
RC22799 (W0305-064) May 13, 2003
Mathematics

IBM Research Report

BAC: A BCP Based Branch-and-Cut Example

Francois Margot
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research
Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

BAC : A BCP based Branch-and-Cut Example

François Margot1

May 2003

Abstract

This paper is an introduction to the Branch-and-Cut-and-Price (BCP)
software from the user perspective. It focuses on a simple example illus-
trating the basic operations used in a Branch-and-Cut: cuts and heuristic
solutions generation, and customized branching.

1 Introduction

This paper is an introduction to the Branch-and-Cut-and-Price (BCP) soft-
ware available in the COIN repository [1]. Its scope is rather limited as its goal
is to allow a new user to develop quickly his first application. The perspective
is from a user point of view, skipping implementation details and options that
are irrelevant for developing a simple application (i.e. “the less I know about
BCP, the better”). In particular, it focuses only on setting up a Branch-and-
Cut algorithm, as adding the column generation process should not be too
difficult once the Branch-and-Cut part is understood and set up.

All parts of the example were written for illustration purposes and were chosen
to be mathematically as simple as possible. No claim is made regarding the
efficiency or style of the code of the examples. Some operations could be done
more efficiently by using additional features of BCP, at the cost of clarity.
Learning how to use additional features and facilities of BCP can be done
later on.

1Department of Mathematics, University of Kentucky, 715 POT, Lexington, KY
40506-0027, U.S.A. Email: fmargot@ms.uky.edu .
Work done while visiting the Department of Mathematical Sciences, IBM T.J. Watson
Research Center,P.O. Box 218, Yorktown Heights, NY 10598, U.S.A.

The reader is assumed to be familiar with the Branch-and-Cut process and its
standard terminology. (An excellent introduction can be found in [4, 6, 7, 8].)
Basic knowledge of C++ is also required.

The code of the example BAC is based on the example BranchAndCut written
by L. Ladányi and available in the COIN repository. These two examples
complete each other, BAC illustrating the customization of the branching and
the generation of the initial LP directly in the code while BranchAndCut shows
how to use the predefined cut generators and how to define parameters. The
structure of the two examples is quite similar and a new user is probably better
of studying first the BAC example and then move on to the BranchAndCut
example. Other examples are available in the COIN repository: Cgl1 and Cgl2
(illustrate the use of cut generators), MaxCut (a very efficient Branch-and-Cut
code for solving Maximum Cut problems) [3], Mkc (a Branch-and-Price code
for solving Multiple Knapsack with Color problems) [5], VolLp and Volume-
LP (volume algorithm for solving LPs), and VolUfl (approximate solution of
Uncapacited Facility Location problems).

This document can be read without knowledge of the BAC code itself, but
it is probably better to have access to the code while reading. Additional
information is available in the repository, under the “Documentation” heading.
Particularly useful is the Doxygen documentation listing the BCP classes (link
“BCP class description”) [2], a convenient HTML interface to the BCP code.

Section 2 describes the integer linear problem solved in the example. Section
3 gives a general overview of BCP and other packages. Section 4 covers the
installation, compilation and compilation flags of the example. Section 5 lists
two data structures defined in BCP that are used in the example: vectors and
matrices. Section 6 describes the three types of BCP variables and constraints.
Section 7 covers the three main classes of the example: the class BB prob
(description of the problem), BB TM (tree manager) and BB LP (operations at
the nodes of the tree). Finally, Section 8 discusses briefly the parameter file
for BCP.

The description in this paper corresponds to the code available on the COIN
repository on May 8, 2003. Since BCP is continuously in development, there
is no guarantee that all details of the description will be accurate, even in a
near future. The paper will hopefully be kept up to date and its most recent
version will be available in the COIN repository.

Questions or bugs related to BCP or COIN in general should be directed to the
bugs reporting site of the COIN repository (see FAQs), and other mailing lists

2

available there. Questions or bugs related specifically to the BAC example
should be directed to

fmargot@ms.uky.edu .

2 The problem

The example solves the following integer linear program with ten binary vari-
ables x0, . . . , x9 (indices taken modulo 10):

Minimize
9∑

i=0

−xi

s.t. xi + xi+1 + xi+2 ≤ 1, for i = 0, . . . , 9,

x0 + x1 = 1

xi + xi+1 ≤ 1, for i = 1, . . . , 9,

x1 + x3 + x9 ≤ 1

x0 + x2 + x4 ≤ 1

x0 + x3 + x7 ≤ 1

x1 + x4 + x5 ≤ 1

x5 + x6 + x7 ≤ 1

x0 + x6 + x8 ≤ 1

xi ∈ {0, 1} for i = 0, . . . , 9.

The formulation is a little bit silly, as constraints xi +xi+1 ≤ 1 are implied by
xi + xi+1 + xi+2 ≤ 1 and could thus be removed. However, since the purpose
of this example is more to illustrate a few features of BCP than solving a
mathematically interesting problem, this should be good enough.

Despite the apparent triviality of this integer linear program, the output of
the code depends on the compilation flags in use (see Section 4 for the possible
compilation flags).

3

3 General

BCP is a collection of classes and functions handling the enumeration tree,
constraints, and variables. It needs an LP solver, but the LP solver is not part
of BCP. The interface between BCP and the solver is handled by the COIN Osi
(Open Solver Interface) library. The advantage of using Osi is that replacing
an LP solver by another one requires only small (ideally zero) changes in the
code. The example is written to run with the LP solver named CLP. All the
code that you need is included when you download the BAC tar ball from the
COIN repository [1].

BCP handles only minimization problems.

BCP can be used for developing applications running on parallel machines.
This comes with an additional cost for dealing with the passing of messages be-
tween processors (the “packing” and “unpacking” procedures present in many
BCP classes). Since different processors are not assumed to share memory, it
is impossible to use pointers to pass information between them. However, if
the application runs only on a non parallel machine, the code can be simpli-
fied by the use of pointers in the packing and unpacking procedures. This is
what is done in this example, and thus the example will not run on parallel
machines. See other examples from the COIN repository for proper “parallel”
packing and unpacking procedures.

The source files are split into a number of subdirectories:

• BAC/include contains all of the include files (*.hpp).

• BAC/TM contains the code for the tree manager (BB tm.cpp).

• BAC/LP contains the code for the operations at the node level (BB lp.cpp).

• BAC/Member contains the code for classes in between TM and LP. In
the example, it contains the code for handling cuts (BB cuts.cpp) and
the initialization of the process (BB.cpp, BB init.cpp).

4 Compilation and execution

Normally, typing “make” is all that is needed to install the package, provided
that the gnu make is available through that command. Some variables might
need to be defined, see the file INSTALL in the directory BAC. (When the

4

location of files is mentioned below, the given path always starts implicitly
from the directory BAC for files specific to the example or it starts with
COIN for files related to COIN, BCP, or CLP.)

The file Makefile.bc has a line starting with “USER DEFINES = ”. Three flags
can be put on this line :

• MPS : to read the problem from the file bac.mps. If this flag is not set,
the problem is constructed from scratch in the code.

• HEUR SOL : the code generates heuristic solutions (by simple rounding of
the LP solution) if this flag is set.

• CUSTOM BRANCH : The code uses the customized branching strategy (branch-
ing on the first non-integer variable) if this flag is set. Otherwise, it uses
the default branching of BCP (strong branching).

The object files (*.o) and executable (bcps) are in a subdirectory of BAC
whose name depends on your system. For this document, the name of this
subdirectory is assumed to be SYST. If the flag(s) used are modified in the
file Makefile.bc, make sure that the three files TM/BB tm.cpp, LP/BB lp.cpp,
and Member/BB init.cpp are recompiled. This can be achieved by touching
these files or by removing the files BB tm.o, BB lp.o and BB init.o (in the
subdirectory SYST) before issuing the “make” command. (The first line of
the output gives the flags that were used when compiling Member/BB init.)

Once the program is compiled, it can be run either by typing “./SYST/bcps”
or “./SYST/bcps bb.par”. The second command makes the code read the
parameter file bb.par. (Parameters will be discussed below in Section 8.) The
obvious difference between the two commands is in the amount of output
that is produced. The first command yields a detailed output. The second
command prevents the code of diving and uses Depth-First-Search instead of
Best-Bound in the selection of the next node to process.

5 Data structures

A few data structures are available within BCP and COIN. Two of them will
appear in the example: a class implementing vectors and a class implementing
matrices.

5

The class BCP vec is an implementation of an array with elements of generic
type T with facilities for resizing. If V is a BCP vec<T>, the following functions
are used:

• BCP vec<T> V(k) : creates a vector with k entries of type <T>.

• V.size() : returns the number of elements stored in V.

• V[i] : access the element stored at position i.

• V.push back(x) : inserts element x to the end of the vector; if the space
allocated to V is filled, then V is resized before inserting x.

• V.clear() : removes all entries in V.

• CoinFillN(V, n, elem) : put elem in the first n entries of V.

See the documentation (file COIN/Bcp/include/BCP vector.hpp) for the full
description of this class.

The class CoinPackedMatrix implements a two dimensional matrix stored
either by rows or by columns. For a CoinPackedMatrix M stored by rows, the
following functions are used in the examples:

• M = new CoinPackedMatrix(false, a, b) : creates a matrix stored
by rows (first boolean parameter “false”). Roughly speaking, the pa-
rameter 0 ≤ a ≤ 1 is a percentage of extra space to be allocated when a
reallocation of the matrix occur: When trying to insert k new rows in a
matrix having m rows and allocated space for p rows, with k + m > p,
the matrix will be reallocated to store (k +m)(1+ a) rows. The param-
eter b is similar, for reallocation when columns are added. Note that if
a matrix stored by columns is created using CoinPackedMatrix(true,
a, b), then a is used for the reallocation of columns and b for the real-
location of rows.

• submatrixOf(M, nb ind, v ind) : extracts from M the submatrix formed
by the rows of M with indices in the vector v ind (having nb ind entries).

• M.times(v, v res) : Computes the matrix-vector product (M v) and
puts the result in v res.

See the documentation (file COIN/Coin/include/coinPackedMatrix.hpp) for
the full description of this class.

6

6 Types of constraints and variables

BCP has three types of constraints (or cuts):

• Core constraints come from the initial LP formulation and are present
in the LP at every node of the tree.

• Algorithmic constraints are cuts given implicitly by a separation algo-
rithm. Algorithmic constraints, unlike core constraints, might be added
or removed from the node LP. The user controls which cuts are added,
but cut removal is done by BCP based on a value called “row effec-
tiveness” (number of consecutive iterations for which the corresponding
slack variable is zero, for example). Limited user input (through the
parameter file discussed in Section 8) is used for the definition of row
effectiveness.

• Indexed constraints are constraints in bijection with a set of integers,
such that (user defined) functions to generate the constraint from the
corresponding integer and vice-versa are available. Indexed constraints
can be seen as a special type of algorithmic cuts, having an extremely
compact representation. They might be removed from the node LP
similarly to the algorithmic cuts.

A typical use of indexed constraints is in the situation where some of the con-
straints of the initial formulation are more important than others and the ini-
tial formulation has a large number of constraints: Important constraints will
become core constraints and the remaining ones will be indexed constraints,
stored in an (indexed) array of constraints,

When developing a new application, the first decision to make is how to par-
tition the constraints into the three classes.

Example: For the example described in Section 2, the core constraints are
chosen as:

x0 + x1 = 1

xi + xi+1 ≤ 1, for i = 1, . . . , 9.

7

The indexed constraints are chosen as:

x1 + x3 + x9 ≤ 1

x0 + x2 + x4 ≤ 1

x0 + x3 + x7 ≤ 1

x1 + x4 + x5 ≤ 1

x5 + x6 + x7 ≤ 1

x0 + x6 + x8 ≤ 1.

Finally, the algorithmic constraints are chosen as:

xi + xi+1 + xi+2 ≤ 1, for i = 0, . . . , 9.

�
Instead of storing the sense (“≥”, “≤”, or “=”) and right hand side of an
inequality, BCP stores a lower bound and an upper bound for each inequality
(“ranged” constraints). Setting one of the bounds to ±∞, or setting both
bounds to the same value allows for the three possible senses.

BCP does not have have (yet) the possibility of using global cuts: all cuts
passed to BCP are handled as local cuts, valid only in the subtree rooted at
the node where the constraint is generated. The user may of course implement
pools for holding global cuts, but he will then be responsible for the manage-
ment of those cuts. While this might be done relatively easily for a non-parallel
implementation, this becomes trickier when parallelism is involved.

In the example, coefficients of core and indexed constraints are stored in
CoinPackedMatrices in the class BB prob. To store algorithmic cuts, the
class BB cut is used (file include/BB cut.hpp and Member/BB cut.cpp). It
implements in a standard way a representation of a cut as its set of nonzero
coefficients.

The variables in BCP may also be of one of the three types: core, algorith-
mic, or indexed. Since we focus here on a Branch-and-Cut, all variables are
core variables. Each variable has an upper and a lower bound, possibly ±∞.
In addition, each variable is labeled as integer, binary or continuous. Vari-
ables are internally numbered with integers, starting at 0. When BCP reports
information related to variables, it is with respect to its internal numbering.

8

7 Main classes: BB prob, BB tm, and BB lp

The main classes are BB prob, BB tm, and BB lp. The class BB prob (file
include/BB.hpp) is used for the problem description and contains the defini-
tions for handling core and indexed constraints. This is the class that the user
modifies to store additional information about the problem.

The class BB tm (tree manager) contains a single object of type BB prob, named
desc, holding the description of the problem (user data). The remaining
functions are essentially those for setting up the LP at the root, and for packing
and unpacking algorithmic cuts.

The class BB tm (file include/BB tm.hpp) is derived from the class BB tm user
(file COIN/Bcp/include/BCP tm user.hpp). Some of the data members in
BB tm are:

• BB desc : object holding the description of the problem.

• double EPSILON : value used for numerical precision when comparing
numbers of type double. This value is only for the user calculations,
BCP having its own parameter for numerical precision. (BCP uses the
value set for numerical precision in the LP solver.)

• bool *integer : integer[j] = true if and only if variable j is an
integer variable;

• double *clb, *cub : clb[j] = lower bound on variable j. cub[i]:
upper bound on variable j. (Use±DBL MAX for unbounded variables.)

• double *obj : obj[j] = objective value coefficient of variable j.

• *rlb core, *rub core : rlb core[i] = lower bound for core constraint
i. rlb core[i] = upper bound for core constraint i.

• *rlb indexed, *rub indexed : rlb indexed[i] = lower bound for in-
dexed constraint i. rlb indexed[i] = upper bound for indexed con-
straint i.

• CoinPackedMatrix *core, *indexed : matrices holding the coefficients
of the core and indexed constraints. Core constraints will be transmitted
to BCP through the function initialize core() and BCP will manage
them. Indexed constraints are managed by the user who decides which
of them should be added to the formulation at the node level. Once

9

an indexed constraint (or algorithmic cut) is added to the formulation
at node S, it will remain in the formulation of all children of S, until
deleted by BCP (based on row effectiveness).

Prominent function members in BB tm are:

• readInput() : reads input data.

• pack module data() : packs the data stored in BB prob that the user
wants to be available at the nodes of the tree. The corresponding un-
packing function unpack module data() is in the class BB lp (in file
LP/BB lp.cpp). In the example, this function is quite simple, as it sim-
ply writes the address of the object desc of class BB prob. (This is the
type of packing that is impossible to use to run the program on parallel
machines).

• pack cut algo() : encodes algorithmic cuts. It uses the packing func-
tion defined in the class BB cut (files include/BB cut.hpp and Mem-
ber/BB cut.cpp).

• unpack cut algo() : decodes encoded algorithmic cuts. It uses one of
the constructors defined in the class BB cut (files include/BB cut.hpp
and Member/BB cut.cpp).

• initialize core() : Transmits core constraints and core variables to
BCP.

• display feasible solution() : self explanatory.

The class BB lp contains the functions operating at the nodes of the tree:
cut generation, branching selection, and heuristic solution generation among
others. The main loop (exited by fathoming or branching decision) performs
the steps in the following order (steps followed by a “(u)” indicate that the
user has an entry point for that step):

• Initialize the new node (u).

• Solve the node LP.

• Test the feasibility of the node LP solution (u).

• Update the lower bound for the node LP.

10

• Fathom the node (if possible).

• Perform (logical, reduced cost) fixing on the variables (u).

• Update the row effectiveness records.

• Generate cuts (u).

• Generate a heuristic solution (u).

• Fathom the node (if possible).

• Decide to branch, fathom, or repeat the loop (u).

• Add to the node LP the cuts generated during the iteration, if the loop
is repeated.

• Purge the constraint pool.

Note that if, in an iteration, cuts are generated but the decision to branch is
taken, then the cuts are discarded unless the next node to be processed is one
of the sons of the current node.

It is important to realize that BCP creates a single object of type BB lp for the
whole enumeration, instead of creating one per node of the enumeration tree.
(This holds for a non-parallel execution; in the parallel case, BCP creates
one such object per processor used to process nodes.) The data members
are of course updated at each node of the tree, but the same object is used
throughout the enumeration. This is somewhat counter-intuitive in an object-
oriented setting, but is motivated by efficiency reasons: The amount of data
that the user needs when processing a node might be quite large. Copying
and sending it for each node would be rather inefficient. This implies that
variables that the user add to the description of the class might need to be
initialized somewhere else than in the constructor of BB lp. The function
initialize new search tree node() described below is available for this.

Some of the data members in class BB lp are:

• BB *p desc : pointer to the object desc of class BB tm.

• int in strong : An integer variable having value 1 while BCP is per-
forming strong branching and zero otherwise. Its use will be explained
below when describing the function test feasibility().

11

• double EPS : A double holding the value of EPSILON defined in BB prob.

• BCP vec<BCP cut*> algo cuts : vector to hold pointers to algorithmic
cuts generated but not yet transmitted to BCP.

• BCP vec<int> violated cuts : Vector used to store the indices of the
indexed cuts violated by the current LP solution.

Prominent function members in BB lp are:

• initialize solver interface() : Entry point to communicate with
the LP solver at the beginning of the execution (called only once from
the root node). In the example, this function is used to turn off the
printing of the output of CLP.

• initialize new search tree node() : Entry point at the beginning of
the processing of a node. The associated LP is set up but not yet solved.
Natural place for initializing user defined variables of BB lp.

• modify lp parameters() : Called each time an LP is solved by the LP
solver. Used primarily for changing the maximum number of simplex
iterations to perform while doing strong branching. It is also used to set
the variable in strong to its correct value and to print the current node
LP in the file lpnode.mps.

• test feasibility() : If the current LP is feasible, the LP solution sat-
isfies in particular all core constraints, but the user has to check himself
if the indexed and algorithmic cuts not in the current LP are satisfied
too. If some of these cuts are violated, they can be immediately trans-
mitted to BCP through the function parameter cuts. In the example, an
alternative way is used: the two vectors violated cuts and algo cuts
are holding indices or pointers to the violated cuts and these will be
transmitted to BCP in the function generate cuts in lp(). If all the
indexed and algorithmic cuts are satisfied, the user still has to check if
the LP solution satisfies the integrality conditions. This is done by call-
ing the function BCP lp user::test feasibility(). The return value
of the function is either a pointer to the current LP solution (when it
is a feasible solution for the initial problem too) or the NULL pointer
(otherwise).

The function BB lp::test feasibility() is also called while the pro-
cess is solving LPs for selecting the branching variable during strong

12

branching. This is useful in particular in applications where heuristic
solutions are generated during the feasibility check. In the example,
the function returns immediately when it is called while doing strong
branching (i.e. when called with in strong == 1).

The function is also called when the LP is infeasible. While this does not
make much sense for a Branch-and-Cut, it does when column generation
is possible. In the example, the function returns immediately if the last
solved LP is infeasible.

• logical fixing() : Empty function in the example. Might be useful
for other applications.

• generate cuts in lp() : Transmits to BCP the violated indexed cuts
and generated algorithmic cuts. BCP can easily use the functions defined
in the Cut Generation Library (CGL) included in COIN. Among others,
Gomory cuts, Knapsack covers, Lift-and-Project, and Odd Hole cuts are
available. See the example BranchAndCut for more on this.

• generate heuristic solution() : self explanatory. The function is
active in the example only if the compilation flag HEUR SOL is used. (See
Section 4.) In the example, the solution simply rounds the current LP
solution and checks if this rounded solution is feasible. The code is
of course very similar to the code of the function test feasibility()
since the checking of indexed and algorithmic cuts is done in both func-
tions. Introducing functions for those tests would certainly make sense,
but this was not done to keep the code as simple as possible. The pre-
defined type BCP solution generic derived from BCP solution is used
to encode the solution. (See files COIN/Bcp/include/BCP solution.hpp
and COIN/Bcp/Member/BCP solution.cpp.)

• select branching candidates() : The function is active in the exam-
ple only if the compilation flag CUSTOM BRANCH is used. (See Section 4.)
In the example, the variables are considered in order and branching is
performed on the first fractional variable.

• cuts to rows() : Required function when algorithmic or indexed cuts
are used. It describes how to get a row of the constraint matrix from
the representation of the cut. If BB cut is used, the two representations
are close and this might seem to be a redundant function. However, for
some problems, it is possible to store a cut in a compact form avoiding
the storage of all its non-zero coefficients. (An extreme example of this

13

is the case of the indexed cuts.) The function generating the coefficients
from the compact representation is then necessary.

8 Parameters

BCP has a large number of parameters that can be modified by the user by
using a parameter file. The file bb.par contains a certain number of them,
hopefully the ones that a user might want to modify. To get the full list of
parameters and their default values, look at the definitions struct BCP tm par
and struct BCP lp par in files COIN/Bcp/include/BCP tm param.hpp and
COIN/Bcp/include/BCP lp param.hpp.

The file bb.par contains succinct explanations for some of the parameters and
some default values. For 0/1 parameters, the meaning of only one of the two
values is given, this value being the one set by default.

Some of the parameters conflicts with each other and nothing prevents the user
from setting conflicting values. The result is unpredictable without looking at
the code in detail. For example, setting the parameters

BCP VerbosityShutUp 1 (to suppress all BCP printed output) and

BCP TmVerb BestFeasibleSolution 1 (to print the best solution found)

results in BCP printing the final solution. Another example is that, assuming
that BCP uses the default branching strategy, setting the parameters

BCP MaxPresolveIter -1 (strong branching should not be used)

BCP StrongBranch CloseToHalfNum 3 (default)

BCP StrongBranch CloseToOneNum 3 (default)

implies that more than one candidate variable is chosen (up to 6 can be se-
lected) and since BCP can not use strong branching to decide on which variable
to branch, it selects the first one and raises an error message. (To avoid the
error message, the sum of the values of the last two parameters should be 1.)

It is possible for the user to define new parameters (for example to pass the
name of an input file). Facilities already exist for doing that and the interested
reader can look at the example BranchAndCut for an illustration.

Acknowledgements

14

I wish to thank Laszlo Ladányi for patiently answering my questions while developing
this example.

References

[1] http://www-124.ibm.com/developerworks/opensource/coin .

[2] http://www-124.ibm.com/developerworks/opensource/coin/Doxygen/
Bcp/index.html (single line address).

[3] Barahona F., Ladányi L., “Branch-and-Cut Based on the Volume Algo-
rithm: Steiner Trees in Graphs and Max Cut”, IBM Research report
RC22221 (2001).

[4] Jünger M., Naddef D., eds., Computational Combinatorial Optimization,
Lecture Notes in Computer Science 2241, Springer (2001).

[5] Ladányi L., Forrest J.J., Kalagnanam J.R., “Column Generation Ap-
proach to the Multiple Problem with Color Contraints”, IBM Research
report RC22013 (2001).

[6] Ladányi L., Ralphs T.K., Trotter L.E., “Branch, Cut, and Price: Sequen-
tial and Parallel”, in [4], 223-260.

[7] Padberg M.W., Rinaldi G., “A Branch-and-Cut Algorithm for the Res-
olution of Large Scale Symmetric Travelling Salesman Problems”, SIAM
Review 33 (1991), 60–100.

[8] Wolsey L.A., Integer Programming, Wiley (1998).

15

