
RC22784(Declassified 07/09/2003) (W0304-187) April 21, 2003
Computer Science

IBM Research Report

A Work Dependent OS Timing Scheme for Power
Management: Implementation in Linux and Modeling of

Energy Savings.

Claus Michael Olsen, Chandrasekhar Narayanaswami
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research
Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Abstract - We present a Work Dependent Timing (WDT)
scheme for the Linux operating system that skips periodic
system timer ticks when the system is idle. Our scheme
parses the internal lists and queues in Linux to determine
when the next work item is due and eliminates “workless”
timer ticks that solely update system time. Subsequently, we
program the hardware timer with the timeout value of the
nearest work item and then put the processor/system into an
optimal low power state. Furthermore, when skipping timer
ticks, the opportunity may arise to exploit a more efficient
low power system and processor state that would not be
possible with a conventional periodic timing scheme
because periods where the system can sleep may now
exceed the time to transition into and out of the low power
state. We describe the implementation of the WDT scheme
in detail and discuss its impact on system software.
Experimental results with an embedded system verify the
ability of the WDT scheme to extend battery life. An
analytical power model that quantifies the ability of the
scheme to reduce system power consumption is presented.
The model is in good agreement with the experimental
results. Also included in the model is a power state
selection algorithm which, given full knowledge about the
system power levels, transition times and timer events, can
dynamically calculate the optimal low power state to exploit
at any given time.

1. Introduction

Power management has become one of the most
urgent challenges in mobile devices. It is being investigated
and implemented at the circuit level, processor architecture
level, in circuit interconnections, and in the OS and
applications. The power management approaches largely
fall into two categories, namely, active and passive. In the
active category, the aim is to reduce the energy required to
complete a task. In the passive category, the aim is to put
devices, including the processor, into a low power state
while not in use. Our paper falls mostly into the passive
category but also addresses a number of active issues

In this paper we shall present an operating system
(OS) technique, called Work Dependent Timing (WDT)
which aims to utilize a processor's resources and power
states more judiciously. Specifically, we will build on a
technique presented by Kamijoh et al. [1] that modifies the

timing mechanism of the OS. This mechanism applies to a
class of general purpose mobile devices that are mostly idle
but need to be able to turn on instantly and handle multiple
applications when they are active. On these systems, for a
majority of the duration, there are no actively running
applications, no open network connections, and no user
interaction. Interrupts are enabled, so external events can
wake up applications. Due to these constraints, such
"instant on" devices can have the display turned off, the
DRAM in self-refresh mode, the audio device disabled, and
the processor in a low power state for a large fraction of
their life. However, when active, several applications can
run, and this requirement directs us towards multitasking
operating systems that wake up periodically. To minimize
the cost of software development the system designers are
attracted to commonly available general purpose operating
systems, such as Linux, due to the widespread availability of
device drivers, applications, and systems programmers.

 Our motivation comes from optimizing power
consumption for mobile devices when they are idle and not
for minimizing power consumption while the device is
active - which is the subject of several papers on voltage and
clock frequency scaling. Our techniques are also useful for
other predominantly idle devices in the environment; such
as equipment in conference rooms, offices, kiosks, etc.,
because conserving ac power, while often ignored, is good
both for the environment and economy.

There are three goals for this paper. The first goal
is to describe the detailed implementation of the WDT
scheme under Linux and to discuss the impact on system
software components and the usability of the system. The
second is to propose a methodology that a mobile device
designer can use to estimate the potential benefits of
deploying the WDT scheme on his/her mobile device. The
third is to present an algorithm to dynamically determine the
optimal low power state to exploit at any given time.

2. Current Processors and Linux

We now describe the low power states that are
available in modern system-on-chip (SOC) processors used
for embedded mobile devices. Then we discuss the
conventional Periodic Timing (PT) scheme used by the
standard Linux OS and show why it limits power savings.

A Work Dependent OS Timing Scheme for Power Management:
Implementation in Linux and Modeling of Energy Savings

C. Michael Olsen and Chandra Narayanaswami
IBM Research Division, Hawthorne, NY 10532

{cmolsen,chandras}@ us.ibm.com

1

2.1 Processor Power Management States
Advanced mobile SOC processors have multiple

Power Management states. Some of the processors that we
have studied include Cirrus Logic EP7211/7312 [2,3], Intel
SA1110 [4], Intel PXA250/210 [5,6], Motorola DragonBall
MXL [7], Hitachi SH7705 [8], NEC VR4131 [9], and IBM
PowerPC 405LP [10]. For a brief survey of some of these
processors see [11].

In general the way these low power states are
implemented differs somewhat from processor to processor.
For simplicity we shall assume that a processor has three
distinct power states, as outlined in Table 1.

>250, >250.05-0.2Off/OffPowerDown
>100, >0.50.25-5Off/OffClockSuspend
0.1-0.01,>0.001>5Off/OnIdle
[us], [uJ][mW]ClockPower State
Transition statePowerCPU/Periph.

Table 1. Definition of processor low power states and
characteristics associated with each state. The "Power"
column indicates minimum power levels and the "Transition
state" column indicates minimum total time and energy
required to enter and exit the state. The values are
representative of state-of-the-art 32-bit mobile processors.

In the Idle state the clock to the CPU core is
stopped, but other peripheral on-chip resources remain
actively clocked. All of the above mentioned processors
have this state. Some of the processors [2,8,9,10] also have
a global ClockSuspend (CS) state in which the clock is
globally stopped to most peripheral cores such as SDRAM
controller, DMA, LCD controller, UART, etc. The only
cores that remain active are the Power Management unit, the
Real-Time Clock and the Interrupt Controller unit. The
logical state in the various cores is preserved. One of the
drawbacks with exploiting this state is that it disables cores
such as the LCD controller and the communications
functions such as UART, USB and SSI interfaces which are
asynchronous in nature. To keep these interfaces fully
functional and to be able to either display a static image on
an LCD or accept incoming data, they must be clocked.
Furthermore, it takes longer to exit this state due to the fact
that the PLL has to stabilize (100-200 us) upon wakeup. At
least one processor [2] takes up to 250 ms to exit this state.

Quite recently, a couple of advanced high-speed
processors have been emerged [5,10] which have a
PowerDown state in which power is removed from the CPU
core and where either the power is removed, or at least the
clock is stopped, to most of the peripheral cores. The Power
Management unit, the Real-Time Clock and the Interrupt
Controller unit remain active to enable fast wake-up and to
maintain time. The importance of this power state is that it
offers significantly lower power consumption than the
ClockSuspend state and that it is not sensitive to
temperature. In addition there are signs that the

ClockSuspend power is rising which is a tradeoff that is paid
for faster and more complex circuits.

One of the drawbacks with exploiting the
PowerDown state is that all processor logical state and
cache content is lost when powering off the processor. So,
CPU and peripheral state that is not available elsewhere in
the system would have to be saved before entering the
PowerDown state. It takes time to save and restore the
processor context (250 us at minimum). But even more
importantly, it is relatively expensive in terms of transition
energy, which we shall discuss in more details in Section 6.

Table 1 shows a substantial difference in power
consumption between the three states, though it varies
between processors. When entering the Idle state, the
peripheral bus frequency may be reduced to minimize
switching power dissipation in the peripherals. This is
however not possible in all processors. For example, the
Cirrus EP7312 consumes 45 mW @ 18 MHz in the Idle
state while the Intel PXA250 consumes 20 mW @ 20 MHz
(scaled down from 400 mW @ 400 MHz [6].) Even though
the bus frequency can be further reduced in some processors
(e.g., Motorola's DragonBall MXL can go down to 0 Hz),
the power consumption in the oscillator and PLL will limit
power consumption to ~5 mW. In contrast, in the
ClockSuspend state, the Cirrus EP7312, for example,
consumes around 350 uW @ 25C [3]. The power
consumption in this state is mainly due to DC leakage
currents, which are strongly temperature dependent. At
70OC the ClockSuspend power may go up by a factor of
five. There is usually a small energy and delay associated
with transitioning out of the ClockSuspend state, due to the
time it takes the PLL to stabilize. In the PowerDown state,
the power consumption is further reduced due to elimination
of the leakage currents. The remaining 50 uW, or more, is
due to the peripheral cores that must remain powered to
enable the processor to be woken up and to maintain the
real-time clock. As we shall see in Section 6, knowledge of
the power drain and transition energies enables the WDT
routine to select the optimal low power state.

2.2 Periodic Timing
The standard Linux kernel is implemented around

the notion that it will get interrupted 100 times per second.
This periodic interrupt is also known as the “tick”. In Linux,
the variable jiffies counts the number of timer interrupts, or
ticks, since kernel startup. jiffies in turn is used to update
kernel time, process times, and to check expiration of
callback timers. Periodic timer ticks are of course also well
suited for multitasking environments when several tasks are
actively running. This was certainly true when Unix was
designed because a few computers were used by several
people simultaneously. User tasks would be switched to
provide a fair use of the system’s resources for all users.
Moreover the timer ticks were used to manage software
timers, check queues and lists, flush file buffers, swap out
dirty memory pages, etc. One has to revisit this basic

2

approach today, since one user typically has several
computers, most of which are typically idle for a good part
of the day.

The disadvantages of a Periodic Timing scheme are
discussed below.

2.2.1 Wasting energy in workless timer ticks
The periodic timer interrupt will periodically wake

up the processor and subsequently the timer interrupt
handler will be executed, even when the system is idling.
However, whenever the system is idling, the queues and lists
that need to be checked are empty and contain no expired
callback timers and only the time variables get updated
during such ticks. There is no fundamental reason why a
periodic timer interrupt is needed just to maintain time.

2.2.2 State transition delays exceeding tick interval
There may be more power efficient low power

states that cannot be exploited simply because the duration
of the processor power state transitions exceed the tick
period. For example, the most efficient low power states in
the Cirrus Logic EP7312 [3] and in the Intel StrongARM
1110 [4] are the ClockSuspend state (Cirrus denotes it
STANDBY) and the PowerDown state (Intel denotes it
SLEEP), which may take up to 250 ms and 160 ms,
respectively, to exit. With a periodic interrupt occurring
every 10 ms, entering these low power states would result in
timer ticks getting missed. This would make the OS timer
callback service useless, and it would mess up time keeping.
Besides, only 10 ms, or less, would be spent in the low
power state before the next interrupt would occur which will
cause the processor to start transitioning back out of the low
power state again.

2.2.3 Excessive state transition energy consumption
In general, the more power efficient a low power

state is, the more the energy required for state transition
and the larger the transition delays in order to exploit the
state. Therefore, even though the power consumption in a
more power efficient state, say pm2, is smaller than the
power consumption in a less efficient state, say pm1, the
energy required to simply transition into and out of the pm2
state may actually make it more expensive to use the pm2
state, contrary to intuition. Which one of either pm1 or pm2
is the most efficient state will depend on the time between
the two adjacent timer ticks and on the transition energies.

2.2.4 Disabling of the system timer
 Since the systems timer is typically disabled in the

more efficient low power states, one would have to switch to
another timer interrupt source before entering one of these
states. Usually, it is possible to switch over to the real-time
clock (RTC) timer. However, some processors do not offer
fine grain resolution with the RTC timer. For example, the
RTC timer in the Cirrus EP7312 has a resolution of only one
second, which obviously cannot be used to generate a 100

Hz timer interrupt. Secondly, in case an RTC does offer fine
grain resolution, there is more overhead associated with
managing it to generate a periodic interrupt since RTCs
were not designed for this purpose. Rather, RTCs are
designed with large monotonically incrementing counter
registers which, when compared against a match register,
can generate in interrupt. Internal system timers, on the
other hand, are typically smaller registers clocked at higher
frequencies and which are initially populated with a load
value corresponding to the timer interrupt interval. When
the counter reaches zero, the initial load value is
automatically reloaded on the next clock edge. Thus, an
internal system timer has zero maintenance. In some cases
an external timer source would be needed to generate the
system timer interrupt.

3. Details for the WDT Scheme and
Implementation

We now discuss the Work Dependent Timing
(WDT) scheme with frequent references to the
implementation within the Linux operating system for
predominantly idle mobile devices. With the WDT scheme
we are able to resolve all the limitations of the Periodic
Timing (PT) scheme, presented in the previous section.
Figure 1 shows a flow chart of the WDT scheme which is
somewhat Linux specific. It also assumes a processor which
has two low power states, namely the Idle and
ClockSuspend states. In Figure 1, the gray boxes represent
the WDT scheme. White boxes are the conventional
functions. Boxes that are white/gray signify that their
functions can operate in both conventional PT mode and in
WDT mode.

3.1 Work Dependent Timing scheme
 In an OS like Linux, whenever the current work

item is suspended, the execution returns to the main, and
infinite, idle loop, in which the first thing the WDT scheme
aims to resolve is, "Is there more work to be done?".
Usually, the answer is "No" which causes entry into the
WDT mode of operation. In this mode the callback timer list
is first parsed to extract the nearest timeout value. The
timeout value is then passed to the Power State Selector
(PSS) routine in which the optimal low power state is
selected according to the rules described below in Section
3.3. Based on the particular state selection, the appropriate
hardware timer is also selected and an associated timeout
value calculated. The WDT routine then reprograms the
selected hardware timer with the timeout value and passes
control on to the Power State Transition (PST) routine.

The PST routine transitions the processor and OS
into the low power state, and upon detection of a hardware
interrupt, it properly transitions the processor and OS out of
the low power state and into the Operation state (i.e., CPU
running.) Typically, it involves preparing peripheral devices

3

and software drivers for the state change, saving/restoring
system state, flushing/preparing data cache and TLB, and so
forth. Description of the detailed operation of the PST is
very system dependent. The impact on system software is
discussed later.

kernel start

N

Find the nearest software
 timer timeout value.

Y

ClockSuspend

Reprogram RTC timer. Reprogram system timer.

Idle

 Reprogram system timer
to reenter PT timing mode.

Update time variables.

Enter ClockSuspend state.

hardware interrupt

Low power
 state

- Disable interrupts.
- Exit PT timing mode.

N

Y
Is kernel in PT timing mode ?

Enable interrupts.

Is there more work to be done ?

 Power State Selector
 (PSS)

Run the Scheduler.

Service interrupt.

 Power State
 Transition (PST)

Enter Idle state.

Enter Operation state.

Figure 1. WDT flow chart. Gray boxes belong to the WDT
routine. White boxes represent the conventional functions in
the main idle loop. Boxes that are white/gray can operate in
either WDT mode or conventional (PT) mode.

While in the low power state (the light-gray area in
Figure 1), all execution has stopped and the processor will
remain in this state until a hardware interrupt occurs. On exit
from the low power state, the OS has to first determine
which timing mode it is in, since it is possible that the OS
may have put the processor into a low power state either
while in the PT mode or while in the WDT mode. If the
system is not in PT mode, the WDT routine then sets up the
system timer to generate periodic timer interrupts while

there is work to be done, and the OS reenters the PT mode.
Note that PT mode is always in effect whenever there is
process/task/device related work to be done since periodic
updating of time/process variables is indeed required
whenever there is work to be done. After reentry into PT
mode, the WDT routine updates jiffies and then kernel
reference time (see section 3.2.) At this point, regardless of
the source of hardware interrupt, the OS now services the
interrupt in regular fashion. Upon return from the interrupt
handler, the scheduler is run. This completes the idle loop.

Figure 2 illustrates the effect of the PT and WDT
schemes on the dynamic power consumption. As seen, the
WDT scheme eliminates the execution of all the workless
timer interrupts, creates extended idle periods, and the
ClockSuspend state may be entered if the nearest timer
callback timeout value is greater than 50 ms, which is the
transition delay when exiting the ClockSuspend state (in this
hypothetical example.)

Time [10ms ticks]

Time [10ms ticks]

Power

Timer interrupt + "work"
 Timer interrupt (no work)
 Idle state

Timer interrupt + "work"

 Idle state ClockSuspend state

 Transition state

(a)

(b)

Power

Figure 2. Illustration of the dynamic power consumption
a) with the Periodic Timing scheme and b) with the WDT
scheme. Note the 50 ms duration of the transition state.
That's the reason why the ClockSuspend state cannot be
exploited between the first two timers.

3.2 Keeping time and handling random interrupts
Clearly, the method for keeping time in the WDT

mode of operation cannot rely on a timer tick that is no
longer present. Rather, it depends entirely on the reading of
a monotonically incrementing counter, such as a real-time
clock (RTC) register. Processors such as [2,10] have an
upper and a lower RTC register. The upper register is 32-bit
wide and is clocked at 1 Hz. The lower register is 6-bit wide
in [2] and 32-bit wide in [10]. In both cases, the resolution
of the lower register is good enough for reading time
accurately. So far we have decided not to deal with overflow
of the upper RTC register since it would require 136 years
before overflow occurred. Essentially, whenever the OS

4

detects an interrupt while in the WDT mode, the very first
thing is to read the RTC time and subsequently update jiffies
and kernel time. Thus, jiffies no longer governs time, as in
conventional Linux. Rather, time governs jiffies.

Time is also updated on non-timer interrupts. The
reason for this is that the interrupt handler may call a time
function, or even attempt to set time. True time, or kernel
time, is a fundamental parameter of any operating system,
and it must be reliably and persistently updated regardless of
changes to the timing scheme.

3.3 Selecting the optimal low power state
The Power State Selector (PSS) routine selects the

optimal low power state to reduce overall energy
consumption and while meeting timing constraints. For
example, when exploiting the ClockSuspend state in the
Cirrus Logic EP7312, the PSS must know how long it takes
to exit the low power state in order to properly program the
hardware timer to generate an interrupt that accommodates
the exit delay, and thus guarantees timely execution of the
callback timer. Furthermore, it must compare the exit delay
to user or application specified demands to response times.
For example, if the user has to press a touch-screen for more
than 250 ms in order for the press to be registered, because
the exit delay out of the ClockSuspend state is 250 ms, then
that may be regarded as unreasonable. In another example,
when considering to use the PowerDown state of a
processor in favor of the ClockSuspend state, the PSS must
know how long it takes to transition into and out of that state
as well as know how much energy is consumed during the
transition periods. If too much energy is spent entering and
exiting the PowerDown state compared with the energy
savings experienced once in it, it would be more optimal to
remain in the less efficient ClockSuspend state. The PSS
must also know the resolution of the various available
hardware timer resources as well as their phase relationships
in order to calculate when a timer will be able to generate an
interrupt. For example the phase of the RTC interrupt
cannot always be changed. In case of the Cirrus EP7211 [2],
the RTC interrupt will always occur on a whole second
boundary in absolute time. In other words, if time is right
now 1234 s, and the next software timer expires in 1.5 s,
then the RTC can not be manipulated to generate an
interrupt at 1234s + 1.5s = 1235.5 s. In order to utilize the
RTC, one would have to adjust the RTC to interrupt at 1235
s, and then transition into a less efficient low power state
where the internal hardware timer can be used to generate
the remaining 0.5 s sleep time. Typically, internal hardware
timers have very fine grain resolution and their phases can
be easily adjusted by modifying their load value. In general,
all these timing details will be highly system dependent and
in many cases would have to be measured and experimented
with to get it right. For example, issues such as how much
state the processor has, whether it is saved by hardware or
by software, what type of memory the state is saved in, and
bus and CPU frequencies, all affect the transition time and

energy. A generic PSS algorithm is presented in Section 5.

3.4 Patch size and overhead
To implement the WDT scheme in ARM Linux

2.4.2-rmk1-bluemug7 requires about 800 new lines of code.
In addition, roughly the same amount of code line have been
deleted in the standard kernel version. The computational
overhead, when running at 18 MHz on the TestDevice (see
Section 4) is dependent on the timing mode. When the
kernel is in the WDT mode, the time to service a timer
interrupt has increased from 79 us in the conventional PT
kernel to 170 us in the WDT kernel. When the kernel is
already in PT mode, the time to service a timer interrupt has
increased to 100 us in the WDT kernel. So there is some
overhead, but when there is work to be done, the overhead is
less significant and this is what we desire since we do not
want to spend more time in handling timer interrupts.

3.5 Impact on system software
Some modifications to the system software are

necessary to use the WDT scheme. When the system
designer first brings up the WDT based kernel on his
device, it may not work perfectly, i.e., it doesn't skip timer
ticks as efficiently as expected. In this section we shall
discuss the most important and illustrative obstacles that we
have experienced when running the WDT scheme on the
TestDevice.

Blinking cursor: The first issue is related to the
user interface which often has blinking cursors to catch the
attention of the user, e.g., in a web browser's URL field or in
the command line of a shell prompt. Cursors typically blink
at 1 Hz, which means the screen needs to be updated two
times per second. One way to implement this update is to
register a timer function for callback every 500 ms. In the
case where it takes 250 ms to exit the ClockSuspend state in
the TestDevice, and where the RTC is only able to interrupt
on whole second boundaries, this blinking effect completely
disables the exploiting of the ClockSuspend state, and thus
voids the chance of any significant battery life gains. The
solution in these cases is to provide the tradeoff to the user
and let him make the choice.

Keyboard tasklet: Some system interactions are
harder to predict like the following example. We found that
when we bring up X11 that it always opens up a virtual
terminal in which it keeps looking for a keyboard to be
attached, presumably because X11 designers assumed
keyboards will be attached to all computers that use X11. A
"tasklet" is put on a queue to handle this inquiry. The tasklet
is initially put into disabled mode. It remains in this mode
until a keyboard is attached which will enable the tasklet so
it can run and remove itself from the queue. On the
TestDevice, we have no keyboard attached, and so the
tasklet remains permanently on the queue. This causes the
answer to the question, "Is there more work to be done?" in
Figure 1 to be, "Yes" and therefore the WDT mode is never
entered. This effect has a bigger impact on power

5

consumption than the blinking cursor. Not only is it not
possible to exploit the ClockSuspend state, but not a single
timer tick can be skipped. We resolved the issue by only
queuing the tasklet if a keyboard is attached.

Device driver-kernel interactions: Some device
drivers interact with peripheral cores such as the UART, the
LCD controller, the synchronous serial interface (SSI), etc.
These cores are disabled in the ClockSuspend state which
means that the devices they are connected to may be
rendered useless. For example, in the TestDevice a
touch-screen device is connected to the SSI via an external
A/D converter (ADC). When a user presses the
touch-screen, the driver/SSI sends a request-for-data to the
ADC. Next, the ADC takes a small but finite time to handle
the request. This delay, however, is long enough for the
Linux kernel to enter the ClockSuspend state. With SSI
there is no way for the ADC to wake-up the processor. Thus,
the touch coordinates never get sent to the processor, and so
the physical touch action results in no GUI action. To
resolve the issue we have introduced a generic mechanism
through which device drivers can prevent the WDT scheme
from exploiting the ClockSuspend state until the drivers
decide that their associated device is no longer needed.

Persistent kernel daemons: There is a of number
of daemons in the Linux kernel which are scheduled for
execution with intervals of one second or more, but which
can be safely run with much larger intervals when the
system is idling. For example, the kernel memory swap out
daemon, kswapd(), is executed every 1 s. Again, this will
cripple the operation of the WDT scheme, so we extended
the interval to 30 s. We did the same for the bdflush()
daemon which writes out dirty and aged file buffers to disk.
When the system is active, the normal values have to be
restored to preserve application level compatibility. So
there is a concept of changing these intervals depending on
whether the system is active or inactive.

RTC/software timer phase: In early experiments
with the WDT based kernel on the TestDevice (see next
section), the measured average power would vary
significantly every time the kernel was rebooted. By
examining the waveform of the dynamic power
consumption, we noticed that sometimes the system would
transition out of the ClockSuspend state prematurely and
then remain in the Idle state for up to a whole second before
running the software timer callback function. The root of the
problem was the RTC phase which cannot be adjusted. So
instead we adjust the phase of long-term (i.e., >1 s) timers to
coincide with the phase of the RTC clock. Short term timers
and timers that are not a multiple of one second are not
phase adjusted. As it turns out, in the TestDevice, the vast
majority of timers fall in the long-term category. This
optimizes the use of the RTC timer interrupt, increases the
time spent in ClockSuspend state and maximizes battery life.

As may be understood from the above, the WDT
scheme in general is sensitive to the way system software is
implemented and that a fair degree of tuning is required to

get it to work efficiently.

4. Experimental Results

In this section we shall present measurement of
average power consumption on an embedded platform with
the WDT scheme and with the PT scheme and with varying
computational loads. Our hardware test platform, called the
TestDevice, employs a Cirrus Logic EP7211 ARM based
32-bit RISC processor running at 18 MHz and which has 8
MB of DRAM and a small LCD which is always on (it
consumes 1.8 mW.) In order to enable the WDT scheme to
perform optimally, we implemented all the kernel fixes
discussed in Section 3.5. We made the same modifications
to the conventional PT kernel for the fairest possible
comparison even though they have a near zero impact on the
power consumption of the PT kernel.

4.1 Experimental Setup
Figure 4 shows the experimental setup used for

measuring average system power consumption on the
TestDevice platform.

TestDevice

1.0W

Vdc

Digital
Multimeter
(HP3458A)

PC

Oscilloscope
(VellemanPCS64i)

Ibat

HPIB cable

Parallel cable Coax

Figure 3 Experimental setup for measuring average power
consumption of the TestDevice platform. The PC is used for
collecting data from the multimeter and for monitoring
power waveforms captured by the oscilloscope.

The current consumption, Ibat, is found by
measuring the voltage across a 1 Ohm resistor inserted in
series with the DC supply (Vdc=5V.) The digital multimeter
(DMM) measures the voltage drop with a resolution of 10
nV, or equivalently 10 nA, which is much smaller than the
minimum current draw of the TestDevice of around 500 uA.

Further, the DMM samples Ibat every 1 ms. Even though 1
ms sampling time is not able to capture the instantaneous
power consumption of every computing event, by virtue of
sampling over an extended interval, the power fluctuations
associated with various computing events will average out.

6

This is true if these events are repetitive events and if the
events are not phase aligned with the sampling timer in the
DMM. The latter is ensured by detuning the timer to 0.99
ms. There is no correlation between the sampling times in
the DMM and computational events on the TestDevice. The
computer (PC) is used to control and to collect data from the
DMM, as described in [12]. The PC is also used to collect
data from a sampling oscilloscope for real-time display of
the power traces on the PC's monitor. This gives us visual
assurance that the TestDevice is operating as expected. This
turned out to be an invaluable debugging tool.

On the TestDevice we run a program, simm_load(),
to simulate a real compute task in a controlled fashion.
simm_load() may be adjusted to run for any continuous
length of time and to be scheduled with any periodicity.
simm_load() repeatedly executes two loops, Loop1 and
Loop2, within a master loop. Loop1 executes memory
bound instructions for 75 us, and Loop2 executes CPU
bound instructions for 150 us. During the memory and CPU
bound periods, the average current consumption is 63 mA
and 16 mA, respectively. The load function is executed as a
timer callback function that can be adjusted to simulated
different types of repetitive work loads.

0.125 HzNpops,0: Frequency of background timer
pops

22.8mWPtrans,WDT: trans power consumption in
WDT case (ClockSuspend state)

220 msttrans,WDT: trans time in WDT case
(ClockSuspend state)

0ttrans,PT: trans time in PT case (Idle
state)

4.57mWPpm,WDT: pm power consumption in
WDT case (ClockSuspend state)

23.3mWPpm,PT: pm power consumption in PT
case (Idle state)

155mWPactive: active power consumption

Table 2. Parameters measured on the TestDevice.

As part of examining the dynamic power
consumption, the following parameters were measured as
shown in Table 2. These parameters are typical parameters
that a system designer should measure in order to determine
if the WDT scheme can offer significant battery life
improvements if adopted. We shall also use these
parameters in Section 5.4 to evaluate the accuracy of the
model of the battery life gain presented in Section 5.

4.2 Measurement Results
The experimental procedure is as follows. The

Linux kernel and X11 are loaded onto the TestDevice. Then
the load is set to one of the following values, {0, 0.001,

0.003, 0.01, 0.03, 0.1, 0.25, 0.5}. The load routine is
programmed to run either once every minute or once every
three seconds. Say the load is 0.03, then the load routine
will run for either 1.8 s once every 1 minute or 90 ms every
3 s. The PC in Figure 3 then collects data from the
multimeter over a period of exactly 4 min. During this time,
242400 data points are collected of which the average is
calculated. This gives us the average power consumed by
the TestDevice. This measurement is repeated 4 times to
optimize accuracy which is better than 1%. We go through
the same steps with both the WDT and the PT based kernel.

Figure 4 shows the gain in battery life achievable
with the WDT based kernel as a function of the
computational load on the system and with the workload
timer pop frequency as parameter, i.e., either 1, 20 or 60
pops per minute (i.e., 1/60, 1/3 or 1 Hz). In all cases the
WDT scheme is skipping timer ticks between work items,
and in between it returns to the ClockSuspend state. As the
figure shows, the load timer pop frequency has a significant
impact on the battery life gain, even for very light loads.
The reason for this is that for a given load, the more this
load is fragmented, or spread out, in time, proportionally the
more the transition energy of exiting the ClockSuspend state
is taking its toll on the total energy consumption. Even for
an infinitely small load, the processor has to wake up and
transition out of ClockSuspend state just to execute a couple
of instructions which results in wasted transition energy.

0.001 0.01 0.1 1

Workload

0

1

2

3

4

5

B
at

te
ry

 L
ife

 G
ai

n

 Workload

Load timer pop frequency:
1/60 Hz

1/3 Hz
ClockSuspend state

Idle state

1 Hz

Figure 4. Measured battery life gain (markers) as function
of workload achieved with the WDT scheme. Solid lines
represent modeled results from Section 5.4.

As expected, the smaller the load, i.e., the more the
system idles, the larger is the gain. As the load increases, the
power contribution from the load starts to dominate,
essentially washing out the much smaller contribution from
the low power state. Still, gains >2 are achieved for loads of
4-8% and smaller. Also shown on the figure is the result of
just skipping timer ticks and only using the Idle state (red
markers), i.e., simulating the case where, say, a user informs
the system that he cannot accept the 220 ms reaction time.
This result is independent of the load frequency since there
is no transition energy penalty when exploiting the Idle

7

state. As seen from the figure only minor gains are
achievable by skipping ticks. For example, for workloads
smaller than 0.1%, the gain is 4.4%.

5. Estimation of Battery Life Gain

In this section we shall first introduce a simple
formula for determining the gain in battery life which may
be achievable with the WDT scheme over the PT scheme.
Then the formula will be used to model the battery life gains
for various types of systems.

5.1 Modeling Battery Life Gain
Figure 5 is an illustration of some of the variables

that will be used in the following and their association to the
dynamic power consumption of a computing system.

tactive tenter tpm texit

low power stateppm

penter

pactive

Power

Time

pexit

 Operation state

transition states

Figure 5. Illustration of the power and time variables
associated with the dynamic power consumption of a low
power embedded computing system.

The lifetime, , of an ideal battery with capacity,Tbat

, and supplying an average power consumption of Cbat Pavg

may be expressed as . In practice batteriesTbat = Cbat/Pavg

are non-ideal [13] (i.e., the capacity, , is function of Cbat

.) The impact of this non-linearity is mostly on thePavg

absolute value of and is most predominant for largeTbat

values of . In this paper, however, we are mostlyPavg
concerned with idling devices which consume very small
powers most of the time. is the average powerPavg
consumption of the computer system over the lifetime of the
battery and is expressed as

(Eq. 1)Pavg = Pactive * tactive + Ptrans * ttrans + Ppm * tpm

where

tk = tk/(tactive + ttrans + tpm), k c {active, pm, trans}

is the relative time spent in the various system states. active

is the system state in which the processor is executing
instructions (also sometimes called Operation state) and
where memory may be accessed. pm is the system state in
which the processor and memory are in a low power state.
trans is the system state in which the processor is
transitioning into and out of the pm state and where
memory may be accessed. The system states, pm and trans,
furthermore are broken into sub-states in the sense that there
may be multiple low power pm states, and correspondingly
multiple trans states. and are the average systemPk tk

power of and the average time spent in the various system
states. In general, will be composed of many smallertk

contributions as the system dynamically transitions between
the system states. In addition may vary duringPactive
execution. We shall assume that any time a given system
state is used, the power consumption is always the same.

The trans time and power are composed of two
contributions, namely,

(Eq. 2)ttrans = tenter + texit

and

(Eq. 3)Ptrans = (Penter * tenter + Pexit * texit)/ttrans

where and are the transition delay and averagetenter Penter

power associated with entering the pm state while and texit

 are the transition delay and average power associatedPexit

with exiting the pm state.
Since we want to quantify the gain in battery life

that may be achieved by using a WDT based timing scheme
rather than a conventional PT scheme, the key parameter to
calculate is the battery life gain, , which may be expressedc
as

(Eq. 4)c = Tbat,WDT/Tbat,PT = Pavg,PT/Pavg,WDT

The battery life gain is a key parameter that the
mobile system designer has to determine to know if the
WDT scheme will provide worthwhile battery life
improvements.

5.2 Almost Zero Device Activity
In this subsection we will show the improvement in

battery life that may be achieved with the WDT scheme
over the PT scheme due to elimination of the active power
consumption for servicing of timer interrupts. In the WDT
case, it will be assumed that there is almost never any need
for the device to wake up. In other words, the hardware
timer is programmed to interrupt the processor at an infinite
time, and therefore . Even though a system doestpm = 1.000
wake up every now and then due to background timer pops
(OS daemons), the active contribution to the overall power
consumption in the TestDevice can be safely ignored. In the

8

PT case, we shall assume that since only thet trans = 0
processor Idle state is exploited; and as may be seen from
Table 1 the transition time is so small that it may be ignored.
At this point we shall make the analysis somewhat specific
to the TestDevice. Basically, we shall use the measured
value of for an averaged timer interrupt. Next,tactive

realizing that the kernel behaves in a highly repetitive
fashion in the PT case with a periodicity of 10 ms, we get

 = = . Thus, istactive 0.079ms/10ms 0.0079 tpm = 0.9921
spent in the pm state. Using these values in Equation 1 and
4, the battery life gain, , of the WDT scheme over the PTc
scheme may be calculated as

c = (Pactive * 0.0079 + 0.9921Ppm,PT)/Ppm,WDT

 = (Pactive/Ppm,PT * 0.0079 + 0.9921) * (Ppm,PT/Ppm,WDT)
(Eq. 5)

First we shall look at the benefits of the WDT
scheme by examining what happens in a system where the
same pm state is used in both the WDT and PT case, i.e.,
when . This reduces Equation 5 toPpm,WDT = Ppm,PT = Ppm

(Eq. 6)c = Pactive/Ppm * 0.0079 + 0.9921

This will extract the active power savings due to elimination
of all the energy consumed by handling the timer interrupt.
Figure 6 shows as a function of the relative differencec
between active and pm power, . Pactive/Ppm

0 20 40 60 80 100
Pactive/Ppm

1

1.2

1.4

1.6

1.8

2

B
at

te
ry

 L
ife

 G
ai

n

Figure 6. Battery life gain of the WDT scheme as function
of the relative difference in power consumption between the
active and pm states, .Pactive/Ppm

As may be seen from Figure 6, and from Equation
6, the larger the ratio is between the pm and the active
power, the larger is the WDT battery life gain. From Figure
6 one may also quickly determine the relative increase in
battery life, and reduction in power consumption, achievable
with the WDT scheme if the active and pm powers of a
given target system are known. For example, we measured

 = 6.7 on the TestDevice which should yield aPactive/Ppm
4.5% gain in battery life. The measured gain was 4.4%.

Equation 6 must be used with caution. For
example, by increasing the frequency of our system from 18
MHz to say 74 MHz would increase almost four-fold.Pactive

However, , would not necessarily decrease four-foldtactive

correspondingly, due to cache misses and due to the slow
memory used in the TestDevice. However, according to
Equation 6 this is a good thing since the larger is, thetactive
higher the gain. Nevertheless, it would be a mistake to tune
the processor frequency to 74 MHz just for the sole purpose
of extending battery life. In fact, the absolute battery life
would decrease in both the PT and the WDT case, except it
would decrease more in the PT case. On the other hand,
systems that do have high in their most powerPactive/Ppm
efficient mode, and which are slow to execute the timer
interrupt, will benefit more from adopting the WDT scheme.

0 20 40 60 80 100

Pactive/Ppm,pt

0

5

10

15

20

B
at

te
ry

 L
ife

 G
ai

n

 Ppm,PT / Ppm,WDT =10

 1
 2
 3
 4
 5
 6
 7
 8
 9

Figure 7. Battery life gain of the WDT scheme as function
of with as parameter.Pactive/Ppm,PT Ppm,PT/Ppm,WDT

Next, we shall consider what happens when the
WDT scheme enables the OS to exploit a low power system
state, which could not otherwise be exploited in the PT case,
just like it was the case with the ClockSuspend state with the
TestDevice in section 4. In our first scenario, we shall
ignore the transition energy, and use Equation 5 in which the
last factor, , represents the improvementPpm,PT/Ppm,WDT
due to the exposure of the untapped low power state. In fact,
the gain in Equation 5 is really the product of two distinct
gains; the gain due to elimination of the active switching
energy in workless timer interrupts and the gain due to
exposure of a more efficient low power state. Figure 7
shows the result of applying Equation 5 for the range of

. As seen, the battery life1 [Ppm,PT/Ppm,WDT [10
improvement scales directly with the ratio between the pm
powers in the two timing schemes, and that the gains may be
quite significant, as was also seen in section 4.

9

5.3 Non-Zero Device Activity
In the previous section we assumed the scenario

where the mobile device is idling nearly 100% of the time.
In reality, mobile devices in the "instant on" mode will for
various reasons wake up on occasion to perform work, such
as on user interrupt, network interrupt, clock applications,
slow changing screen savers, background timer pops (e.g.,
memory swap out daemon), etc. We shall introduce the
workload parameter, , which accounts for the relative timea
spent in the active state performing real work but excluding
time spent in the timer interrupt handler. Thus the total
relative time spent in the active state becomes

 and in the PT andtactive,PT = a + 0.0079 tactive,WDT = a ∏

WDT cases, respectively, where = =a ∏ a * (1 + tactive,irq)
. The purpose of is to account for thea * (1 + 0.0079) a ∏

energy in periodic timer interrupts that occur while there is
work to be done in the WDT case. By incorporating the
assumptions above and again using , the batteryt trans = 0
life gain, , may be calculated from Equation 4 and 1 asc

 c = (Pactive/Ppm,PT * (a + 0.0079) + 0.9921 − a) /
 (Eq. 7)(Pactive/Ppm,PT * a∏ + Ppm,WDT/Ppm,PT * (1 − a∏))

2 4 6 8
Pactive/Ppm,pt

0

2

4

6

8

10

B
at

te
ry

 L
ife

 G
ai

n

0 2 4 6 8 10

Pactive/Ppm,pt

0

2

4

6

8

10

B
at

te
ry

 L
ife

 G
ai

n

 a=0.1

 a=0.01

2

4
6
8

10

2

4

6

8

10

1

1

Ppm,PT/Ppm,WDT

Ppm,PT/Ppm,WDT

Figure 8. Battery life gain of the WDT scheme as function
of for device workloads, = {0.01, 0.1}, andPactive/Ppm,PT a
with = {1, 2, 4, 6, 8, 10} as parameter.Ppm,PT/Ppm,WDT

Figure 8 shows the relative increase in battery life
for some select values of the device workload, ={0.01,a
0.1} and with as parameter. For workloadsPpm,PT/Ppm,WDT

smaller than = 0.001, the workload has insignificanta
impact and the gains approach the case shown in Figure 7.
As in Figure 7 has much more impact on thePpm,PT/Ppm,WDT

battery life gain than . Note, however, how thePactive/Ppm

workload may significantly reduce the benefit of Pactive/Ppm
. (Note that the x-axis on Figure 7 goes to 100 while in
Figure 8 it only goes to 10.) As may be seen, a workload of

 = 0.01, which equals 14 min of device activity per day, thea
impact is clearly evident for large values of Ppm,PT/Ppm,WDT

and . Though small, the battery life gain is stillPactive/Ppm,PT
large enough to merit the incorporation of the WDT scheme.
In fact, even when the workload increases to = 0.1, whicha
equals 2.4 hours of device activity per day, there is still a
clear advantage of adopting the WDT scheme over the PT
scheme, assuming that the WDT scheme does indeed enable
the exploitation of a significantly more efficient power state.

5.4 Non-Zero Transition Energy
In this section we shall incorporate the transition

energy into the analysis. The main complication is that the
transition energy is dependent on the nature of the workload,

. For example, a device can have a task running whicha
represents a 1% workload, i.e., = 0.01. From an energya
perspective, transition energy is consumed every time the
workload causes the processor to transition out of a low
power state. Say the workload equals 0.6 s of execution time
every 60 s. Then if the workload is executed only once
every 60 s, then only one unit of transition energy is
consumed. If however the 1% workload is spread out over
10 executions every 60 s (i.e., 0.06s on every execution)
then 10 units of transition energy is consumed. Thus, in
essence, the transition time may be regarded as a
non-computational and wasteful workload. To include
transition energy into the model, we introduce the
parameter, , representing this transitionalb
non-computational workload and which, for > 0, may bea
expressed as follows

(Eq. 8)b = ttrans * (Npops,0 * (1 − a ∏ − b) + Npops,load)

In Equation 8, accounts for the average number ofNpops,0
timer pops per second, i.e., the timer pop frequency, in the
system contributed by background timers such as file buffer
and virtual memory daemons and other smaller applications
such as a clock application, which will always exist, and
pop, regardless of the presence of an additional workload.
When an additional workload is introduced, the number of
timer pops per unit time will increase correspondingly by

. As either of the workloads, or , increase, theNpops,load a ∏ b
likelihood of a background timer popping during the

10

workloads increases. However, a timer that pops during the
workload does not give rise to wasted transition energy
since the processor is not in a pm state when the timer pop
occurs. Therefore, the effective number of background timer
pops, , that do give rise to wasted transition energyNpops,0

must be reduced as and increase. To account for thisa ∏ b
effect, we approximate the reduction in background timer
pops by multiplying the correction factor onto (1 − a ∏ − b)

 in Equation 8. The assumption behind this correctionNpops,0
is that background timers are independent of the workload
and occur randomly in time. To give an example, say that

= 0.125 Hz (i.e 7.5 timer pops per min.). Now, sayNpops,0
the workload is 50%, this reduces the impact of the
background timers on the transition energy to 0.0625 Hz.

In the general case, must be introduced in bothb
the PT and the WDT power consumption expressions. By
isolating on the left side of Equation 8, Equation 7 mayb ∏

now be modified to

c = (Pactive * (a ∏ + 0.0079) + Ptrans,PT * b +
 Ppm,PT * (0.9921 − a ∏ − b)) /
 (Pactive * a ∏ + Ptrans,WDT * b + Ppm,WDT * (1 − a ∏ − b))

(Eq. 9)

Note that is dependent on the particular pm state beingb
exploited. For example, for the Idle state, can be ignored.b
But for the ClockSuspend state, could be significant, asb
was seen in Section 4. Thus in Equation 9, it is implied that

 really is in the numerator and in theb bpm,PT bpm,WDT
denominator. Also note that we have ignored the time spent
in the background timers, i.e., that they are much faster than
the timer interrupt handler.

With Equation 9, it is now possible to determine
the potential battery life gains of the TestDevice in Section
4. Beforehand, we measured a number of parameters on the
devices, which are listed in Table 2 in Section 4. Then we
inserted these parameters in Equation 9 and let the workload
range from {0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.25, 0.5,a c
1}. We considered two values of the workload timer pop
frequency, {0.0167, 0.3333}, which correspondsNpops,load c
to 1 and 20 timer pops per minute, respectively.

The results are shown in Figure 4 (solid lines). As
may be seen there is near perfect agreement between
measurements and modeled results. In view of the fact that
all the parameters in Equation 8 and 9 are based on
measuring the parameters in the same hardware from which
we obtained the experimental results, this is good news for
the device designer. It indicates that the designer may be
able to quite accurately estimate possible battery life gains
with the WDT scheme using our modeling methodology.

Note that in principle, with the WDT scheme, it is
possible to exploit two or more pm states, and thus two or
more associated trans states as well. From a modeling
perspective, this is difficult to account for as it is very
application specific. Basically it would be a challenge to the

device designer to estimate the average pm and trans
power/times for his/her particular device for proper
evaluation of the WDT scheme.

6. Selecting the Optimal Power State

In this section we shall present the Power State
Selector (PSS) algorithms and then apply it to a
hypothetical, yet realistic, scenario.

6.1 Power State Selection Algorithm
Let us denote the total transition time entering and

exiting a power state i as , the total average transitionttrans,i

power consumed during as , the time spent in theptrans,i

power down state as , and the average power consumedtpm,i

while in the power down state as . The PSS routineppm,i
may then select the proper state i by first determining if it is
even legal to enter a certain state i according to

(Eq. 10)min{ttimeout, tresponse} > ttrans,i

 where is the timeout value of the nearest callbackttimeout

timer and is the user/application specified maximumtresponse
system response time. Equation 10 states that only if the
timeout value and the response time both exceed the total
transition time of power state i, then power state i is a legal
state. Having now identified the legal power states, the PSS
routine will next determine which of the legal power states
has the lowest overall energy consumption, , byetotal,i
calculating the potential overall energy consumption of each
of the legal power states as

(Eq. 11)Etotal,i < Etotal,j, j ! i

where the state, i, that satisfies this equation is the optimal
state and where

Etotal,i = Etrans,i + Epm,i

 (Eq.12)= Ptrans,i * ttrans,i + Ppm,i * tpm,i

(Eq. 13)ttimeout = ttrans,i + tpm,i

Note that is the maximum time thettimeout

processor/system may be put to sleep. But as may be seen
from Equation 13, in reality the sleep time is reduced by the
state transition time.

6.2 PowerDown versus ClockSuspend State
In this section we shall determine how long a sleep

interval, , is required to make the PowerDown (PD)ttimeout

state the optimal state and assuming that the only other

11

"competing" state is the ClockSuspend state. In other words,
we shall determine when in Equation 11Etotal,PD < Etotal,CS

is true.
Table 1 lists the power ranges for the two states.

Considering these ranges and applying them to Equation 11
and 12, the following approximations can be made. Firstly,
the size of in recent processors is very smallttrans,CS

(100-200 us) thus making so small (<1 uJ) that itEtrans,CS

can be ignored. Secondly, since is so small, it mayttrans,CS

be ignored in Equation 13 thus making = .tpm,CS ttimeout

These assumptions leads to the following expression which
determines when it pays off to use the PD state

ttimeout > (Etrans,PD − Ppm,PD * ttrans,PD)/(Ppm,CS − Ppm,PD)

Recognizing now that the only difference between the power
consumption in the CS and PD states is the processor's pm
power consumption, all other system contributions to the
denominator cancel out. And since from Table 1 it may be
seen that << , the expression reducesPpm,cpu,PD Ppm,cpu,CS
to

(Eq. 14)ttimeout > (Etrans,PD − Ppm,PD * ttrans,PD)/Ppm,cpu,CS

Figure 9 shows the value of which satisfiesttimeout
Equation 14 as a function of the processor's power
consumption in the CS state and for some select values of
the PD transition energy. The range we chose for the PD
transition energy is intended to be representative of the total
energy required to save and restore processor context
to/from SDRAM. In the figure we have ignore the
contribution from which should be aPpm,PD * ttrans,PD

good approximation for power levels smaller thanPpm,PD

0.2 mW and for relatively fast transition times, ,ttrans,PD
smaller than 5 ms.

0.25 81 2 40.5

Ppm,cpu,cs [mW]

0

20

40

60

80

100

S
le

ep
 ti

m
e

[m
s]

Etrans,PD
 = 400 uJ

200 uJ

100 uJ

50 uJ
25 uJ

Ppm,cpu,CS [mW]

 t
tim

eo
ut

[m
s]

tHZ

Figure 9. Sleep time, , versus processor's CS powerttimeout
consumption. Curves indicate the sleep time at which the PD
state becomes the optimal state.

The figure shows that the required sleep time, to
make the PD state become the optimal state, decreases as

 decreases and as increases. KeepingEtrans,PD Ppm,cpu,CS
in mind that the timer interrupt interval in conventional
Linux OS is tHZ = 10 ms, the figure also shows that for the
predominant range of values considered in this example, it
would not be possible to use the PD state with the
conventional PT timing scheme. In other words, the WDT
scheme enables the use of the PD state for increased battery
life gains. We have not verified this yet. However, based on
data published on IBM's most recent PowerPC405LP
processor [10], power consumption in the ClockSuspend
and PowerDown states are 300 uW and 54 uW,
respectively. For a processor like the PowerPC405LP,
which is based upon a PowerPC405 core, we estimate that
the total transition energy (including SDRAM memory
energy), required to save/restore the processor context and
write out data-cache, may be as small as = 25 uJEtrans,PD
in the most optimistic case. Consequently, from Figure 9, it
may be concluded that it would be too "costly" to exploit the
PD state with the conventional PT scheme as it requires
sleep times >100 ms to make it worthwhile. On the other
hand, with the WDT scheme it is very likely that such long
sleep periods can be produced as from Table 2 it may be
seen that the average sleep period is around 8 s.

We anticipate that the WDT scheme will enable the
dynamic exploitation of the PowerDown, or PowerDown
like, states of other processors as well, such as Intel's PXA
250/210 [6] and SA1110 [4] processors.

6.3 Elimination of Transition Energy
In view of the above, assume that indeed it is

possible to exploit the PowerDown (PD) state between the
10 ms PT timer ticks. By then calculating the total system
energy from Equation 12 for the PT and the WDT cases
assuming = 25 uJ, = 50 uW, an averageEtrans,PD Ppm,PD
sleep time of 8 s (in the WDT case according to Table 2),
and an average sleep time of 10 ms (in the PT case, where
we ignore the transition time which we expect to be smaller
than 1 ms), the following total average system power levels
may be calculated

Pavg,PT = (25uJ+(50uW+Pother) * 10ms)/10ms
 = 2.5mW+Pother

Pavg,WDT = (25uJ+(50uW+Pother) * 8s)/8s
 = 50uW+Pother

where is the average background power consumptionPother
due to SDRAM self-refresh, power supply loss, etc., and
which is probably not smaller than 1 mW (in a system with
say 16 MB SDRAM and the LCD and other peripherals
turned off.) The above equations clearly demonstrate the
impact of the transition energy on the total power

12

consumption in the PT case as well as the WDT schemes
ability to eliminate these energies. For a very low power
system (e.g. = 1 mW), the average power in thePother
WDT case is 3.5 times smaller than in the PT case.

7. Related Work

ACPI [14] is probably the most widely known
power management approach in which the processor and
connected devices, such as display, hard-drive and network
interface, can register their PM capabilities with the OS to
enable the OS to disable the devices when certain criteria
are met, typically when a relatively long time of device
inactivity has elapsed. Vahdat et al. [15] make a case for
revisiting basic decisions in operating systems design by
keeping power consumption in mind. And most recently,
along the same line of thought, Zeng et al. [16] actually
demonstrated a Linux system which uses energy
consumption as a resource parameter to schedule processor
time for applications. Weiser et al [17] and Grunwald et al.
[18] consider several methods for varying the clock speed
dynamically under control of the operating system. Lu et al.
[19] investigate arranging the execution orders of tasks so
that idle periods are clustered together instead of being
scattered. Energy aware task scheduling, CPU instruction
scheduling, wireless communication protocols, sensor
networks, etc., are being studied by several researchers.

Researchers in mobile systems have also
investigated how applications can be adapted to reduce
energy consumption [12]. Some applications can adapt
themselves to consume fewer energy resources when
needed, such as lowering the video frame rate, using a
smaller dictionary for voice recognition, multi-resolution
rendering, etc. The idea of using devices in the environment
that can help with computation to reduce the power
consumed by the mobile device has also been investigated
[20,21]. Lorch and Smith [22] describe several software
strategies for energy management for portable devices.

The task of turning hardware resources on or off is
best left to the operating system since it keeps track of all
the activities in the system. So one question that arises is
what other operating systems do. We examined the
operation of Microsoft WinCE [23] and RTLinux [24].
WinCE is a non-real-time OS and uses a periodic timer tick.
But it also allows the kernel to skip timer ticks according to
the next scheduled computing task and if there are currently
no active tasks/threads executing. This is no different than in
our WDT scheme. It is impossible, however, to comment on
other similarities and differences between WinCE and the
WDT scheme since the WinCE source code is not available
and the information in [23] is sparse. Based on [23], there is
no indication that WinCE takes the transition time and
energy into account when using the Sleep state. Nor is there
any indication that WinCE has the capability to exploit more
than one low power state, or that WinCE has the capability

to exploit the most efficient low power state among two or
more low power states.

One OS that does not rely on a periodic timer tick
is RT Linux [20]. However, it is only the real-time part of it
that works that way. The Linux kernel itself is treated as a
preemptible non-real-time thread of lowest priority, and is
interrupted periodically every 10 ms. The similarity between
the real-time part of RT Linux, and other real-time kernels
for that matter, and our WDT scheme is that every timer
event is separately scheduled by programming a one shot
timer, except we rely on the PT scheme when the system is
not idling.

There are other Linux versions that do skip timer
ticks, for example Schwidefsky [25]. However, his aim is
not to save power but rather to reduce computational
overhead in multi-image systems in which hundreds of
Linux images may run simultaneously on just a few
processors (e.g. in mainframe systems). Typically, many of
these images will be idling and/or even if not idling the
majority of the timer interrupts do nothing more than update
kernel and process times. The accumulated computational
load from servicing the excessively many timer interrupts
starts to bog down the system performance. By only
allowing timer interrupts associated with work items, the
accumulated load can be significantly reduced. Timer ticks
are skipped even while there is work to be done. jiffies and
kernel reference time are updated either when referenced or
on every entry into kernel space. A second hardware timer is
needed to timeout the current process that is running, which
is how multitasking is facilitated. It is possible that jiffies
and kernel time do not get properly updated if too much
time is spent in kernel space. There is also a complication in
the sense that the current nearest timer may be modified, or
an even shorter timer may be added, while the current
process is running. The WDT scheme has none of these
problems which arise simply because of the need to skip
ticks during work. In embedded devices there is no incentive
in skipping timer ticks during work, since these ticks present
a negligible power drain and computational load.

OSs such as PalmOS, VxWorks, and REAL/IX use
periodic timer interrupts, but some allow for variation in the
frequency of the timer interrupt. Sometimes this interval is
programmed to small numbers so that the operating system
can respond at finer granularities such as 1 us as opposed to
10 ms. Presumably one could increase the periodic timer
interrupt interval from 10 ms to larger values so that the
device could be in a lower power state in between, however
among other things the responsiveness of the system would
suffer. In fact we attempted this as a first solution but
quickly abandoned it because software timers are based on
the assumption that the timer interrupt interval is constant.
Also, several portions of Linux seem to have the 10 ms
interval hard coded into its code base.

13

8. Conclusion

We presented the details of implementation of the
Work Dependent Timing scheme under Linux and
corresponding experimental and modeling results. The
WDT scheme was designed to skip timer ticks whenever the
OS is idling and exploit the most optimal low power state
with low complexity and computational overhead. We know
of no other power management approach that offers the
power efficiency and aggressiveness of the WDT scheme.
The one particular property of the WDT scheme that makes
it so efficient is the tight and seamless integration into the
core kernel.

One of the main benefits of the scheme is that the
skipping of many successive timer ticks increases the time
the processor may go to sleep. In turn, this effect may
expose a more efficient low power state. For a
predominantly idling but "instant on" mobile device, this
may potentially result in significant battery life gains. Our
experiments with the TestDevice showed a battery life gain
of 4.6 due to the exposure and exploitation of the
ClockSuspend state. Secondly, in processors that have a
PowerDown state, the scheme can essentially eliminate the
fairly large energy associated with transitioning into and out
of the state periodically with the PT scheme. Thirdly, in
cases where there is a large differential between the system
pm power and the system active power, i.e., greater than a
factor of thirty, the WDT scheme may increase the battery
life by more than 25%. In order to use our technique in
Linux, some device drivers had to be modified, but we
believe the changes are minimal. Our method can be
combined with other power management schemes such as
frequency and voltage scaling, application driven power
management, etc.

 We also introduced a simple analytical model that
may be used by mobile device designers to determine
whether the WDT scheme would provide a worthwhile
increase in the battery life for the device they are building.
The model showed good agreement with the experimental
results. Finally, we presented a Power State Selection
algorithm and combined it with the WDT scheme. With this
algorithm we predict that the PowerDown state of advanced
mobile processors can be much more efficiently exploited
with the WDT scheme, and that in fact in some cases this
state can only be exploited dynamically with the WDT
scheme, and not at all with the PT based kernel.

 We hope that more devices will use this technique
to improve the battery life.

References

[1] N. Kamijoh, T. Inoue, C. M. Olsen, M. T. Raghunath,
C. Narayanaswamy, “Energy trade-offs in the IBM

Wristwatch computer,” Intl Symp. Wearable
Computing , 2001.

[2] Cirrus Logic, "EP7211: Data sheet," May 1999.
[3] Cirrus Logic, "EP7312: Data sheet," May 2002.
[4] Intel, "Intel StrongARM SA-11100 Microprocessor for

Portable Applications," Brief Data sheet, April 2000.
[5] Intel, "The Intel PXA250 Applications Procesor: White

Paper," Feb 2002.
[6] Intel, "Intel PXA250 and PXA210 Applications

Processors: Developer's Manual," Feb 2002.
[7] Motorola, "MC9328MXL/D," Advance information,

Dec. 2002.
[8] Hitachi, "SH7750 series: Hardware manual,"July 2002.
[9] NEC, "Vr4181: User's manual," Sept. 2000.
[10] K.J. Nowka et al, "A 32-bit PowerPC system-on-a-chip

with support for dynanmic voltage scaling and dynamic
frequency scaling," IEEE J. Solid State Circuits, Vol.
37, No. 11, Nov. 2002.

[11] Max Baron, "Cool Performance for Handhelds,"
Microprocessor Report, Aug 2002.

[12] J. Flinn, M. Satyanarayanan, "Energy-aware
adaptation for mobile applications," 17th ACM
Symposium on Operating Systems Principles, pp 48-
63, 1999.

[13] D. Linden, "Handbook of Batteries," 2nd Edition,
McGraw Hill, 1994.

[14] Compaq, Intel, Microsoft, Phoenix, Toshiba
Corporations,"Advanced Configuration and Power
Interface Specification," Rev.2.0a, March 2002.

[15] A. Vahdat, A. Lebeck, C. S. Ellis, "Every Joule is
Precious: The Case for Revisiting Operating System
Design for Energy Efficiency", 9th ACM SIGOPS
European workshop, September 2000.

[16] H. Zeng, X. Fan, C. Ellis, A. Lebeck, A. Vahdat,
"ECOSystem: Managing energy as a first class
operating system resource," Proc. ASPLOS, October
2002.

[17] M. Weiser, B. Welch, A. Demers, S. Shenker,
"Scheduling for Reduced CPU Energy," Symp. on
Operating Systems Design and Implementation, pp.
13-23, 1994

[18] D. Grunwald, P. Levis, C. Morrey III, M. Neufeld, K.
Farkas, "Policies for dynamic clock scheduling," Symp.
on Operating Systems Design and Implementation, pp
78-86, Oct 2000.

[19] Y.-H. Lu, L. Benini, G. D. Micheli, "Low Power Task
Scheduling for Multiple Devices," International
Workshop on Hardware/Software Codesign, pp. 39-43,
2000.

[20] A Vahdat, T. Anderson, M. Dahlin, E. Belani, D.
Culler, P. Eastham, C. Yoshikawa, "WebOS: Operating
System Services for Wide Area Applications,"
Proceeedings of the Seventh IEEE Symposium on High
Performance Distributed Systems, Chicago, Illinois,
July 1998.

[21] R. Balan, J. Flinn, M. Satyanarayanan, S.

14

Sinnamohideen, "The Case for Cyber Foraging," Proc
Tenth ACM SIGOPS European Workshop, Sep 2002.

[22] J. Lorch, A. J. Smith, "Software Strategies for Portable
Computer Energy Management," IEEE Personal
Communications Magazine, Vol 5 No 3 pp. 60–73,
June 1998.

[23] http://msdn.microsoft.com/library. Search for "WinCE
power management".

[24] V. Yodaiken, M. Barabanov, "A Real-Time Linux,"
Proc. of USENIX Annual Tech. Conf., 1997.

[25] Martin Schwidefsky, "No 100 HZ timer!",
http://lwn.net/2001/0412/a/ibm-timer.php3.

15

