificing serviceability

(i.e., without increasing stockouts at the hubs). It also showed that moving towards consumptive pull

and shortening the manufacturing and configuration lead times further reduces costs in the form of

inventory reduction, which was a key step to solidify management support for eventual implementation

of the configure-to-pull process design change.

4 Configure-to-Order for High-Volume High-Variety Products

The focus of the following study is on the inventory-service tradeoff in configure-to-order (CTO) man-

ufacturing in IBM’s personal computer value chain. It is part of a larger project that aimed at helping

IBM’s personal computer division to migrate from fixed configurations to a configure-to-order opera-

tion where customer orders are taken from the Internet. We have developed and applied an analytical

trade-off model to evaluate three scenarios: assess the cost/benefit of a building-block based manufactur-

ing operation; compare the forecasting of fixed configurations versus customer segment and attach-rate

forecasting; and assess the effect of increasing product variety on inventory.

4.1 The Optimization Model

We consider a hybrid model, by which each end product is assembled to order from a set of components,

which, in turn, are built to stock. In other words, no finished goods inventory is kept for any end product,
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Figure 6: Configure-to-pull results in 69% reduction in Hub FGI with only 21% increase in plant FGI.

whereas each component has its own inventory, replenished from a supplier following a base-stock

policy.

Each component inventory is indexed by i, i 2 S , where S denotes the set of all components.

Associated with each component is a “store,” where the inventory is kept. In the configure-to-order

(CTO) environment, there is no pre-specified product “menu” ; in principle, every order can require

a distinct set of components. Let M denote the set of product/demand families that use the same

set of components. For instance, M = f low-end machines, high-end machines, servers g; or M =

f individuals, small business, corporations g.

Let Dm(t) denote the demand associated with product family m in period t. Each order of type m

requires a random number of units from component i, denoted as Xmi, which takes on non-negative

integer values. Denote:

Sm := S � fi : Xmi � 0g; Mi :=M�fm : Xmi � 0g:

That is, Sm denotes the set of components used in type m products, whereas Mi denotes all the product

families that use component i. (Here, Xmi � 0 means P(Xmi = 0) = 1.)

The first step in our analysis is to translate the end-product demand into demand for each component.

This is done through the bill-of-material structure for the products. Alternatively, component demand

can be derived through forecast data on aggregated demand over market segments and the attach-rates

of the components. (For example, 90% of products sold to large corporations, and 50% in the small

business and consumer segments will use high-end processors, and so forth.)
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Figure 7: Sensitivity analysis results on reducing manufacturing lead times.

There are two kinds of lead times: those associated with the components (inbound) – the time for

the supplier of component i to replenish to store i once an order is placed; and those associated with the

end products (outbound) – including the time to process orders, the assembly/reconfiguration time, and

the transportation time to deliver the order.

The next step is to compute the mean and the standard deviation of the demand over the in-bound

leadtime for each component i, denoted �i and �i. (The out-bound leadtime is used to offset the time-

shift in product orders. Hence, if the out-bound leadtime for a product is one week, then any planning

involving orders for this product will have to be shifted a week earlier.)

We can now write the base-stock level for component i as Ri = �i+ ki�i; just like the model in the

last section, with ki denoting the safety factor. With �i and �i as parameters derived from given data as

outlined above, the decision on the base-stock levels is equivalent to the decision on the safety factors.

Our objective is to minimize the expected inventory budget (capital), subject to meeting the service

requirement for each product family. The problem can be presented as follows:

min
X
i2S

ci�iH(ki)

s:t:
X
i2Sm

rmi
��(ki) � ��m; m 2M

where rmi := P(Xmi > 0) is the probability that product m requires component i; ci is the unit cost of

the on-hand inventory of component i; �iH(ki) is the expected safety stock of component i, where the

H function is defined in (4); and ��m = 1 � �m with �m being the required service level for product
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family m.

4.2 Case Study: IBM’s Personal Computer Value Chain

Here we describe a study which was part of a project aimed at the reengineering of IBM’s personal

computer value chain from a build-to-stock operation to a configure-to-order operation. To carry out the

study, we developed two basic models: an “As-Is” model that is a reflection of the present build-to-stock

operation with fixed configurations, and a “To-Be” model that is based on open configurations where

the component inventory levels were generated by the algorithm described in the previous section. For

both models, we aggregated the production-inventory system into two stages, the first stage consisting

of the component replenishment process, and the second stage consisting of the assembly and order

fulfillment process.

We identified three factors as the focal points of our study:

� Manufacturing Strategy. The “As-Is” operation versus the “To-Be” model.

� Forecast Accuracy. The accuracy of demand forecast at the end product level versus at the com-

ponent level.

� Product Variety. The effect of mass customization on inventory as a result of direct sales over the

Internet.

To study the first factor, we selected a high-volume product family that consisted of 18 finished

products that were assembled from 17 components. We used existing bills-of-materials, unit costs, and

procurement lead times to develop a detailed simulation model. Demands for each end product were

generated statistically based on historical data. The inventoy buffers were set to meet a 95% service

level requirement for all end products. We then used the product data and the statistically generated

demand streams as inputs into the optimization model to determine the optimal base-stock levels for the

component inventory.

Figure 8 shows the comparison between the “As-Is” and the “To-Be” model in the form of overall

inventory investment. To protect proprietary information, the vertical axes were normalized with respect

to the inventory investment of the “As-Is” model, which is 100. As expected, the inventory investment

for end products was eliminated in the “To-Be” model. (The cost shown is due to WIP; the cost due

to finished goods is nil.) The “As-Is” model, in contrast, keeps a significant amount of end-product

inventory. On the other hand, the amount of component inventory is higher in the “To-Be” model,

which is again expected, since the required service level of 95% is common to both models. Overall, the

“To-Be” model reduced the overall inventory investment by roughly 30%. Both models used the same

demand forecasts for end products.
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Figure 8: Comparison between Build-to-Stock (“As Is” ) and Assemble-to-Order (“To-Be”).

In our study of the second factor, we evaluated the effect of forecast accuracy through sensitivity

analysis. Figure 9 shows the overall inventory investment associated with three different levels of fore-

cast accuracy. The first two columns repeat the comparison shown in the previous figure. The next

two columns represent improved forecast errors, at 20% and 10%, achieved by switching to component

forecasting in the “To-Be” model.
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Figure 9: Effect of improving forecast accuracy.

Our study of the third factor aimed at analyzing the impact of higher product variety on inventory,

with the motivation to support mass customization. In an Internet-based direct sales environment, the

number of customer-configured products can be significantly larger than what was supported in the

build-to-stock environment with fixed configurations. Figure 10 shows the inventory investments. The
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four columns on the left correspond to the current product set (1x), with scenario S1 as the “As-Is”

model, and the other three scenarios as “To-Be” models at the current and improved forecast accuracy

levels (scenarios S2–S4). The four columns on the right repeat these scenarios with a product set that is

ten times larger in variety (10x). Table 1 summarizes all scenarios.

Scenario Description 1x Cases 10x Cases

S1 “As-Is”
original product set, 30%
forecast error, 90% service

ten times larger product set,
30%�

p
10 forecast error at MTM

level

S2 “To-Be”
forecast at MTM level, 30%
forecast error, 90% service

ten times larger product set, fore-
cast error as in S2(1x)

S3 “To-Be”
forecast at BB level, 20%
forecast error, 90% service

ten times larger product set, fore-
cast error as in S3(1x)

S4 “To-Be”
forecast at BB level, 10%
forecast error, 90% service

ten times larger product set, fore-
cast error as in S4(1x)

Table 1: Summary of the scenarios used to study the effect of product variety.
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Figure 10: Effect of product variety on inventory.

Observe that as the product variety increases, a significantly higher level of inventory is required

in the “As-Is” model. This is because forecast accuracy deteriorates when the end products proliferate

(i.e., larger varieties result in smaller demand volumes). On the other hand, in the “To-Be” environment,

the increase in inventory investment is very modest. This is because the proliferation of end products

will have minimal effect on the forecast accuracy at component level, due to parts commonality. This
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strongly supported the fact that the building-block model is the right process to support a direct-sales

operation.

5 Semiconductor Value Chains

To meet high levels of service with long lead times and uncertain demands, semiconductor manufactur-

ers often hold large inventories despite the risk and expense. Xilinx, a large manufacturer of application

specific integrated circuits, uses design strategies like postponement to better control their inventory ex-

penses [1]. Under the postponement strategy, inventory is held at in a generic, non-differentiated form

in the die bank and is differentiated when the demand is better known. To take full advantage of the

postponement strategy, we worked with Xilinx to develop an optimization model that determines the

inventory levels in the intermediate and finished goods stocking points to allow for the best service at

the lowest cost.

Xilinx, like many semiconductor manufacturers, contracts out most of the manufacturing. Fabrica-

tion is performed at vendors in Taiwan and Japan. The wafers are then shipped to assembly vendors in

Korea, Taiwan, and the Philippines, where they are held in die bank inventory until needed. Although

separate die banks are maintained at each assembly vendor, transfer of die between vendor locations is

done as needed. Thus, the die bank is modeled as a single inventory stocking location. Assembled parts

are usually shipped to Xilinx facilities in San Jose or Ireland for testing, where they are held in finished

goods inventory.

Since die bank inventory is more generic, it serves as an inventory postponement point. The die

bank inventory is managed using a wafer starts planning package. Given a desired inventory target, this

package determines the total amount to start at the fabrication contractor using a monthly base-stock

policy. Finished goods inventories are managed using a planning system based on assembly starts, with

separate systems being run in Ireland and San Jose. In the problem formulation below, we discuss how

such parts affect the results and how we include such parts in the actual implementation of the model at

Xilinx.

As with most inventory decision problems, choosing the appropriate objective function is difficult

and highly dependent on the business environment. The key measure of service at Xilinx was total costed

“delinquencies” (costed backorders) across all parts, with each part having a different unit delinquency

cost. The individual unit delinquency costs were determined using a percentage of unit revenue based

on input from the sales department using the following factors: stage in product life-cycle, impact of

product availability on future sales of other products, competitive nature of product, and proportion

of the product’s demand due to key customers. Separate inventory budgets were to be specified for
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different echelons (die bank versus finished goods) and for different locations within an echelon (San

Jose finished goods and Ireland finished goods).

5.1 The Optimization Model

The inventory system consists of two echelons. The upstream echelon is die bank inventory and the

downstream is finished goods (FG) inventory. The FG inventory is distributed at a set of locations,

indexed by i 2M := f1; :::;Mg. Each location i supplies a set of end products, j 2 Si := f1; :::; Nig.

A separate inventory is kept for each product to satisfy its own demand stream. Let Dij denote the

demand (per time unit) for product j at location i, which is assumed to follow a normal distribution. For

simplicity, we shall refer to such product at a given location as type ij product.

Let 0 index the die bank location. There are N0 types of die, each with its own inventory, indexed

by d 2 S0 := f1; :::; N0g. The relationship between the two stages is a one-to-many mapping: each

type of die is used to make one or more end products, but each end product uses only a single type of

die. Hence, for each d 2 S0, let Sd denote the set of end products that use type d die. Then, the demand

for type d die is:
P

(i;j)2Sd
Dij . (One unit of end product uses one unit of die.)

Let Ld be the production leadtime for each die d. Let Lij be the leadtime to transform die d into

type ij product. The replenishment lead time for FG inventory (end products) is this nominal leadtime,

Lij , plus a delay time which takes into account the possible stockout of die bank inventory. This actual

leadtime, denoted ~Lij , has expected value

E(~Lij) = E(Lij) + �dpd; (7)

where pd is the stockout probability of type d die inventory used to make type ij product, and �d is the

expected additional delay when this stockout occurs. Both quantities depend on the inventory levels of

type d die. The derivation of the term �dpd in (7) will be deferred to the next section.

Given information on the demand and leadtimes, we can derive the means and the standard devi-

ations of demand over leadtime: �d and �d for each die bank location d, and ~�ij and tsigij for each

product ij. Refer to the detailed derivation in [4].

For each ij product, let hij be the unit inventory holding cost (per time unit), and let sij be the unit

backorder cost. For each type d die, let hd be the unit inventory holding cost. The decision variables are

Rij , the base-stock level for each type ij product’s FG inventory, and Rd, the base-stock level for each

type d die inventory. As in the last section, we relate these to the safety factors kd and kij as follows:

Rd = �d + �dkd; Rij = ~�ij + ~�ijkij ; (8)
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and treat the the safety factors as decision variables. We have the following optimization problem:

min
X
i2M

X
j2Si

sij~�ijG(kij) (9)

s:t:
X
j2Si

hij~�ijH(kij) � Ci; i 2M; (10)

X
d2S0

hd�dH(kd) � C0: (11)

Here, sij is the penalty cost for each unit of backordered ij product; hij and hd are unit inventory costs;

~�ijH(kij) and �dH(kij) are expected safety-stock inventories, where H is the function defined in (4);

~�ijG(kij) is the expected backorders, where G relates to H as follows:

G(x) := E[Z � x]+ = x�H(x) = �(x)� x��(x); (12)

where ��(x) := 1� �(x).

To minimize overstocking risk for various products, managers often want to be able to place upper

limits on the level of inventory allowed. For example, for a mature product nearer the end of its product

life, setting a high inventory target would not be wise. Thus, we add the following constraints on the

safety factors to the optimization problem in (9) - (11):

kij � �kij; j 2 Si; i 2M; kd � �kd; d 2 S0; (13)

where �kij and �kd are positive upper limits.

5.2 Case Study: Xilinx Semiconductor Value Chain

One key question we wished to investigate was how the total inventory holding cost budget C0 + C1

should be split between the die bank and end products in order to minimize the delinquency cost. Figure

11 shows the optimal delinquency cost z� as a function of C0=(C0 + C1), i.e., the relative amount of

inventory holding cost budget allocated to the die bank, for four scenarios. The inventory holding cost

for all die types was held constant at hd = 1:0 across scenarios, but the values of hij are changed.

For the four scenarios we used hij values of 1.0, 1.75, 5.25, and 10.50 and total inventory holding cost

budget of 3,000, 4,000, 8,000, and 12,000 dollars.

From Figure 11, we learn that most of the inventory budget should be allocated to end products. For

instance, when hij = hd = 1:0, the optimal operating point is 0.2, suggesting that 20 percent of safety

stock should be kept at the die bank, and 80 percent should be kept in finished goods. Table 2 shows the

delinquency cost z� and the optimal split C�0 and C�1 of the total inventory cost budget for each of the

scenarios under study. In additional to reporting the budgets, the table also shows the total safety stock
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Figure 11: Delinquency cost vs. relative budget allocated to the die bank.

in units allocated to the die bank and finished goods. We observe that the while percent of inventory cost

budget allocation to die bank actually decreases as the cost of holding FG stock increases, the number

of units allocated to the die bank E(I�0 ) versus the number of units allocated to finished goods E(I�1 )

increases. For example, when hij = 1:0, about 20 percent of safety stock inventory should be kept in the

die bank, whereas when hij = 10:50 the amount in die bank should be increased to roughly 55 percent.

When hij is large, allocating a larger amount of inventory to the die bank is optimal since multiple units

of die can be stocked at the same cost as, say, one unit of finished goods.

Table 2: Optimal split of safety stock inventory between die bank and finished goods.

die (in units) finished goods (in units)

hij C0 + C1 C�0 C�1 z� E(I�0 ) E(I�1 )

1.00 3,000 600 2,400 106 605 2423

1.75 4,000 750 3,250 185 755 1880

5.25 8,000 1,000 7,000 343 1005 1349

10.50 12,000 1,250 10,750 519 1255 1035
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Figure 12 shows the percent of safety stock (in units) allocated to die bank as a function of FG

holding cost hij , for three different values of the FG backorder cost sij . The amount kept in the die

bank increases monotonically with hij . When sij is high, the relative amount of safety stock that should

be kept at the die bank becomes smaller. For example, in the specific case of hij = 10:50, it is optimal

to keep 64 percent die stock when sij = 0:875, 56 percent when sij = 1:75, and 48 percent when

sij = 4:25.
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Figure 12: Relative amount of safety stock (in units) allocated to the die bank.

In order to project the business improvements that can be achieved with optimization, we compared

the optimized policy to the original policy implemented at Xilinx when we began the development of

the model. In the original policy, all finished goods buffers (for parts that were build-to-stock) had the

same target days-of-inventory, and all die bank buffers had the same target days-of-inventory. We used

a full product set in order to compare the original policy and the optimized policy. The product set

consisted of 104 die bank parts, 314 finished goods parts held at the Xilinx facility in Ireland, and 1194

parts held at the facility in San Jose. Comparisons between the two policies were made in two different

ways. First, the total inventory holding cost budget was held at the same level for both policies, and the

projected improvement in delinquency cost was found. Thus, the inventory holding cost that resulted
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from the original policy was calculated and used as the holding cost budget constraint for the inventory

optimization. The ideal split of this inventory holding cost budget between die bank and finished goods

was found by running the inventory optimization under a number of different splits. Under the resulting

inventory targets, the total delinquency cost was reduced by 54%. The huge improvement was primarily

due to reallocation of the inventory among the various finished goods parts. Inventory targets for stable

finished goods parts with low delinquency costs and high holding costs were set lower, while inventory

targets for less stable parts with higher delinquency costs were set higher.

Second, the total delinquency cost was held constant for both policies and the projected improvement

in inventory holding cost budget was found. Then, the inventory optimization was run with a number of

different settings of the inventory holding budget until the budget was found that yielded approximately

the same delinquency cost. The optimized policy was found to yield a policy with a 19.9% reduction

in overall inventory holding cost (which includes work-in-process) and a 51.2% reduction in inventory

holding cost budget when only safety stock was considered.

6 Summary

We described optimization models of value chains intended to analyze the trade-offs between inventory

and service levels in high-technology value chains. We focused on three value chain architectures,

complex configured hardware value chains, computer assembly value chains, and semiconductor value

chains, and discussed case studies where we utilized the analytical models to aid in the determination

of operational inventory targets. These models capture the true multi-tier nature of industrial value

chains that are subject to non-stationary demands, stochastic lead times, and attach-rate uncertainty. The

application examples also illustrate the importance of not only focusing on optimal inventory planning

and control, but also exploring alternative value chain designs such as delayed product differentiation

and configure-to-order to seek operational and financial performance improvements.
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