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On the Curvature of the Central Path of Linear
Programming Theory.

Jean-Pierre Dedieu∗ Mike Shub†

DRAFT of April 8, 2003

1 Introduction

In this paper we study the curvature of the central path of linear programming
theory. Our ultimate goal is to show that the total curvature of the path is poly-
nomial in m and n the numbers of linear constraints and variables respectively.
In fact we think that the total curvature may be O(n) independent of any other
data in the problem, a family of examples where it is Ω(n) may be found in Meg-
gido and Shub [8]. Here we do not prove anything so strong, but we establish
that for m > n and bounded polytopes the total curvature is less than or equal
to

πm2(m + 1)

(m− n + 1)(m− n)

at least in a generic average sense which we describe below. Our point in studying
the total curvature is that curves with small total curvature may be easy to
approximate with straight lines. So, small total curvature may contribute to the
understanding of why long step interior point methods are seen to be efficient in
practice.

2 Description of the central path.

Let P be a compact polytope in Rn defined by m affine inequalities

Aix ≥ bi, 1 ≤ i ≤ m.
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Here Aix denotes the matrix product of the row vector Ai = (ai1, . . . , ain) by the
column vector x = (x1, . . . , xn)T , A is the m × n matrix with rows Ai and we
assume Rank A = n. Given c ∈ Rn, we consider the linear programming problem
(LP )

min
Aix ≥ bi

1 ≤ i ≤ m

〈c, x〉 .

Let us denote by

f(x) =
m∑

i=1

ln(Aix− bi)

(ln(s) = −∞ when s ≤ 0) the logarithmic barrier function associated with the
description Ax ≥ b of P . The barrier technique considers the family of nonlinear
convex optimization problems (LP (t))

min
x∈Rn

〈c, x〉 − tf(x)

with t > 0. The objective function

ft(x) = 〈c, x〉 − tf(x)

is strictly convex, smooth, and satisfies

lim
x → ∂P

x ∈ Int P

ft(x) = ∞.

Thus, there exists a unique optimal solution c(t) to (LP (t)) for any t > 0.
This curve is called the central path of our problem. Let us denote Dx the
m×m diagonal matrix Dx = Diag(Aix− bi). This matrix is nonsingular for any
x ∈ Int P . We also let e = (1, . . . , 1)T ∈ Rm,

g(x) = grad f(x) =
m∑

i=1

AT
i

Aix− bi

= AT D−1
x e

and
h(x) = hess f(x) = −AT D−2

x A

so that
Df(x)u = 〈u, g(x)〉

and
D2f(x)(u, v) = 〈u, h(x)v〉

for any u, v ∈ Rn. Since ft is smooth and strictly convex the central path is given
by the equation grad ft(c(t)) = 0 i.e.

g(c(t)) =
c

t
, t > 0.
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Lemma 2.1 g : Int P → Rn is real analytic and invertible. Its inverse is also
real analytic.

Proof. For any c ∈ Rn the optimization problem

min
x∈Rn

〈c, x〉 − f(x)

has a unique solution in Int P because the objective function is smooth, strictly
convex and P is compact. Thus g(x) = c has a unique solution that is g is
bijective. We also notice that, for any x, Dg(x) is nonsingular. Thus g−1 is real
analytic by the inverse function theorem.

When c varies in Rn we obtain a family of curves. Our aim in this paper is
to investigate the curvature of these curves.

3 Curvature.

Let c : [a, b] → Rn be a C2 map with non-zero derivative: ċ(t) 6= 0 for any
t ∈ [a, b]. We denote by s the arc length:

s(t) =

∫ t

a

‖ċ(τ)‖dτ.

To the curve c is associated another curve on the unit sphere, called the Gauss
curve, defined by

t ∈ [a, b] → ċ(t)

‖ċ(t)‖ ∈ S
n−1

which may also be parameterized by the arc length s:

s ∈ [0, L] → ċ(s) ∈ Sn−1

with L the length of the curve c. The curvature is

κ(s) =
d

ds
ċ(s)

see Spivak [17] chap. 1. In terms of the original parameter we have

κ(t) =
1

‖ċ(t)‖
d

dt

(
ċ(t)

‖ċ(t)‖
)

=
c̈(t)‖ċ(t)‖2 − ċ(t) 〈ċ(t), c̈(t)〉

‖ċ(t)‖4
.

The total curvature K is the integral of the norm of the curvature vector:

K =

∫ L

0

‖κ(s)‖ds

that is K is equal to the length of the Gauss curve on the unit sphere Sn−1 ⊂ Rn.
To compute K we use integral geometry, the next section is devoted to that.
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4 An integral geometry formula.

Let γ(t), a ≤ t ≤ b, be a C1 parametric curve contained into the unit sphere
Sn−1. The parameter interval is not necessarily finite: −∞ ≤ a ≤ b ≤ ∞. Let us
denote by Gn,n−1 the Grassmannian manifold of hyperplanes through the origin
contained in Rn. We also denote by dG(H) the unique probability measure on
Gn,n−1 invariant under the action of the orthogonal group.

Theorem 4.1 The length of γ is equal to

L(γ) =

∫ b

a

∥∥∥∥
d

dt
γ(t)

∥∥∥∥ dt = π

∫

H∈Gn,n−1

](H ∩ γ) dG(H)

where ](H ∩ γ) denotes the number of parameters a ≤ t ≤ b such that γ(t) ∈ H.

Proof. If γ is an embedding then Theorem 4.1 follows from Santalo [12],
chapter 18, section 6 or also see Shub and Smale [14], section 4, where a similar
theorem is proved for projective spaces and Edelman and Kostlan [6]. Now the
set of t such that d

dt
γ(t) 6= 0 may be written as a countable union of intervals on

each of which γ is an embedding.
Note that by a usual application of Sard’s Theorem the integral only needs

to be evaluated on the set of H such that γ is transversal to H.

5 A Bézout bound for multi-homogeneous sys-

tems.

According to Theorem 4.1 to estimate the length of a curve we have to count the
number of points in a certain set. To give such an estimate we use the multi-
homogeneous Bézout Theorem. While this theorem is well-known to algebraic
geometers, topologists and homotopy method theorists, the computation of the
Bézout number is usually only carried out in the bi-homogeneous case in text-
books. Morgan and Sommese [9] prove the theorem and give a simple description
of how to compute the number, which we repeat here.

Let f = (fi)1≤i≤n be a system of n complex polynomial equations in n + m
complex variables. These variables are partitioned into m groups X1, . . . , Xm

with kj +1 variables into the j−th group. fi is said multi-homogeneous if for any
index j there exists a degree dij such that, for any scalar λ ∈ C,

fi(X1, . . . , λXj, . . . , Xm) = λdijfi(X1, . . . , Xj, . . . , Xm).

In this case the system f is called multi-homogeneous. The Bézout number B
associated with this system and this structure is defined as the coefficient of
Πm

j=1α
kj

j in the product Πn
i=1

∑m
j=1 dijαj.
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We say that (X1, . . . , Xm) ∈ Cn+m is a zero for f when f(X1, . . . , Xm) =
0. In that case, f(λ1X1, . . . , λmXm) = 0 for any m−tuple of complex scalars
(λ1, . . . , λm). For this reason it is convenient to associate a zero to a point in the
product of projective spaces Pk1(C)× . . .×Pkm(C). We use the same notation for
a point in P k1(C)×. . .×Pkm(C) and for any representative (X1, . . . , Xm) ∈ Cn+m.

We say that a zero (X1, . . . , Xm) ∈ P k1(C) × . . . × Pkm(C) is non-singular
when the derivative

Df(X1, . . . , Xm) : Cn+m → Cn

is surjective. Notice that this definition is independent of the representative
(X1, . . . , Xm) ∈ Cn+m. We have

Theorem 5.1 (Multi-homogeneous Bézout Theorem) Let f be a multi-homogeneous
system. Then the number of isolated zeros of f in P k1(C)× . . .× Pkm(C) is less
than or equal to B. If all the zeros are non-singular then f has exactly B zeros.

6 An estimate for the total curvature of the cen-

tral path

To the matrix A and the vector b which define the set of admissible points of the
linear programming problem we may associate 2m different systems of inequalities

Aix εi bi, 1 ≤ i ≤ m,

with εi ∈ {≤,≥}. Some of these systems are consistent and define a compact and
non-void polytope. We denote by P(A, b) the set of these polytopes. To each
P ∈ P(A, b) we associate the linear programming problem

min
x∈P

〈c, x〉

with a central path c(P , c) and a total curvature K(P , c).
In this section we give the following estimate for the total curvature of the

union of these central path:

Theorem 6.1 The sum of the total curvatures of the central path satisfies

∑

P∈P(A,b)

K(P , c) < πm

(
m + 1

n

)
.

Remark 6.1 We notice that this number depends only on the number of variables
and the number of variables in (LP).
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G. Malajovich, using BKK bounds instead of multi-homogeneous Bézout num-
bers, conjectured the better bound

K ≤ 2π(n− 1)

(
m− 1

n

)
.

Our main conjecture is a bound of O(n) independent on m for one central
path.

Proof. For two vectors u1 and u2 with the same dimension we often write
u1.u2 = 〈u1, u2〉 = uT

1 u2 for their dot product and u1u2 for the componentwise
product also equal to u1u2 = Diag(u1i)u2 = Diag(u2i)u1.

Any of the considered central paths c(t) satisfies the equations

c(t) = x, AT D−1
x e =

c

t
, t > 0.

By differentiating we get

AT D−2
x Aċ(t) = − c

t2
.

This last formula proves that ċ(t) 6= 0 so that the curvature is well defined. The
total curvature is the length of the curve ċ(t)/‖ċ(t)‖ which is itself given by the
number of parameters corresponding to the intersections of this curve with a
generic hyperplane

H(d) = {x ∈ Rn : 〈x, d〉 = 0}
see Theorem 4.1. Such an intersection point satisfies

AT D−1
x e =

c

t
,

〈(AT D−2
x A)−1c, d〉 = 0.

(6.1)

Notice that the number of parameters corresponding to the intersections is equal
to the number of solutions of system 6.1 because, by Lemma 2.1, the map x →
AT D−1

x e is invertible. Let us now prove that each solution of this system is
isolated. We only consider the case of a hyperplane H(d) that cuts the image of
the Gauss map transversaly. That means, see section 3,

〈c̈(t)‖ċ(t)‖2 − ċ(t) 〈ċ(t), c̈(t)〉 , d〉 6= 0.

Since
〈(AT D−2

x A)−1c, d〉 = 0

that is 〈ċ, d〉 = 0 our transversality hypothesis is equivalent to 〈c̈, d〉 6= 0. We
already noticed that, with x = c(t),

AT D−2
x Aċ = − c

t2
.
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Differentiating this equation gives

−2AT D−3
x (Aċ)2 + AT D−2

x Ac̈ = 2
c

t3

(the product (Aċ)2 is taken componentwise) so that

c̈ = −2
ċ

t
+ 2(AT D−2

x A)−1AT D−3
x (Aċ)2.

Since 〈ċ, d〉 = 0 our transversality hypothesis becomes

dT (AT D−2
x A)−1AT D−3

x (Aċ)2 6= 0.

Let us denote

F (x, t) =

(
AT D−1

x e− c

t
dT (AT D−2

x A)−1c

)
.

Our aim is to show that, under the previous transversality hypothesis, the deriva-
tive DF (x, t) is non-singular. An easy computation shows that

DF (x, t)(ẋ, ṫ) =

(
AT D−2

x Aẋ + ṫ
c

t2
2dT (AT D−2

x A)−1AT D−3
x Diag(Aiẋ)A(AT D−2

x A)−1c

)
.

Let us suppose that DF (x, t)(ẋ, ṫ) = 0. Since AT D−2
x A is injective and AT D−2

x Aċ =
−c/t2 the first equation shows that ẋ is proportional to ċ: ẋ = ṫċ. If we insert
this fact into the second equation we obtain ṫ = 0 by the transversality hypoth-
esis. This gives ẋ = 0 thus DF (x, t) is invertible and all the zeros of system 6.1
are isolated and have multiplicity 1.

Let us now introduce five new vectors and scalars s, q, v ∈ Rm, w ∈ Rn and
σ ∈ R with

σt = 1,
s = Ax− b,
q = D−1

x e,
w = (AT D−2

x A)−1c,
v = D−2

x Aw.

(6.2)

System 6.1 becomes
s > 0,
Ax− s = b,
sq = e,
AT q = σc,
w.d = 0,
AT v = c,
sv = q(Aw).

(6.3)

This system has 3m + 2n + 1 equations and 3m + 2n + 1 unknowns: s, q, v ∈ Rm,
x,w ∈ Rn and σ ∈ R. Notice that it has the same number of solutions than
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6.1 and only isolated ones. Since AT q = σc with σ ∈ R the vector q lies in the
reciprocal image under AT of the vector line through c. For this reason q depends
only on m − n + 1 parameters: we can write q = Bu for a linear and injective
operator B : Rm−n+1 → Rm. This gives, with q = Bu and s = Ax − b a new
system of equations

(Ax− b)(Bu) = e,
w.c = 0,
AT v = c,
(Ax− b)v = (Bu)(Aw),

(6.4)

which contains 2m+n+1 equations and 2m+n+1 unknowns, v ∈ Rm, x,w ∈ Rn

and u ∈ Rm−n+1. This system also has the same number of solutions than 6.1
and only isolated ones.

To bound this number we compute the Bézout number associated with a
multi-homogenization of this system. We introduce three new variables ν1, ν2, ν3 ∈
R. System 6.4 becomes

(Ax− ν1b)(Bu) = ν1ν2e,
w.c = 0,
AT v = ν3c,
ν2(Ax− ν1b)v = ν1(Bu)(Aw).

(6.5)

It has 2m + n + 1 equations and 2m + n + 4 unknowns. This system is trilinear
according to the structure

X1 = {x, ν1}, X2 = {u, ν2}, X3 = {v, w, ν3}.

The degrees of the different equations are

• (1, 1, 0) for 1 ≤ i ≤ m,

• (0, 0, 1) for i = m + 1,

• (0, 0, 1) for m + 2 ≤ i ≤ m + n + 1,

• (1, 1, 1) for m + n + 2 ≤ i ≤ 2m + n + 1.

The Bézout number is equal to the coefficient of

αn
1αm−n+1

2 αm+n
3

in the product
(α1 + α2)

mα1
3α

n
3 (α1 + α2 + α3)

m.

This coefficient is equal to m

(
m + 1

n

)
, this achieves the proof.
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7 The total curvature of the central path on the

average.

Before stating our main theorem we have to explain the meaning we give to the
word average.

We already noticed in the previous section that, to the data (A, b, c) which
defines the linear programming problem, we may associate 2m different systems
of inequalities

Aix εi bi, 1 ≤ i ≤ m,

with εi ∈ {≤,≥}. All these systems are not necessarily consistent. In general the
number of non-void polytopes is given by the recurrence

R(m,n) = R(m− 1, n) + R(m− 1, n− 1), R(1, n) = 2, R(m, 1) = m + 1.

So

R(m,n) =
n∑

i=0

(
m
i

)
.

The number of non-compact polytopes, in a generic sense, satisfy a similar rela-
tion

R∞(m, n) = R∞(m− 1, n) + R∞(m− 1, n− 1), R∞(1, n) = 2, R∞(m, 1) = 2,

so that the number of compact polytopes is such that

RK(m, n) = RK(m−1, n)+RK(m−1, n−1), RK(1, n) = 0, RK(m, 1) = m−1,

thus

RK(m,n) =

(
m− 1

n

)
.

Let P(A, b) denotes the set of compact polytopes defined by the inequalities
related with A and b. In general

]P(A, b) =

(
m− 1

n

)
.

To each P ∈ P(A, b) we associate a linear programming problem

min
x∈P

〈c, x〉

with a central path c(P , c) and a total curvature K(P , c).

Definition 7.1 We call ”average total curvature” associated with the data (A, b, c)
the number

K(A, b, c) =

∑
P∈P(A,b) K(P , c)

]P(A, b)
.
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Our main result is the following

Theorem 7.1 In general

K(A, b, c) ≤ πm2(m + 1)

(m− n)(m− n + 1)
.

Proof. This number is equal to

πm

(
m + 1

n

)

(
m− 1

n

)

that is the bound obtain in Theorem 6.1 divided by the number of compact
polytopes.

8 Concluding remarks

1. We have averaged the total curvature over compact regions because each
compact region has a central path. Non-compact regions may also have a central
path. For a polytope P defined by the inequalities Aix ≥ bi a sufficient condition
is: for any non-zero x ∈ Rn, if Aix ≥ 0 for any i = 1 . . . m then 〈c, x〉 > 0 giving
an average total curvature much smaller. We have not averaged on the total
number of possible systems of inequalities as Beling and Verma in [3].

2. We have estimated the curvature by the number of complex roots of a
system of equations including the roots at infinity. In fact only real and finite
roots count. The number of real roots is in general much less and can in some
contexts be compared with the square root of the number of complex roots, see
Shub and Smale [13], Edelman and Kostlan [6], McLennan [7] and Rojas [11].
Thus the total curvature at least on average may be very small indeed for large
problems. We find a better understanding of the total curvature of the central
path in worst and average case analysis an interesting problem.

3. There is a body of literature on the curvature of the central path, relating
the curvature to the complexity of Newton type algorithms that approximate the
central path and produce approximations to the solutions: see Sonnevend, Stoer
and Zhao [15] and [16], Stoer and Zhao [18], Zhao [20] and [21]. These papers
use a different notion of curvature, closer to 1/γ where γ is Smale’s γ, see also
Dedieu and Smale [5]. The integral of these quantities is infinite.

4. The Riemannian geometry of the central path has been studied by quite a
few authors, see Nesterov and Todd [10], Bayer and Lagarias [1] and [2].
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5. Vavasis and Ye study regions where the central path is straight or crossing
over. In straight regions the tangent vectors stay in definite cones. Curvature
estimates may be used as a refinement of this information.

6. We have studied central paths for the linear programming problem in the
format min〈c, x〉 subject to Ax ≥ b. The format is not important for our results.

7. We have studied via a similar argument the total curvature of the central
path in a primal-dual formulation. Consider the standard-form problem

min
Ax = b
x ≥ 0

〈c, x〉

together with
max

AT y + s = c
s ≥ 0

〈b, y〉.

Here A is an m × n matrix with Rank A = m and the vectors are of appropri-
ate size. The associated central path t > 0 → (x(t), y(t), s(t)) is given by the
equations

AT y + s = c
Ax = b
xs = te.

(8.6)

To compute the associated total curvature we count the number of solutions of
the system

AT y + s = c
Ax = b
xs = te
AT ẏ = 0
Aẋ = 0
xṡ + ẋs = e
c1ẋ + c2ṡ + c3ẏ = 0

(8.7)

which has 4n + 2m + 1 equations and unknowns. We multi-homogenize it in
partitioning the variables in four groups: X1 = {s, y, ν1}, X2 = {x, ν2}, X3 =
{t, ν3}, X4 = {ẋ, ṡ, ẏ, ν4}. We have obtain, via this computation, the bound

π
n3

m

that is n2

(
n
m

)
zeros of the system of equations divided by

(
n− 1
n−m

)
compact

regions.
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Here m and n do not play the same role as in the main part of this paper. To
compare both numbers we make the substitution n := m and m := m − n and
we obtain

π
m3

n−m

which has the same flavor as our main result.
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Theoretical Computer Science, (1994) vol. 133, pp.141-164.

[15] G. Sonnevend, J. Stoer and G. Zhao, On the Complexity of Following
the Central Path of Linear Programs by Linear Extrapolation. In: Methods of
Op. Research, Proceedings of the Symposium on Op. Research, Ulm, 1989.
Anton Hain. 19-31.

[16] G. Sonnevend, J. Stoer and G. Zhao, On the Complexity of Following
the Central Path of Linear Programs by Linear Extrapolation: II. Math.
Programming, 52 (1991) 527-553.

[17] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol.
2. 2nd ed. Publish or Perish, Berkeley, 1990.

[18] J. Stoer and G. Zhao, Estimating the Complexity of a Class of Path-
Following Methods for Solving Linear Programs by Curvature Integrals. Ap-
plied Math. Opt. 27 (1993) 85-103.

[19] S. Vavasis and Y. Ye A Primal-Dual Accelerated Interior Point Method
Whose Running Time Depends Only on A. Math. Progr. 74 (1996) 79-120.

[20] G. Zhao, On the Relationship Between the Curvature Integral and the Com-
plexity of Path-Following Methods in Linear Programming. SIAM J. Opt. 6
(1996) 57-73.

[21] G. Zhao, Interior Point Algorithms for Linear Complementarity Problems
Based on Large Neighborhoods on the central Path. SIAM J. Opt. 8 (1998)
397-413.

13


